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ABSTRACT 

Speaking is a sensorimotor behavior whose neural basis difficult to study at the 
resolution of single neurons due to the scarcity of human intracortical measurements 
and the lack of animal models. We recorded from electrode arrays in the ‘hand knob’ 
area of motor cortex in people with tetraplegia. Neurons in this area, which have not 30 

previously been implicated in speech, modulated during speaking and during non-
speaking movement of the tongue, lips, and jaw. This challenges whether the 
conventional model of a ‘motor homunculus’ division by major body regions extends to 
the single-neuron scale. Spoken words and syllables could be decoded from single 
trials, demonstrating the potential utility of intracortical recordings for brain-computer 35 

interfaces (BCIs) to restore speech. Two neural population dynamics features 
previously reported for arm movements were also present during speaking: a large 
initial condition-invariant signal, followed by rotatory dynamics. This suggests that 
common neural dynamical motifs may underlie movement of arm and speech 
articulators. 40 
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INTRODUCTION 

Speaking requires coordinating numerous articulator muscles with exquisite timing and 
precision. Understanding how the sensorimotor system accomplishes this behavioral 

feat requires studying its neural underpinnings, which are critical for identifying (Tankus 
and Fried, 2018) and treating the causes of speech disorders and for building BCIs to 45 

restore lost speech (Guenther et al., 2009; Herff and Schultz, 2016). Speaking is also a 

uniquely human behavior, which presents a high barrier to electrophysiological 
investigations. Previous direct neural recordings during speaking have come from 

electrocorticography (ECoG) (Bouchard and Chang, 2014; Cheung et al., 2016; Mugler 
et al., 2014) or single-unit (SUA) recordings from penetrating electrodes during the 50 

course of clinical treatment for epilepsy (Chan et al., 2014; Creutzfeldt et al., 1989; 
Tankus et al., 2012) or deep brain stimulation for Parkinson’s disease (Lipski et al., 

2018; Tankus and Fried, 2018). Such studies have begun to characterize motor cortical 
population dynamics underlying speech (Bouchard et al., 2013; Chartier et al., 2018; 

Pei et al., 2011), but not at the finer spatiotemporal scale uniquely afforded by high-55 

density intracortical recordings, such as those available in animal models of reaching 

(Churchland et al., 2012; Kaufman et al., 2016; Miri et al., 2017). 

We had the opportunity to study speech production at this resolution by 

recording from multielectrode arrays previously placed in human motor cortex as part 
of the BrainGate2 BCI clinical trial (Hochberg et al., 2006). This research context 60 

dictated two important elements of the present study’s design. First, both participants 
had tetraplegia due to spinal-cord injury but were able to speak; this enabled observing 

motor cortical spiking activity during overt speaking, in contrast to earlier studies of 
attempted speech by participants unable to speak (Brumberg et al., 2011; Guenther et 
al., 2009). However, these participants’ long-term paralysis means that their 65 

neurophysiology may differ from that of people who are able-bodied; we will discuss 
the need for interpretation caution in the Discussion.  

Second, the electrode arrays were in dorsal ‘hand knob’ area of motor cortex 
which we previously found to strongly modulate to these participants’ attempted 
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movement of their arm and hand (Ajiboye et al., 2017; Brandman et al., 2018; 70 

Pandarinath et al., 2017). Speech-related activity has not previously been reported in 

this cortical area, but there are several hints in the literature that dorsal motor cortex 
may have speech-related activity. Although imaging experiments consistently identify 

ventral cortical activation during speaking tasks, a meta-analysis of such studies 
(Guenther, 2016) indicates that responses are occasionally seen (though not, to our 75 

knowledge, explicitly called out) in dorsal motor cortex. Additionally, behavioral 
(Gentilucci and Campione, 2011; Vainio et al., 2013) and transcranial magnetic 

stimulation studies (Devlin and Watkins, 2007; Meister et al., 2003) have reported 
interactions (and interference) between motor control of the hand and mouth. This 

close linkage between hand and speech networks has been hypothesized to be due to 80 

a need for hand-mouth coordination and an evolutionary relationship between manual 

and articulatory gestures (Gentilucci et al., 2012; Rizzolatti and Arbib, 1998). Here, we 
explicitly set out to test whether neuronal firing rates in this dorsal motor cortical area 

modulated when participants produced speech and orofacial movements. 

