Pleistocene Mammal Population Fluctuation Patterns Inferred by Their Genomes

 Shuaicheng Li4,*
${ }^{1}$ BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083,
China
${ }^{2}$ Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen 518083, China
${ }^{3}$ Shenzhen Key Laboratory of Forensics, BGI-Shenzhen, Shenzhen 518083, China
${ }^{4}$ Department of Computer Science, City University of Hong Kong, Hong Kong 999077,
China
\# these authors contributed equally to this study
*Correspondence: silkroad@genomics.cn, shuaicl@gmail.com

Summary

Paleoclimate fluctuations critically affect paleoecological systems and influence mammal populations, even resulting in population differentiation [1]. Historical effective population size $\left(N_{e}\right)$ can reflect these influences [2, 3]. Dozens of recent studies have investigated the relationship between variations in N_{e} values of one or a small number of mammalian species, inferred from genomic data, and fluctuations in paleoclimate [4-7]. However, there lacks an integrated and comprehensive study on the relationship between the fluctuations in paleoclimate and variations in N_{e} values inferred from genome sequencing data of a wide range of mammals. To investigate patterns in mammalian N_{e} values during the the Pleistocene, we gathered whole genome sequencing data of 60 mammals from 35 species distributed across Afro-Eurasia and the Americas, then inferred their N_{e} curves using the Pairwise Sequentially Markovian Coalescent (PSMC) method; 30 mammalian N_{e} curves almost simultaneously started to contract at the turning point of the Middle Pleistocene Transition (MPT); then the population of seven mammals started to expand at the turning point of the Middle Brunhes Event (MBE), while the contraction of other mammals' populations was prolonged to the later different time periods. Eight mammals experienced a severe population contraction around the Last Glaciation Maximum, as some aves did [8], while four potential ruminant beneficiaries showed an expanding population. Sus scrofa and Bos taurus experienced an internal population differentiation in the MPT. To conclude, the phenomenon that critical paleoclimate events

Keywords: PSMC, mammal N_{e}, PCA, MPT

RESULTS AND DISCUSSION

Effective population size of mammals during the Pleistocene

By utilizing the nonuniform distribution of single nucleotide variants (SNVs) in the genome, the Pairwise Sequentially Markovian Coalescent (PSMC) method can reconstruct the historical effective population size $\left(N_{e}\right)$ from any single individual of the population [4]. In this work, we applied the PSMC method to obtain the N_{e} curves of 35 mammal species in Afro-Eurasia and the Americas (Figure S1). The N_{e} curves estimated from the genome data span the whole Pleistocene, yielding us that were sufficient to conduct the subsequent analysis.

Climates contributed to the mammal N_{e} curves

N_{e} fluctuation could result from a combined effect of genetics, climate, locations, or other factors [8]. To understand the degree that climate contributed to the N_{e} curves, we extracted the principal components (PCs) from $60 N_{e}$ curves by the principal component analysis (PCA). PC1 and PC2 contributed variance ratios of 0.508 and 0.273 , respectively (Figure 1A). PC1 accounts for most of the variance; however, after hierarchical clustering, no signals could be detected to support that PC1 is correlated with genetic background (Figure S2). This finding could suggest that the complex paleoclimate impact on the mammals. We clustered these mammals hierarchically with

PC2 (Figure 1B) and discovered that in many mammals (Ursus, Ponginae, Homo, Canis, some subgroups in Rhinopithecus and some herbivorous mammals), their genetically close subgroups were clustered in the same branch, with the exception of Bos and Sus. Eurasian and African Bos clusters as well as Asian and European Sus clusters are separated by a clear boundary, reflecting a long separation time of their populations that will be elaborated in the following section. Hence, PC2 could be interpreted as the integrated effect of the inherent genetic characteristics and geographical locations on the mammals. In general, close locations imply similar climate conditions; therefore, fluctuations of mammal N_{e} curves can reflect the climates of the mammal ancestors confronting to some extent.

N_{e} curve extrema clustered into seven clusters

N_{e} curve extrema are consistent with significant climate events in the Pleistocene. These extrema (Table S1) are centered at seven time points with an average silhouette coefficient of 0.64, --an acceptable cluster indicator. All seven clusters coincide with turning points of important climate events, as elaborated below.

The earliest cluster centered at 0.97 ± 0.021 mya, with 40 extrema, coincided with the turning point of the Middle Pleistocene Transition (MPT, 0.94 mya [9]). We refer to this cluster as the MPT Cluster. In the MPT Cluster, $30 N_{e}$ curves reached a peak, including those of Sus, Bos, Ovis, Capra, Equus caballus, Ailuropoda melanoleuca, Rhinopithecus
roxellana, Rhinopithecus strykeri, Ursus arctos, Ursus maritimus, Pan troglodytes verus and Gorilla gorilla diehli; and ten N_{e} curves displayed a bottleneck, including Homo and five species from Equus. Accordingly, we categorized the mammals into three classes (Table S1): MPT Maxima Class, MPT Minima Class, and MPT Neutral Class (mammals whose N_{e} curves are without the first extremum in the MPT class).

The contraction of the MPT Maxima Class around 0.97 ± 0.021 mya may result from the Jaramillo geomagnetic reversal (1.07 mya~0.99 mya) [10] or changes in solar insolation after the coeval $\delta^{13} \mathrm{Cmax}$-III event of 1.0~0.95 mya (Marine isotope stage (MIS) 29-25) [11, 12]. The climate became too harsh at a large scale for mammals to survive [9] and led to massive mammal extinction or population contraction events such as warm-steppic mammals being replaced with cold-steppic mammals in European Villafrancian fauna [13] and the southern-migration mammal wreck event of Gongwangling fauna [14]. The Plio-Pleistocene contributed substantially to current biomes [15] and MP fossils of 73.3% mammals in this class, including Ailuropoda [16], Bos [17], Capra [18], Equus [19], Rhinopithecus [20] and Sus [21] are majorly distributed in the Palearctic, according to the fossil database (Figure S3A, B, D, E, K and L). Therefore, the population peak of the MPT Maxima Class in the MPT Cluster suggests that the ancient populations of MP mammals in the Palearctic could have experienced severe contractions around the turning point of the MPT.

