
9

Figure 2: Benchmarking of DeepCell 2.0. (a) Contributions of data transfer, TensorFlow-serving latency, and post
processing to the total runtime for individual images. These histograms denote the time required for each process
during benchmarking for a 4GPU cluster with a 240 Mbps upload speed. For our tested model, latency from
TensorFlow serving dominates the total processing time. Oscillations with a period of ~20 s arise from restarts.
Despite considerable response time per-image, the high throughput of TensorFlow serving enables large-scale
image analysis. (b) Total processing time for large imaging datasets. By scaling the cluster size dynamically to meet
the data analysis demand, DeepCell 2.0 significantly reduces the time necessary to process large imaging datasets.
Datasets consisting of 106 megapixel-scale images can be processed in several hours. An analysis of the tradeoff
between cluster size and upload speed appears in the Supplemental Information. Error bars in (b) and (c)
represent the standard deviation. (c) Cost as a function of cluster size. While the cost of GPU nodes is considerable,
it is mitigated by using pre-emptible instances for GPU inference. We see negligible differences in cost between
small and large clusters to analyze large imaging datasets. Details of our benchmarking calculations appear in the
Supplemental Information.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

10

Supplemental Information

Cell lines and culturing. We used the mammalian cell lines NIH-3T3, HeLa-S3, HEK 293, and RAW 264.7 to collect
training data for nuclear segmentation and the cell lines NIH-3T3 and RAW 264.7 to collect training data for
augmented microscopy. All cell lines were acquired from ATCC. The cells have not been authenticated and were not
tested for mycoplasma contamination.

Mammalian cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen or Caisson)
supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 μg/mL streptomycin (Gibco or Caisson),
and either 10% fetal bovine serum (Omega Scientific or Thermo Fisher; HeLa-S3 cells) or 10% calf serum
(Colorado Serum Company; NIH-3T3 cells). Cells were incubated at 37 °C in a humidified 5% CO2 atmosphere.
When 70-80% confluent, cells were passaged and seeded onto fibronectin-coated, glass-bottom, 96-well plates
(Thermo Fisher) at 10,000-20,000 cells/well. Seeded cells were incubated for 1-2 h to allow cells to adhere to the
bottom of the well before imaging.

Collection of training data. For fluorescence nuclear imaging, mammalian cells were seeded onto fibronectin
(Sigma, 10 g/mL) -coated glass bottom 96-well plates (Nunc) and allowed to attach overnight. Medium was
removed and replaced with imaging medium (FluoroBrite DMEM (Invitrogen) supplemented with 10 mM Hepes
pH 7.4, 1% fetal bovine serum, 2 mM L-glutamine) at least 1 h before imaging. Cells without a genetically encoded
nuclear marker were incubated with 50 ng/mL Hoechst 33342 (Sigma) before imaging. Cells were imaged with
either a Nikon Ti-E or Nikon Ti2 fluorescence microscope with environmental control (37 °C, 5% CO2) and
controlled by Micro-Manager or Nikon Elements. Images were acquired with a 20x objective (40x for RAW 264.7
cells) and either an Andor Neo 5.5 CMOS camera with 2x2 binning or a Photometrics Prime 95B CMOS camera with
2x2 binning. All data were scaled so that pixels had the same physical dimension prior to training.

For our augmented microscopy training dataset, which consisted of brightfield and fluorescence nuclear images,
cells were imaged on a Nikon Eclipse Ti-2 fluorescence microscope with environmental control (37 °C, 5% CO2) at
20x and 40x for NIH-3T3 and RAW264.7 cells, respectively. Nuclei were labeled with Hoescht 33342. Each dataset
was generated by collecting a fluorescence image in the focal plane as well as a z-stack of phase images (0.25 µm
slices, ±7.5 µm from focal center). Images were collected on a Photometrics Prime 95B CMOS camera with no
binning.

Autoscaling policy. We developed novel scaling policies for the redis consumer and TensorFlow (TF)-serving pods.

The TF-serving pod processes images with deep learning models, while the data-consumer pod feeds data into TF

serving. The scaling of these two pods is linked, as the data-consumer pods drive utilization of the TF-serving pods.

We observed that while data-consumer pods can bottleneck inference speed, having too many data-consumer pods

present at once results in an effective “denial of service” attack on the TF-serving pods.