RESULTS 85 

Speech-related activity in dorsal motor cortex 
We recorded neural activity during speaking from participants ‘T5’ and ‘T8’, who 
previously had two arrays each consisting of 96 electrodes placed in the ‘hand knob’ 

area of motor cortex (Figure 1A). The participants performed a task in which on each 

trial they heard one of ten different syllables or one of ten short words, and then spoke 90 

the prompted sound after hearing a go cue (Figure S1). We analyzed both sortable 

SUA that could be attributed to an individual neuron’s action potentials, and 

‘threshold-crossing’ spikes (TCs) that might come from one or several neurons (Figure 

S2). Firing rates showed robust changes during speaking of syllables (Figures 1, S2, 

Supplemental Video 1) and words (Figure S4). The neural population showed little 95 

modulation in the time epoch immediately after the audio prompt, prior to the go cue 

(Figure S2C). Since this audio prompt response’s was so small, and since we are 

unable in this study to disambiguate between whether it reflects perception, movement 
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preparation, or small overt movements preceding vocalization, we did not further 
examine this activity. Rather, here we focus on the neural activity leading up to and 100 

during speech production.  

 
Figure 1. Speech-related neuronal spiking activity in dorsal motor cortex. 
(A) Participants’ MRI-derived brain anatomy. Blue squares mark the locations of the two chronic 
96-electrode arrays. Insets show electrode locations, with shading indicating the number of 105 
different syllables for which that electrode recorded significantly modulated firing rates (darker 
shading = more syllables). Non-functioning electrodes are shown as smaller dots. CS is central 
sulcus. See also Figure S2 for additional TCs firing rate examples, and Figure S3 for individual 
syllables’ electrode response maps. 
b. Raster plot showing spike times of an example neuron across multiple trials of T5 speaking 110 
nine different syllables, or silence. Data are aligned to both the go cue and acoustic onset time 
(AO). Trial-averaged firing rates for this neuron and two others are shown to the right (mean ± 
s.e.). Insets show these neurons’ action potential waveforms (mean ± s.d.). The electrodes where 
these neurons were recorded are circled in the panel A insets using colors corresponding to 
these waveforms. See Figure S1 for task details. 115 

Significant modulation was found during speaking at least one syllable (p < 0.05 

compared to during silence) in 73/104 T5 electrodes’ TCs (13/22 SUA) and 47/101 T8 
electrodes (12/25 SUA). Active neurons were distributed throughout the area sampled 

by the arrays, and most modulated to speaking multiple syllables (Figures 1A and S3), 

suggesting a broadly distributed coding scheme. This is consistent with previous single 120 
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neuron recordings in the temporal lobe (Creutzfeldt et al., 1989; Tankus et al., 2012). 
Two observations lead us to believe that this neural activity is related to the motor 

cortical control of the speech articulators (Chartier et al., 2018; Mugler et al., 2018) 
rather than perception or language. First, modulation was much stronger when 

speaking compared to hearing the auditory prompts (Figure S2). Second, in both 125 

participants, 99 of 120 electrodes that responded to syllables (24 of 25 sorted neurons) 

also responded to at least one of seven non-speech orofacial movements (Figure 2). 