The MPT Maxima Class population started to contract from the MPT Cluster center, and their first bottlenecks after that are distributed in five clusters (Figure 3A). The MPT Maxima Class, including African Pan troglodytes verus and Bos, wild-spread Equus and European Sus Scrofa, reached the first bottleneck at 0.43 ± 0.018 mya, which is referred to as the MBE (Middle Brunhes Event) Bottleneck for 0.43 mya is happens to be the turning point of the MBE (MIS13-MIS11) [22]. Eight mammals, including Capara, Asian Sus scrofa, Ovis aries, and Bos indicus, reached the first bottleneck of their population at approximately 0.32 ± 0.01 mya, the time which was known during the Mindel-Riss interglacial [23] (MRI bottleneck). These mammals, except the Bos indicus, were sampled at a relatively high latitude. In the Mindel-Riss interglacial, the climate was similar to the current climate. For four mammals including Ursus arctos, Ursus maritimus and two Bos taurus individuals, their ancestral N_{e} values synchronously reached the first bottleneck at 0.22 ± 0.010 mya in the middle of the Riss glaciation, which is a relatively weak MIS 7 period with a cool interglaciation climate [24] (MRG Bottleneck). For nine mammals from the MPT Maxima Class, including Ovis ammon polii, Ailuropoda melanoleuca, Bos grunniens, Rhinopithecus roxellana and Sus celebensis as well as three Bos taurus individuals and one Sus scrofa individual, their ancestral N_{e} values started to show an expansion of their populations until 0.12 ± 0.008 mya in the warmest, last interglaciation, the Eemian interglaciation [25] (El Bottleneck). Two species, Gorilla gorilla diehli and Rhinopithecus strykeri, reached the first bottleneck until 0.04 ± 0.004 mya (the most recent
cluster center). These mammal populations contracted almost simultaneously but started to expand at different time period.

Climate conditions could prompt mammal population migration and differentiation.

As a result, the population of migrated mammals may have started to expand, while mammals that did not migrate sustained contraction. In the MPT Maxima Class, the mammals that experienced the MBE Bottleneck likely lived in low latitude regions, and those that experienced the MRI Bottleneck usually resided at relatively high latitudes with the exception of Bos and Sus scrofa, which will be elaborated in the following section. However, there was no obvious association between population fluctuations and habitats of the mammals that experienced the MGR and El bottlenecks. The fact that mammals in the MPT Maxima Class spread in different latitudes, adapted themselves to different environments and developed different habits, but shared five asynchronous expansion times, could result from combined factors of environment in different latitudes and the capacity for mammalian adaptations.

We also noticed that ten mammals of the MPT Neutral Class (Figure 3C) reached a bottleneck while three of them reached a peak, at 0.67 ± 0.030 mya, or the end of the MPT. At that time, the planet held a high ice volume but was relatively warm [24, 27]. The mammals that underwent a bottleneck around 0.67 ± 0.030 mya included Pongo

pygmaeus, Ursus americanus Macaca mulatta lasiota, Macaca thibetana and Canis.

 Their populations began to shrink separately before 1 mya, indicating that the populationcontraction impetus differed for mammals from the MPT Maxima Class. The mammals with a peak at that time included Odocoileus virginianus texanus, Gorilla gorilla gorilla and Gorilla beringei graueri.

Differentiation in mammal populations

Sus scrofa and Bos populations experienced internal population differentiation between 0.97 mya and 0.43 mya in the middle Pleistocene transmission.

Sus scrofa belongs to the MPT Maxima Class (Table S1); thereafter, the population of European Sus scrofa experienced a prolonged contraction until the MBE Bottleneck, while the population of Asian Sus scrofa continued contracting until the MRG Bottleneck (Figure 4A). The middle Pleistocene fossils of Asian Sus scrofa were only distributed in relatively low latitude areas in Asia (Figure S3L). We also noticed that some Asian mammals, such as Capra aegagrus, Capra hircus [18], and Ailuropoda melanoleuca [16], also started their population expansion at the MRG Bottleneck, while the European Sus scrofa population started to expand at the turning point of the MBE, which is the same time as the Equus caballus population did [19]. The long-term population contraction of Eurasian Sus scrofa, following a different fluctuation trend in the MBE Bottleneck, indicates a differentiation in Eurasian Sus scrofa during the MPT and MBE. Kijas estimated that Eurasian Sus scrofa maternity divergence time is ~ 0.9 mya according to the mtDNA genome sequence [32]; with synonymous and nonsynonymous
nucleotide substitutions of two main domains of the D-loop region in the cytochrome B gene (CytB) (1,847 bp), Alves estimated the Eurasian Sus scrofa divergence time to be ~0.6 mya [33]. Based on interpopulational distances for the mtDNA CytB sequence ($1,140 \mathrm{bp}$), another estimated divergence time is ~ 0.5 mya [33, 34]. With phylogenetic analysis based on pairwise genetic distance of the mitotypes of Eurasian Sus scrofa, using an evolutionary rate of 2%, their divergence time was estimated as 0.28 mya; according to mtDNA D-loop sequence divergence time analysis, the Eurasian Sus scrofa divergence time is ~ 58 kya [35]. Our N_{e} curves analysis support that Eurasian Sus scrofa could have differentiated in 0.9~0.5 mya (during the long, harsh MPT [9]). The estimations that the divergence time of Eurasian Sus scrofa is ~ 0.28 mya or ~ 58 kya could have resulted from the inadequate sequence lengths used for the respective estimations.

