Abstract
Recent advances in the directed differentiation of human pluripotent stem cells to kidney brings with it the prospect of drug screening and disease modelling using patient-derived stem cell lines. Development of such an approach for high content screening will require substantial quality control and improvements in throughput. Here we demonstrate the use of the NovoGen MMX 3D bioprinter for the generation of highly reproducible kidney organoids from as few as 4,000 cells. Histological and immunohistochemical analyses confirmed the presence of renal epithelium, glomeruli, stroma and endothelium, while single cell RNAseq revealed equivalence to the cell clusters present within previously described organoids. The process is highly reproducible, rapid and transferable between cell lines, including genetically engineered reporter lines. We also demonstrate the capacity to bioprint organoids in a 96-well format and screen for response to doxorubicin toxicity as a proof of concept for high content compound screening.