 
Figure 2. The same motor cortical population is also active during non-speaking 
orofacial movements. 130 

(A) Both participants performed an orofacial movement task during the same research session 
as their syllables speaking task. Examples of single neuron firing rates during seven different 
orofacial movements are plotted in colors corresponding to the movements in the illustrated 
legend above. The “stay still” condition is plotted in black. The same three example neurons 
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from Figure 1B are included here. The other three neurons were chosen to illustrate a variety of 135 
observed response patterns. 
(B) Electrode array maps indicating the number of different orofacial movements for which a 
given electrode’s -4.5 × RMS threshold crossing rates differed significantly from the stay still 
condition. Data are presented similarly to the Figure 1A insets. Firing rates on most functioning 
electrodes modulated for multiple orofacial movements. 140 
(C) Breakdown of how many neurons’ (top) and electrodes’ TCs (bottom) exhibited firing rate 
modulation during speaking syllables only (red), non-speaking orofacial movements only (blue), 
or both behaviors (purple). A unit or electrode was deemed to modulate during a behavior if its 
firing rate differed significantly from silence/staying still for at least one syllable/movement. 

Speech can be decoded from intracortical activity on individual trials 145 

We next performed a decoding analysis to quantify how much information about the 

spoken syllable or word was present in the time-varying neural activity. Multi-class 
support vector machines were used to predict the spoken sound (or silence) from 

single trial TCs and high-frequency LFP power (Figure 3). Cross-validated prediction 

accuracies for syllables were 84.6% for T5 (10 classes, mean chance accuracy was 150 

0.1% across shuffle controls) and 54.7% for T8 (11 classes, chance was 8.6%). Word 
decoding accuracies were 83.5% for T5 (11 classes, 

chance was 9.1%) and 61.5% for T8 (11 classes, 
chance was 9.3%). 

Figure 3. Speech can be decoded from intracortical 155 
activity. 
(A) To quantify the speech-related information in the neural 
population activity, we constructed a feature vector for 
each trial consisting of each electrode’s spike count and 
HLFP power in ten 100 ms bins centered on AO. For 160 
visualization, two-dimensional t-SNE projections of this 
feature vector are shown for all trials of the T5-syllables 
dataset. Each point corresponds to one trial. Even in this 
two-dimensional view of the underlying high-dimensional 
neural data, different syllables’ trials are discriminable and 165 
phonetically similar sounds’ clusters are closer together. 
(B) The high-dimensional neural feature vectors were 
classified using a multiclass SVM. Confusion matrices are 
shown for each participant’s leave-one-trial-out 
classification when speaking syllables (top row) and words 170 
(bottom row). Each matrix element shows the percentage 
of trials of the corresponding row’s sound that were 
classified as the sound of the corresponding column. 
Diagonal elements show correct classifications. 
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Decoding accuracies for all individual sounds were above chance (p < 0.01, shuffle 175 

test). Decoding mistakes (Figure 3B) and low-dimensional representations (Figure 3A) 

tended to follow phonetic similarities (e.g., ba and ga, a and ae). This observation is 

consistent with previous ECoG studies (Bouchard et al., 2013; Cheung et al., 2016; 
Mugler et al., 2014), although the larger neural differences we observed between 

unvoiced k and p and the beginning of their voiced counterparts at the start of ga and 180 

ba suggests strong laryngeal tuning (Dichter et al., 2018). These neural correlate 

similarities likely reflect similarities in the underlying articulator movements (Chartier et 
al., 2018; Lotte et al., 2015; Mugler et al., 2018). 

Neural population dynamics exhibit low-dimensional structure during speech 
These multielectrode recordings enabled us to observe motor cortical dynamics during 185 

speech at their fundamental spatiotemporal scale: neuron spiking activity. Specifically, 
we examined whether two known key dynamical features of motor cortex firing rates 

during arm reaching were also present during speaking. Prior nonhuman primate (NHP) 
experiments showed that the neural state undergoes a rapid change during movement 

initiation which is dominated by a condition-invariant signal (CIS) (Kaufman et al., 190 