We noticed that for all the Bos individuals, their ancestral populations peaked at the MPT Maxima Class as Sus did, while they experienced their subsequent bottlenecks at different clusters (Figure 3A). The first population bottleneck of African Bos indicus and one African Bos taurus located in the MBE bottleneck while Eurasian Bos taurus reached the first bottleneck at later different cluster (Figure 4B), this phenomenon indicates that the differentiation of the Bos taurus population occurred prior to the MBE bottleneck. Since 92\% mammals from MPT Maxima class are Palearctic mammals or Indomalayan mammals exclude African Bos, the potential Bos population could originate in Palearctic.

The first Bos fossil in Ethiopia originated in ~0.6 mya, indicating a migration of Bos [36]. which is also consistent with our estimated Bos taurus differentiation event, and because of their potential ancestral population originated in the Palearctic, we could infer that their migration direction is from Eurasia to Africa. Consequently, the harsh MPT period could also result in the migration and differentiation of Bos taurus.

The fluctuation of mammal N_{e} in the Late Pleistocene (LP) period

The N_{e} curves of many mammals fluctuated during the LP period. Around the time of the LGM and Younger Dryas Event (YDE) (12.6~11.6 kya) [28, 29], the ancestral populations of seven mammal species, including Equus hemionus onager, Macaca nemestrina, Equus quagga boehmi, Canis lupus, Odocoileus virginianus texanus, and Equus caballus, displayed a sudden contraction (Figure S4A). Furthermore, the populations of four species, including Capra aegagrus, Gorilla gorilla diehli and non-African Homo sapiens, experienced a sharp increase (Figure S4B).

The aforementioned fluctuation was accompanied by a megafauna extinction during which many large mammals extricated [37-40]. The time of coincidence of the two events indicates that the causes of the megafauna extinction event could also have intensively influenced the ancestors who experienced the aforementioned decline event of the extant mammals. The LGM and the YDE could have contributed to the ancient mammal N_{e} decline event as well as the megafauna extinction event [37]. Many Aves
populations also displayed such fluctuations at the same time, as indicated by their N_{e} curves [8]. However, neither the LGM nor the YDE was solely sufficient to extinguish megafauna [41], nor could they be the only substantial causes for the N_{e} decline event. Hence, there could be other factors contributing to these two events.

Homo sapiens ancestors could also have contributed to the N_{e} fluctuations. In our results, the N_{e} curves of Canis lupus familiaris and Canis lupus started their divergences ~0.1 mya, corroborating that the estimated divergence time of the early dog and wolf could be as early as 135 kya [42]. The N_{e} of the ancestor of Canis lupus experienced a sudden, sharp decline event around the YDE, while the ancestor of Canis lupus familiaris escaped such a decline (Figure 4C). According to recent research, Canis lupus familiaris was domesticated in China in ~ 33 kya [43], in Central Asia in ~ 12.5 kya or in Europe in ~15 kya [44]. The domestication events occurred around a population contraction event of Canis lupus, the ancestor of which lived without domestication by Homo sapiens. Therefore, humans could be related to the expansion of the Canis lupus familiaris ancestral population. In the last glaciation, Homo sapiens started to spread across the world from Africa with brilliant hunting ability in ~60 kya [45]. Encountering these clever hunters, megafauna seldom understood how to survive. Many mammal N_{e} decline events also happened after Homo sapiens spread, according to our results (Figure S4A). The Homo sapiens spreading and occupancies agree with the time and trace for the extinction of mammoths [37, 46, 47]. This hints that Homo sapiens could have played an essential
role in modern mammal ancestral N_{e} contractions in the LP. Furthermore, the sharp expansion of Bos indicus-2, Capra aegagrus and Gorilla gorilla diehli after the LGM could also be attributed to mammalian ancestor population LP contractions and megafauna extinctions. Their population contraction event vacated ecological niches; thereafter, hostile environment adaptive ruminants such as Bos and Capra could have been the potential beneficiaries during this harsh period, and the domestication of Homo sapiens could also have facilitated their population expansion after the YDE [48].

DISCUSSION

Considering earth as a system, paleoclimate fluctuations affect the rise and fall of the population of earth's creatures in the paleoecological system. N_{e} curves inferred by PSMC analysis offer a chance to investigate N_{e} dynamics in ancient times, and fossil distributions can verify these results. The influences of the MPT, MBE, LGM and other paleoclimate events on the paleoecosystem are obviously reflected in the mammal N_{e} curves. Furthermore, the analysis of these mammal N_{e} curves reveals preliminary impacts of climate fluctuations on the biosphere. In addition, the mammal N_{e} decline events in harsh stages alert us to pay attention to the dangers that could be caused by dramatic climate change in the future.