To optimally scale both pods, we use autoscaling policies that are based on GPU utilization and work demand.

Because of the distributed nature of our task, we use horizontal pod autoscaling (more nodes) to scale our cluster

as opposed to vertical pod autoscaling (bigger nodes). Our metrics, available through Prometheus, provide the

information necessary for scaling. Horizontal pod autoscaling in Kubernetes works by defining a metric and a

target for a given pod. If the metric, measured over a given time period, is larger than the target, then the pod is

scaled up; if it is smaller, then it is scaled down. The target number of pods is given by 𝑁𝑝𝑜𝑑𝑠 = 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑑𝑠
𝑚𝑒𝑡𝑟𝑖𝑐

𝑡𝑎𝑟𝑔𝑒𝑡
.

Typical metrics are based on resource utilization: if utilization is too high (metric > target), then the pod needs to

be larger. If it is too low (metric < target), then the pod needs to smaller. For the TF-serving pod, we set our metric

to be GPU utilization, which ranges from 0% to 100%, and the target to be 70%. For the data-consumer pod, we set

our metric to be

𝑚𝑒𝑡𝑟𝑖𝑐 = {

0 𝑖𝑓 𝑇𝐹 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑝𝑜𝑑𝑠 = 0

𝑚𝑖𝑛 (
100−𝐺𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

100
,

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑘𝑒𝑦𝑠

#𝑟𝑒𝑑𝑖𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑜𝑑𝑠
) 𝑖𝑓

#𝑟𝑒𝑑𝑖𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑜𝑑𝑠

#𝑇𝐹 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑝𝑜𝑑𝑠
< 150

𝑒𝑙𝑠𝑒 0.135

.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

11

The target for this metric is set to be 0.15 for several reasons. First, the goal of this scaling policy is to create

enough data consumers to efficiently drive the TF-serving pod; tying scaling criteria to the GPU utilization

effectively achieves this goal. Second, because we have consumers of different types, care must be taken to ensure

that scaling is also sensitive to the amount of work, in order to ensure that new processing tasks are assigned

consumers. The work metric measures how much work has built up in the queue; if the amount of work to do is

high, then the scaling policy overrides the GPU utilization-based metric to scale up the pod.

Model architecture and training. The code for every model is available at https://www.github.com/deepcell-tf
under the deepcell.model_zoo module. We used feature-nets extensively in this work for benchmarking. Feature-

nets are a deep learning model architecture for general-purpose image segmentation. We previously used various

feature-nets for nuclear segmentation in 2D cell culture images6, 3D confocal images of brain tissue35, and 2D

multiplexed ion beam imaging datasets5. This architecture has also been applied to single-cell segmentation of

bacteria6 and yeast36. The key feature of this architecture is its ability to treat the deep learning model’s receptive

field—the length scale over which it pays attention—as a tunable variable. Our prior work revealed that deep

learning models work best when the receptive field size is matched to the feature size of a given dataset37. This

intuition has been valid for both feature-nets and object detection-based approaches like Mask-RCNN (data not

shown). Given the diversity in cellular morphologies across the domains of life, we believe that feature-nets are a

good starting point for cell biologists seeking to apply deep learning to new datasets.

We trained three models for this work. The first model was a feature-net for 2D image segmentation using a deep

watershed approach with a 41-pixel receptive field for benchmarking. This model was trained in a fully

convolutional fashion using stochastic gradient descent with momentum of 0.9, a learning rate of 0.01, weight

decay of 10-6, and an L2 regularization strength of 10-5 for 5 epochs on a NVIDIA V100 graphics card. A dataset

consisting of ~300,000 cell nuclei annotations was used for training.

For nuclear segmentation of brightfield images, we trained two models. The first of these models transforms

brightfield images into nuclear images. We used a modified 3D feature-net with a 41-pixel receptive field where

dilated max pooling layers are replaced with 2D convolutional layers with kernel size 2 and an equivalent dilation

rate. This model was trained in a fully convolutional fashion for using stochastic gradient descent with momentum

with a learning rate of 0.01, momentum of 0.9, weight decay of 10-6, and an L2 regularization strength of 10-5 for 5

epochs on a NVIDIA V100 graphics card. A dataset consisting of matched brightfield image stacks and fluorescent

nuclear images was used for training.