2016). NHP (Churchland et al., 2012; Kaufman et al., 2016) and human (Pandarinath et 

al., 2015) studies found that subsequent peri-movement population activity is 
characterized by orderly rotatory dynamics. These observations, in concert with neural 

network modeling (Kaufman et al., 2016), have led to a model of motor control in 
which, prior to movement, inputs specifying the movement goal create attractor 195 

dynamics towards an advantageous initial condition (Shenoy et al., 2013). During 
movement initiation, a large transient input kicks the network into a different state from 

which activity evolves according to rotatory dynamics such that muscle activity is 
constructed from an oscillatory basis set (akin to composing an arbitrary signal from a 

Fourier basis set) (Churchland et al., 2012; Sussillo et al., 2015).  200 

We tested whether motor cortical activity during speaking also exhibits these 

dynamics by applying the analytical methods of (Churchland et al., 2012; Kaufman et 
al., 2016). These analyses used two different dimensionality reduction techniques 
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(Cunningham and Yu, 2014) to reveal latent low-dimensional structure in the trial-
averaged firing rates for different conditions (here, speaking different words). Both 205 

methods sought to find a modest number of linear weightings of different electrodes’ 
firing rates (components) that capture a large fraction of the overall variance, akin to 

principal components analysis (PCA). However, unlike PCA, each method also looks 
for a specific form of dynamical structure: jPCA (Churchland et al., 2012) assesses 

rotatory dynamics, whereas dPCA (Kaufman et al., 2016; Kobak et al., 2016) 210 

decomposes neural activity into CI and condition-dependent (CD) components. 

Importantly, these methods do not spuriously find the sought dynamical structure 
when it is not present in the data (Churchland et al., 2012; Elsayed and Cunningham, 

2017; Kaufman et al., 2016; Kobak et al., 2016; Pandarinath et al., 2015). 

We found that these population dynamics motifs were indeed also present 215 

during speaking. Similarly to (Kaufman et al., 2016), both participants’ neural activity 

featured a large CI component that rapidly increased after the go cue (Figure 4A). This 

CIS1 was essentially identical regardless of which word was spoken (Figure 4B) and 

was largely orthogonal to the condition-dependent components.  

Figure 4. A condition-invariant signal during 220 
speech initiation.  
 (A) A large component of neural population activity 
during speech initiation is a condition-invariant (CI) 
neural state change. Firing rates were decomposed into 
dPCA components like in (Kaufman et al., 2016). Each 225 
bar shows the relative variance captured by each dPCA 
component, which consists of both CI variance (red) and 
condition-dependent (CD) variance (blue). These 8 dPCs 
captured 65% (T5-words) and 32% (T8-words) of the 
overall neural variance. Insets show the subspace angle 230 
between the largest CI dimension (CIS1) and the two 

largest CD dimensions. Its angle to the subspace containing all the CD components was 82° for 
T5 and 73° for T8. 
(B) Neural population activity during speech initiation projected onto CIS1. Traces show the trial-
averaged activity when speaking different words, denoted by the same colors as in Figure 3B.  235 

We then looked for rotatory population dynamics around voice onset time. 

Figure 5A shows T5’s data projected into the top jPC plane. Similarly to (Churchland et 
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al., 2012; Pandarinath et al., 2015), all conditions’ neural states rotated in the same 
direction, and rotatory dynamics could explain substantial variance in how population 

activity evolved moment-by-moment. Application of a recent population dynamics 240 

hypothesis testing method (Elsayed and Cunningham, 2017) revealed that this rotatory 

structure was significantly stronger than expected by chance in T5’s data (Figure 5B), 

but not T8’s (Figure S5). We attribute this difference to T8’s smaller measured neural 

responses during speech, which likely reflect his older arrays’ lower signal quality. 