ACKNOWLEDGMENTS

We are grateful to Yanlin zhang (McGill) for excellent technical help.; andwe thank Bailiang Jian (BGI) and Yilin Liu (BGI) for improving the manuscript;we also acknowledge BGI-Shenzhen for the computing resources;
we thank Fossilworks and the contributors who provided fossil records for us, including the following:
A. Behrensmeyer. Taxonomic occurrences of mammal recorded in the fossilworks. http://fossilworks.org.
A. Hendy. Taxonomic occurrences of mammal recorded in the PaleoDB. http://fossilworks.org.
A. Miller. Taxonomic occurrences of Equus recorded in the PaleoDB. http://fossilworks.org.
A. Turner. Taxonomic occurrences of mammal recorded in the PaleoDB. http://fossilworks.org.
C. Bell. Taxonomic occurrences of mammal recorded in the PaleoDB. http://fossilworks.org.
C. Jaramillo. Taxonomic occurrences of mammal recorded in the PaleoDB. http://fossilworks.org.
D. Croft. Taxonomic occurrences of mammal recorded in the PaleoDB. http://fossilworks.org.
E. Fara. Taxonomic occurrences of B recorded in the PaleoDB. http://fossilworks.org.
E. Vlachos. Taxonomic occurrences of Bos recorded . http://fossilworks.org.
J. Alroy. Taxonomic occurrences of mammal recorded in the Fossilworks.
http://fossilworks.org.
J. Bloch. Taxonomic occurrences of mammal recorded. http://fossilworks.org.
J. Marcot. Taxonomic occurrences of mammal recorded. http://fossilworks.org.
M. Carrano. Taxonomic occurrences of mammal recorded in the PaleoDB.
http://fossilworks.org.
M. Uhen. Taxonomic occurrences of mammal recorded in the PaleoDB.
http://fossilworks.org.
P. Holroyd. Taxonomic occurrences of Equus recorded. http://fossilworks.org.
P. Mannion. Taxonomic occurrences of Equus recorded in the PaleoDB.
http://fossilworks.org.
W. Clyde. Taxonomic occurrences of mammal recorded in the PaleoDB.
http://fossilworks.org.
W. Kiessling. Taxonomic occurrences of Macaca recorded. http://fossilworks.org.

AUTHOR CONTRIBUTIONS

S.C.L. supervised the research and revised the manuscript; Y.L.L. collected, analyzed data and prepared the manuscript draft; B.L. participated in the literature review and
performed some analysis; X.X.P. collected some datasets; Z.J.X provided assistance; Q.S supervised the research; S.B.L revised the manuscripts.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. Williams, M.A., Dunkerley, D., De Deckker, P., Kershaw, A.P., and Stokes, T. (1993). Quaternary environments, (E. Arnold).
2. Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science (New York, N.Y.) 87, 430-431.
3. Hofreiter, M., and Stewart, J. (2009). Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584-R594.
4. Li, H., and Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature 475, 493-496.
5. Zhao, S., Zheng, P., Dong, S., Zhan, X., Wu, Q., Guo, X., Hu, Y., He, W., Zhang, S., and Fan, W. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genet. 45, 67.
6. Higashino, A., Sakate, R., Kameoka, Y., Takahashi, I., Hirata, M., Tanuma, R., Masui, T., Yasutomi, Y., and Osada, N. (2012). Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome Biol. 13, R58.
7. Miller, W., Schuster, S.C., Welch, A.J., Ratan, A., Bedoya-Reina, O.C., Zhao, F., Kim, H.L., Burhans, R.C., Drautz, D.I., Wittekindt, N.E., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc. Natl. Acad. Sci. U. S. A. 109, E2382-2390.
8. Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G., and Ellegren, H. (2015). Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375-1380.
9. Head, M.J., and Gibbard, P.L. (2005). Early-middle Pleistocene transitions: an overview and recommendation for the defining boundary. Geol. Soc. Spec. Publ. 247, 1-18.
10. Cande, S.C., and Kent, D.V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. Solid Earth 100, 6093-6095.
11. Wang, P., Li, Q., Tian, J., Jian, Z., Liu, C., Li, L., and Ma, W. (2014). Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the south China sea. Nat. Sci. Rev. 1, 119143.
12. Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., and Wade, B.S. (2006). The heartbeat of the Oligocene climate system. Science (New York, N.Y.) 314, 1894-1898.
13. Rook, L., and Martínez-Navarro, B. (2010). Villafranchian: the long story of a Plio-Pleistocene European large mammal biochronologic unit. Quat. Int. 219, 134-144.
14. Tong, H. (2007). Occurrences of warm-adapted mammals in north China over the Quaternary period and their paleo-environmental significance. Sci. China Ser. D Earth Sci. 50, 1327-1340.
15. Pennington, R.T., Cronk, Q.C., and Richardson, J.A. (2004). Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1455-
16.
17. Tsiang-Ke, W. (1974). On the taxonomic status of species, geological distribution and evolutionary history of Ailuropoda. Acta Zool. Sin. 2, 010.
18. Van Vuure, C. (2005). Retracing the aurochs: history, morphology and ecology of an extinct wild ox, (Pensoft Pub).
19. Agusti, J., Oms, O., and Pares, J.M. (1999). Calibration of the Early-middle Pleistocene transition in the continental beds of the Guadix-Baza Basin (SE Spain). Quat. Sci. Rev. 18, 1409-1417.
20. Eisenmann, V. (1992). Origins, dispersals, and migrations of Equus. (Mammalia, Perissodactyla). CFS Cour. Forschungsinstitut Senckenberg 153, 161-170.
21. Takai, M., Zhang, Y., Kono, R.T., and Jin, C. (2014). Changes in the composition of the Pleistocene primate fauna in southern China. Quaternary International 354, 75-85.
22. Rothschild, M.F., and Ruvinsky, A. (2011). The genetics of the pig, (CABI).
23. Wang, P., Tian, J., Cheng, X., Liu, C., and Xu, J. (2003). Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31, 239-242.
24. Fan, J., and Hou, X. (2018). International Chronostratigraphic Chart. Volume 2018.
25. Lang, N., and Wolff, E.W. (2011). Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Clim. Past 7, 361-380.
26. Kolfschoten, T.v. (1992). Aspects of the migration of mammals to Northwestern Europe during the Pleistocene, in particular the reimmigration of Arvicola terrestris. Courier 153, 213.
27. Hemming, S.R. (2004). Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophy. 42, doi: 10.1029/2003RG000128.
28. Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., and Roy, M. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150-3184.
29. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. (2009). The Last Glacial Maximum. Science (New York, N.Y.) 325, 710.
30. Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. NatI. Acad. Sci. U S A 104, 16016-16021.
31. Mithen, S., and Straus, L. (2004). Archaeology-After the ice a global human history, 20,000-5000, (Cambridge, Mass: Science).
32. López-García, J., Blain, H.-A., Bennasar, M., Sanz, M., and Daura, J. (2013). Heinrich event 4 characterized by terrestrial proxies in southwestern Europe. Clim. Past 9, 1053-1064.
33. Kijas, J., and Andersson, L. (2001). A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J. Mol. Evol. 52, 302-308.
34. Alves, E., Ovilo, C., Rodriguez, M., and Silio, L. (2003). Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim.