The second model for brightfield images was a modified RetinaMask38 model for nuclear segmentation.

RetinaMask generates instance masks in a fashion similar to Mask-RCNN but uses single-shot detection like

RetinaNet33 rather than feature proposals39 to identify objects. We used a ResNet50 backbone and the P2, P3, and

P4 feature pyramid layers for object detection. We also used custom anchor sizes of 8, 16, and 32 pixels for each of

these layers. This model was trained using the Adam optimization algorithm40 with a learning rate of 10-5, clipnorm

of 0.001, batch size of 4, and L2 regularization strength of 10-5 for 16 epochs on a NVIDIA V100 graphics card. A

dataset consisting of ~300,000 cell nuclei annotations was used for training.

Relationship between data transfer rates, inference speeds, and cluster size. Data transfer poses a fundamental limit

to how quickly data can be analyzed. A cluster that is operating efficiently processes data at the same rate that the

data enter. Given a data transfer speed d and a single model with an inference speed of s, this leads to the equation

𝑑 = 𝑁𝐺𝑃𝑈𝑠,

where NGPU, the number of GPUs in the cluster, is effectively the cluster size. A plot of this optimal cluster size as a

function of model inference speed for various upload speeds is shown below.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://www.github.com/deepcell-tf/model_zoo
https://www.github.com/deepcell-tf/model_zoo
https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

12

Figure S1: Optimal cluster size as a function of model inference speed and data upload speeds.

Benchmarking details. For benchmarking, data were gathered using the kiosk-benchmarking repo

(github.com/vanvalenlab/kiosk-benchmarking). All runs of 10,000 or 100,000 images were done in triplicate.

Runs of 1,000,000 images were run a single time. All data in Figure 2a of the main text were derived from

timestamps taken from redis-consumer pods within the cluster. Data Transfer Times from Figure 2a of the main

text were calculated by doubling the sum of the time it took a redis-consumer pod to download a raw image from

the storage bucket and then upload the resulting image to the storage bucket. This calculation may mildly

underestimate the total time a given image spends in transit in the cluster, since the image must go through several

transfer steps:

1) Upload to storage bucket as part of a zip file.

2) Download of zip file from storage bucket by zip-consumer pod.

3) Upload of individual raw image to storage bucket from zip-consumer pod.

4) Download of individual raw image from storage bucket by redis-consumer pod.

5) Upload of individual predicted image to storage bucket from redis-consumer pod.

6) Download of individual predicted image from storage bucket to zip-consumer pod.

7) Upload of zipped batch of predicted images to storage bucket from zip-consumer pod.

8) Download of zipped batch of predicted images from storage bucket by client.

Our methodology accounts reasonably for steps 3-6, but not steps 1-2 and 7-8. TF Serving Response Times in

Figure 2a of the main text were the amount of time redis-consumer pods had to wait for a response from TF-

serving pods. Postprocessing Times in Figure 2a of the main text were the amount of time that a redis-consumer

pod was occupied carrying out post-processing computations on the results received from TF-serving pods. In

Figure 2b of the main text, Number of GPUs refers to the maximum number of GPUs available to a cluster, whether

the cluster ever scaled up to the point where that number of GPUs was being utilized simultaneously. NVIDIA

Tesla-V100 GPUs were used in all benchmarking runs. In Figure 2c of the main text, costs were computed following

methodology documented in the vanvalenlab/kiosk-benchmarking repository.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

13

Benchmarking data. All data from our benchmarking are shown below. Each run was performed in triplicate,

except for the 1M image runs, which were performed once.

Figure S2: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the

time required to process a single image. Data for clusters with 1 GPU are shown.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

14

Figure S3: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the

time required to process a single image. Data for clusters with a maximum of 4 GPUs are shown.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

15

Figure S4: Contributions of data transfer time, Tensorflow serving response time, and post processing time to the

time required to process a single image. Data for clusters with a maximum of 8 GPUs are shown.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

16

Figure S5: Cloud computation cost across all benchmarking runs with 2.4 Gbps upload speed.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

17

Figure S6: Cloud computation cost across all benchmarking runs with 240 Mbps upload speed.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 15, 2019. ; https://doi.org/10.1101/505032doi: bioRxiv preprint

https://doi.org/10.1101/505032
http://creativecommons.org/licenses/by-nc/4.0/