Genet. 34, 319-324.
34. Giuffra, E., Kijas, J., Amarger, V., Carlborg, Ö., Jeon, J.-T., and Andersson, L. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 17851791.
35. Kim, K.I., Lee, J.H., Li, K., Zhang, Y.P., Lee, S.S., Gongora, J., and Moran, C. (2002). Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19-25.
36. O'Regan, H.J., Turner, A., Bishop, L.C., Elton, S., and Lamb, A.L. (2011). Hominins without fellow travellers? First appearances and inferred dispersals of Afro-Eurasian large-mammals in the Plio-Pleistocene. Quaternary Science Reviews 30, 1343-1352.
37. Gillespie, R. (2008). Updating Martin's global extinction model. Quat. Sci. Rev. 27, 2522-2529.
38. Wroe, S., and Field, J. (2006). A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation. Quat. Sci. Rev. 25, 2692-2703.
39. Alroy, J. (2001). A Multispecies Overkill Simulation of the End-Pleistocene Megafaunal Mass Extinction. Science (New York, N.Y.) 292, 1893.
40. Koch, P.L., and Barnosky, A.D. (2006). Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215-250.
41. Martin, P.S. (1984). Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution, P.S. Martin and G.K. Richard, eds. (USA: The University of Arizona Press), pp. 354403.
42. Freedman, A.H., and Wayne, R.K. (2017). Deciphering the origin of dogs: from fossils to genomes. Annu. Rev. Anim. Biosci. 5, 281-307.
43. Wang, G.-D., Zhai, W., Yang, H.-C., Wang, L., Zhong, L., Liu, Y.-H., Fan, R.-X., Yin, T.-T., Zhu, C.-L., and Poyarkov, A.D. (2016). Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21.
44. Frantz, L.A., Mullin, V.E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., Linderholm, A., Mattiangeli, V., Teasdale, M.D., and Dimopoulos, E.A. (2016). Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science (New York, N.Y.) 352, 1228-1231.
45. Callaway, E. (2018). Israeli fossils are the oldest modern humans ever found outside of Africa. Nature 554, 15-16.
46. Stuart, A.J. (2005). The extinction of woolly mammoth (Mammuthus primigenius) and straight-tusked elephant (Palaeoloxodon antiquus) in Europe. Quat. Int. 126-128, 171-177.
47. Martin, P.S., and Stuart, A.J. (2016). Mammoth Extinction: Two Continents and Wrangel Island. Radiocarbon 37, 7-10.
48. Vigne, J.-D. (2011). The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. C. R. Biol. 334, 171-181.
49. Kim, J., Hanotte, O., Mwai, O.A., Dessie, T., Bashir, S., Diallo, B., Agaba, M., Kim, K., Kwak, W., Sung, S., et al. (2017). The genome landscape of indigenous African cattle. Genome Biol. 18, 34.
50. Lee, H.J., Kim, J., Lee, T., Son, J.K., Yoon, H.B., Baek, K.S., Jeong, J.Y., Cho, Y.M., Lee, K.T., Yang, B.C., et al. (2014). Deciphering the genetic blueprint behind Holstein milk proteins and production. Genome Biol. Evol. 6, 1366-1374.
51. Kim, S.J., Ka, S., Ha, J.W., Kim, J., Yoo, D., Kim, K., Lee, H.K., Lim, D., Cho, S., Hanotte, O., et al. (2017). Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama. BMC genomics 18, 371.
52. Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al. (2017). SOAPnuke: a mapreduce acceleration supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1-6.
53. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.

FIGURE LEGENDS

Figure 1. PC analysis of mammal demographic trajectories. (A) PC1 and PC2 plots. Different colors or shapes represent different mammal classes. (B) Clusters obtained using PC2 of N_{e} curves. Colors represent mammal classes. Bos and Sus are marked by triangles and pentagrams, respectively. Mammals in light gray shading share a close genetic relationship and cluster closely when using PC2 of N_{e} curves. Mammals in dark gray shadows share a relatively close genetic relationship, live in similar habitats, and cluster closely when using PC2 of N_{e} curves. The scale bar represents the Euclidean distance between samples.

Figure 2. Sankey diagram of mammal extrema. Mammals in the same column possess the same extremum. Sample names are in Table S1.

Figure 3. Sankey diagram of three classes. (A) MPT Maxima Class. (B) MPT Minima Class. (C) MPT Neutral Class. Sample names are also in Table S1.

Figure 4. three mammal \boldsymbol{N}_{e} curves. (A) N_{e} curves of Sus scrofa and Sus celebensis;
(B) N_{e} curves of Bos taurus, Bos indicus and Bos grunniens; (C) N_{e} curves of Canis lupus familiaris and Canis lupus-1.

STAR *METHODS

KEY RESOURCE TABLE

REAGENT or RESOURCES	SOURCE	IDENTIFIER
Bos indicus-1	[49]	SRR3225526
Bos indicus-2	[49]	SRR3546787
Bos indicus-3	[49]	SRR3694652
Bos taurus-1	[49]	SRR3656921
Bos taurus-2	[49]	SRR3694478
Bos taurus-3	[50]	SRR934409
Bos taurus-4	[50]	SRR934402
Bos taurus-5	[51]	SRR3497611
Bos taurus-6	[51]	SRR3499149
Bos grunniens-1	[51]	SRR361224, SRR361227
Capra aegagrus-1	[52]	SRR1576690
Capra hircus-1	[53]	SRR488786, SRR488791, SRR488812, SRR488787, SRR488805, SRR488813
Ovis aries-1	[54]	SRR1217914, SRR1217915, SRR1217916, SRR1217917, SRR1217939, SRR1217905, SRR1217906, SRR1217907, SRR1217908, SRR1217909, SRR1217937, SRR1217910, SRR1217911, SRR1217912, SRR1217913, SRR1217938, SRR1217918, SRR1217919, SRR1217920, SRR1217921, SRR1217940
Ovis ammon polii-1	[55]	SRR5753922
Equus caballus-1	[56]	SRR1055837
Equus caballus-2	[56]	SRR1046151
Equus asinus-1	[56]	SRR873443, SRR873444, SRR873445
Equus quagga boehmi-1	[57]	ERR660704, ERR660705, ERR660706, ERR660707, ERR660708, ERR660709, ERR660710, ERR660711, ERR660712, ERR660713, ERR660714, ERR660715, ERR660717, ERR660716, ERR660718, ERR660719, ERR660720, ERR660721, ERR660722, ERR660723, ERR660724, ERR660725, ERR660726, ERR660727, ERR660728, ERR660729, ERR660730, ERR660731, ERR660732, ERR660733, ERR660734, ERR660735, ERR660736, ERR660737, ERR660738, ERR660739, ERR660740, ERR660741, ERR660742, ERR660743, ERR660744, ERR660745, ERR660746, ERR660747, ERR660748, ERR660749, ERR660750, ERR660751, ERR660752, ERR660753, ERR660754, ERR660755, ERR660756, ERR660757, ERR660758, ERR660759, ERR660760, ERR660761, ERR660762, ERR660763,

	[57]	ERR660764, ERR660765, ERR660766, ERR660767,ERR660768, ERR660769, ERR660770, ERR660771,ERR660793, ERR660772, ERR660773, ERR660774,ERR660775, ERR660776, ERR660777, ERR660778,ERR66077, ERR660780, ERR660781, ERR660782,ERR660783, ERR660784, ERR660785, ERR660786,ERR660787, ERR660788, ERR660789, ERR660790,ERR660791, ERR660792, ERR660794, ERR660795,ERR660796, ERR660797, ERR660798, ERR660799,ERR660800, ERR660801, ERR660802, ERR660803,ERR660804, ERR660805, ERR660806, ERR660807,ERR660808, ERR660809, ERR660810, ERR660811,
Equus grevyi-1		ERR669474, ERR669475, ERR669476, ERR669477, ERR669478, ERR669479, ERR669480, ERR669481,
		ERR669482, ERR669483, ERR669484, ERR669485, ERR669486, ERR669487, ERR669488, ERR669489,
		ERR669490, ERR669491, ERR669492, ERR669493, ERR669494, ERR669495, ERR669496, ERR669497,
		ERR669498, ERR669499, ERR669500, ERR669501, ERR669502, ERR669503, ERR669504, ERR669505,
		ERR669502, ERR669503, ERR669504, ERR669505, ERR669506, ERR669507, ERR669508, ERR669509,
		ERR669510, ERR669511, ERR669512, ERR669513, ERR669514, ERR669515, ERR669516, ERR669517,
		ERR669518, ERR669519, ERR669520, ERR669521,
		ERR669522, ERR669523, ERR669524, ERR669525, ERR669526, ERR669527, ERR669528, ERR669529,
		ERR669526, ERR669527, ERR669528, ERR669529, ERR669530, ERR669531, ERR669532, ERR669533,
		ERR669534, ERR669535, ERR669536, ERR669537,
		ERR669538, ERR669539, ERR669540, ERR669541, ERR669542, ERR669543, ERR669544, ERR669545,
		ERR669546, ERR669547, ERR669548, ERR669549, ERR669550, ERR669551, ERR669552, ERR669553,
		ERR669554, ERR669555, ERR669556, ERR669557, ERR669558, ERR669559, ERR669560, ERR669561,
		ERR669562, ERR669563
Equus zebra hartmannae-1	[57]	ERR657893, ERR657894, ERR657895, ERR657896, ERR657897, ERR657898, ERR657899, ERR657900,
		ERR657897, ERR657898, ERR657899, ERR657900, ERR657901, ERR657902, ERR657903, ERR657904,
		ERR657901, ERR657902, ERR657903, ERR657904, ERR657905, ERR657906, ERR657907, ERR657908,
		ERR657909, ERR657910, ERR657911, ERR657912,
		ERR657917, ERR657918, ERR657919, ERR657920, ERR657921, ERR657922, ERR657923, ERR657924,
		ERR657925, ERR657926, ERR657927, ERR657928, ERR657929, ERR657930, ERR657931, ERR657932,
		ERR657929, ERR657930, ERR657931, ERR657932, ERR657933, ERR657934, ERR657935, ERR657936, ERR657937, ERR657938, ERR657939, ERR657940, ERR657941, ERR657942, ERR657943, ERR657944, ERR657945, ERR657946, ERR657947, ERR657948,

Odocoileus virginianus texanus-1	[58]	SRR4069803, SRR4069806, SRR4069810, SRR4069815
Canis lupus familiaris-1	[59]	SRR2827578
Canis lupus familiaris-2	[59]	SRR2827588
Canis lupus familiaris-3	[59]	SRR2827594
Canis lupus familiaris-4	[59]	SRR2827563
Canis lupus familiaris-5	[60]	SRR1138369
Canis lupus-1	[59]	SRR2827600
Macaca mulatta lasiota-1	[61]	SRR278719, SRR278720, SRR278721, SRR278722, SRR278723, SRR278724, SRR278725, SRR278726, SRR278727, SRR278728, SRR278729, SRR278730, SRR278731, SRR278732, SRR278733, SRR278734, SRR278735, SRR278736, SRR278737, SRR278738, SRR278739, SRR278740
Macaca nemestrina-1		SRR1698391, SRR1698394
Macaca thibetana-1	[62]	SRR1024051
Rhinopithecus roxellana-1	[63]	SRR2017664
Rhinopithecus avunculus-1	[63]	SRR1588565
Rhinopithecus strykeri-1	[63]	SRR1588563
Rhinopithecus brelichi-1	[63]	SRR1588562
Sus scrofa-1	[64]	ERR173181
Sus scrofa-2	[64]	ERR173202

Sus scrofa-3	[64]	ERR173217
Sus scrofa-4	[64]	ERR173222
Sus scrofa-5	[64]	ERR173176
Sus scrofa-6	[64]	SRR652446, SRR652448, SRR652449, SRR652450
Sus celebensis-1	[64]	ERR173210
Pongo pygmaeus-1	[65]	SRR748012, SRR748013, SRR748014
Pan troglodytes verus- 1	[65]	SRR748081, SRR748082, SRR748083, SRR748084
Pan troglodytes schweinfurthii-1	[65]	SRR726412, SRR726413, SRR726415, SRR726416
Pan paniscus-1	[65]	SRR740831, SRR740832, SRR740835
Gorilla gorilla gorilla-1	[65]	SRR748177, SRR748178
Gorilla gorilla diehli-1	[65]	SRR748109, SRR748110, SRR748111, SRR748112
Gorilla beringei graueri-1	[65]	SRR747961, SRR747962
Homo sapiens-1	[66]	1000genomes
Homo sapiens-2	[66]	1000genomes
Homo sapiens-3	[66]	1000genomes
Homo sapiens-4	[67]	ERZ324532
Homo sapiens-5	[67]	ERZ324535
Ailuropoda melanoleuca-1 Ursus maritimus-1	[68] $[7]$	SRR2716726, SRR2717569, SRR2717570, SRR2717571 SRR518683
Ursus arctos-1	[7]	SRR518712, SRR518713
Ursus americanus-1	[7]	SRR518723
Ailuropoda	http://fossil works.org	13293, 36729, 36730, 36868, 38649, 40341, 51100, 92781, 92787, 107996, 108001, 120834
Bos	http://fossil works.org	11803, 21197, 22584, 32093, 32113, 32124, 34105, 36134, 36136, 40497, 40692, 40695, 42866, 43008 43016, 43619, 43645, 43657, 43657, 43664, 43689, 43699, 43701, 43702, 44090, 48890, 49087, 49089, 49092, 51817, 60530, 67660, 73757, 73758, 73760, 73761, 92786, 96782, 107875, 109703, 115167, 184245
Canis	http://fossil works.org	11803, 20123, 20126, 20127, 20129, 20130, 20134, 20137, 20138, 20143, 20143, 20148, 20150, 20150, 20150, 20157, 20166, 20173, 20178, 20187, 20205, 20237, 20273, 20273, 20277, 20280, 20281, 20283, 20283, 20283, 20285, 20285, 20289, 20290, 20290, 20293, 20295, 20295, 20297, 20299, 20301, 20302, 20302, 20302, 20302, 20302, 20308, 20319, 20323, 20327, 20327, 20329, 20329, 20334, 20335, 20342, 20342, 20342, 20346, 20347, 20347, 20351, 20351, 20360, 20375, 20376, 20387, 20387, 20398, 20400,

20400, 20401, 20415, 20417, 20419, 20434, 20454, 20477, 20479, 20479, 20491, 20491, 20494, 20495, 20498, 20498, 20499, 20500, 20500, 20501, 20501, 20503, 20504, 20506, 20514, 20520, 20528, 20530, 20530, 20532, 20536, 20537, 20556, 20556, 20558, 20559, 20567, 20569, 20569, 20572, 20573, 20580, 20590, 20593, 20594, 20600, 20600, 20600, 20612, 20615, 20617, 20619, 20619, 20624, 20626, 20628, 20629, 20635, 20636, 20638, 20639, 20641, 20641, 20642, 20642, 20644, 20646, 20653, 21276, 21276, 21276, 21277, 21277, 21294, 21296, 21709, 21822, 21961, 34010, 34105, 34269, 34269, 34269, 34330, 34382, 34925, 34926, 34927, 34985, 35045, 35467, 35472, 36134, 36206, 36214, 36219, 36220, 40497, 40695, 40808, 42866, 42866, 43008, 43008, 43016, 43617, 43618, 43619, 43629, 43630, 43631, 43632, 43645, 43649, 43649, 43650, 43651, 43653, 43653, 43654, 43657, 43664, 43664, 43666, 43689, 43699, 43702, 44090, 48587, 48889, 48890, 48893, 48908, 48910, 48911, 49089, 49093, 49093, 49094, 49814, 49816, 49999, 50196, 50198, 50199, 50249, 50258, 50258, 50259, 51100, 63150, 63335, 63427, 63515, 70704, 71277, 71286, 71303, 71303, 71308, 71316, 71338, 71342, 71345, 71346, 71346, 73752, 73752, 73761, 73845, 74141, 74292, 74292, 74292, 74953, 75995, 76059, 76059, 79548, 79581, 79582, 79621, 79632, 79683, 79683, 79757, 79918, 79919, 82258, 82530, 84181, 85159, 85314, 90036, 90070, 92787, 93103, 93103, 93141, 93141, 93181, 93181, 93181, 93182, 93182, 93251, 93251, 93251, 93259, 93277, 93281, 93281, 93281, 93329, 93332, 93332, 93332, 93332, 93333, 93333, 93379, 93379, 93527, 93528, 93828, 94331, 96974, 101897, 101898, 101899, 103991, 104664, 104664, 104758, 104797, 115167, 115167, 115184, 115188, 144976, 145366, 145500, 145500, 150336, 150336, 150336, 150336, 150336, 154722, 154722, 154771, 154771, 154804, 154805, 154805, 154805, 154910, 154921, 155393, 155393, 155393, 155409, 155409, 159674, 159675, 159676,

$43645,43653,43654,43655,43664,43666,43666$,
$43689,43697,43699,43701,43702,44092,47832$,
$48587,48890,48911,48912,49087,49089,49093$,
$49813,49816,49816,49999,50196,50196,50198$,
$50199,50199,50257,50258,50259,50259,50990$,
$51100,58419,63229,71345,73686,73691,73726$,
$73752,74139,74140,74141,74235,74235,74292$,
$74292,74496,74954,76059,76060,77754,79548$,
$81672,81673,81674,81675,81676,81677,81678$,
$81679,82258,82530,84181,84195,90036,92781$,
$92781,92787,92787,93103,93141,93182,93250$,
$93277,93278,93278,93279,93332,93486,93524$,
$93527,93828,93837,96782,101897,101898$,
$101899,103991,104662,104664,104669,104681$,
$107956,109704,120834,154722,154773,154936$,
$155393,155409,162543,162544,184245$

Software and Algorithm Soapnuke (v1.5.6)
N_{e} curve analysis

This paper
https://libraries.io/github/BGI-flexlab/SOAPnuke http://bio-bwa.sourceforge.net https://github.com/lh3/psmc https://qgis.org/en/site/ https://github.com/Solenyalyl/Ne-curve-analysis

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shuaicheng Li (shuaicl@gmail.com).

METHOD DETAILS

Mammal and fossil distribution

Mammalian SRA data came from different studies, and not all of their locations were recorded. Mammalian place of origin was regarded as the location if a sample was collected from the zoo; domestication location was taken to be the location if it was assured; and when it was ambiguous, sampling location was regarded as the location. For each of the remaining samples without location recorded, we researched the species distribution in the world and then chose a representative place as the location. Our mammals were distributed among 15 genera, and their fossil records were found in http://fossilworks.org/ except for Pan and Gorilla. Those fossils originated in the Calabrian (1.8-0.781 mya), middle Pleistocene (0.781-0.126 mya) or late Pleistocene (0.126-0.0117 mya). Mammal location and fossil data distribution were plotted using QGIS (Figure S1 and Figure S3).

Data collection and preprocessing

We downloaded mammalian Illumina sequence data from public SRA datasets (https://www.ncbi.nlm.nih.gov/sra/), Chinese BAM files were downloaded from
https://www.ebi.ac.uk/, and non-Chinese BAM files were collected from
http://www.internationalgenome.org/. Including 60 specimens from 35 species, these
SRA data were sequenced by Illumina paired-end sequencing technology using different sequencing platforms, therefore our first step was transforming all the lllumina sequence data into uniform Q+33 Illumina format. All the raw sequencing reads were filtered by

Soapnuke [52] (http://soap.genomics.org.cn/) and each was aligned to its respective reference genome or the most related genome from the same genus by BWA 0.7.17 [53]. Samples with genome coverage depth less than 6X were excluded.

Ne curve generation

The historical N_{e} curve of mammals was inferred by PSMC based on genome data [4]. A PSMC-based consensus genome sequence was obtained by using 'mpileup' in SAMTOOLS. When the RMS (root-mean-squared) quality of reads was below 20, their covered sites were marked N for missing data. The sites whose read depths were less than a third or more than twice the average depth across the genome were masked to avoid collapsed regions in the assembly. When we ran PSMC, the upper limit of TRMCA was set to 15 , the initial θ / ρ value was set to 5 and time interval was set to ' $1 * 4+25^{*} 2+1^{*} 4+1^{*} 6$ ' as Li and Durbin [4] did. The mutation rate and generation time we applied are in Table S3. The genome coverage depth, coverage ratio, and false-negative ratio are in Table S2. For statistical analysis of these N_{e} curves see sections below.

QUANTIFICATION AND STATISTICAL ANALYSIS

PC analysis and hierarchical clustering

PCA was used to identify the principal components of N_{e} curves. Every N_{e} curve contains 58 points. We standardized these data to unit standard deviation and centralized these points approximately 0 , then extracted their principal components to conduct hierarchical clustering. The distance matrix between samples was calculated from Euclidean distance and distance between two clusters was calculated by the UPGMA (unweighted pair group method with arithmetic mean) method.

N_{e} curve extrema analysis

To obtain the extrema of every curve, we marked increasing trends as ' 1 ' and decreasing trends as ' -1 ' in curves, then the latter trend number was used to subtract the former trend number to obtain the extrema. ' -2 ' and ' 2 ' represent crest and trough, respectively. To verify whether these extrema are distributed randomly, we compared these extrema with a uniform distribution to obtain Hopkins statistics. After obtaining a clustering trend, these extrema were clustered by the K-means method to get a pattern. Then we used this pattern to predict every curve extrema into seven clusters by removing those neglectable extrema (difference within 0.1).

DATA AND SOFTWARE AVAILABILITY

N_{e} curve analysis code is available from https://github.com/Solenyaly//Ne-curve-analysis.

Excel table Legends

Table S1. N_{e} curve extrema seven clusters (related to Figure 2,3)
Table S2. coverage depth, coverage ratio, and false-negative ratio of 60 mammal
genomes(related to Figure 1-4)

A
B

Mammals

B

C