Consistent with this, T8’s BCI computer cursor control performance was also 245 

substantially worse than T5’s (Pandarinath et al., 2017). Other factors that could also 
have contributed to T8’s reduced speech-related neural activity include his tendency to 

speak quietly and with less clear enunciation (consistent with (Jiang et al., 2016)), array 
placement differences, and differences in cortical maps between individuals (Farrell et 

al., 2007). 250 

Figure 5. Rotatory neural population 
dynamics during speech.  
(A) The top 6 PCs of the trial-averaged firing 
rates from 150 ms before to 100 ms after 
voice onset in the T5-words dataset were 255 
projected onto the first jPCA plane like in 
(Churchland et al., 2012). This plane 
captures 38% of the top 6 PCs’ variance, 
and rotatory dynamics fit the moment-by-
moment neural state change with R2 = 0.81 260 
in this plane and 0.61 in the top 6 PCs. See 

also Figure S5B for participant T8’s rotatory dynamics results. 
(B) Statistical significance testing of rotatory neural dynamics during speaking. The blue vertical 
line shows the goodness of fit of explaining the evolution in the top 6 PC’s neural state from 
moment to moment using a rotatory dynamical system. The brown histograms show the 265 
distributions of this same measurement for 1,000 neural population control surrogate datasets 
generated using the tensor maximum entropy method of (Elsayed and Cunningham, 2017). 
These shuffled datasets serve as null hypothesis distributions that have the same primary 
statistical structure (mean and covariance) as the original data across time, electrodes, and word 
conditions, but not the same higher-order statistical structure (e.g., low-dimensional rotatory 270 
dynamics). 

DISCUSSION 

There are three main conclusions from these findings. First, they suggest that ‘hand 
knob’ motor cortex, an area not previously known to be active during speaking 
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(Breshears et al., 2015; Dichter et al., 2018; Leuthardt et al., 2011; Lotte et al., 2015), 275 

may in fact play a role in the underlying motor functions. Speech-related single-neuron 

modulation might have been missed by previous studies due to the coarser resolution 
of ECoG (Chan et al., 2014). If this finding holds true in the wider population, this would 

underscore that the familiar ‘motor homunculus’ (Penfield and Boldrey, 1937) is overly 
simplistic. While it is generally recognized that motor cortex does not follow a 280 

sequential point-to-point somatotopy (and indeed, Penfield and colleagues were aware 
of this and intended for their diagram to be a simplified overview), the patchy 

mosaicism amongst smaller parts in the current view of precentral gyrus organization 
still features a dorsal-to-ventral progression and separation of the major body regions 

(leg, arm, head) (Farrell et al., 2007; Schieber, 2001). The presence of neurons 285 

responding to face and tongue movements in the dorsal “arm/hand” area of motor 

cortex could indicate that sensorimotor maps for different body parts are even more 
widespread and overlapping than previous thought. Given our previous finding that 

activity from these same arrays encodes intended arm and hand movements 
(Pandarinath et al., 2017), these observations would also support the hypothesis that 290 

the systems for speech and manual gestures are interlocked (Gentilucci et al., 2012; 
Rizzolatti and Arbib, 1998; Vainio et al., 2013).  

An important unanswered question, however, is to what extent these results 
were potentially influenced by cortical remapping due to tetraplegia. While we cannot 
rule this out, we believe that remapping of face representation to the hand knob area is 295 

unlikely. Despite these participants’ many years of paralysis, the sites we recorded 
from still strongly respond to attempted hand and arm movements (Ajiboye et al., 2017; 

Brandman et al., 2018; Pandarinath et al., 2017), which is inconsistent with this area 
being “taken over” by functions related to orofacial movements. Furthermore, motor 

cortical remapping following arm amputation was recently shown to be much smaller 300 

than what would be needed to move lip representations to hand cortex (Makin et al., 

2015). Definitively resolving this ambiguity would require intracortical recording from 
this eloquent brain area in able-bodied people. 
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Second, the offline decoding results demonstrate the potential utility of using 
intracortical signals to restore speech to people with some forms of anarthria by 305 

transforming their intended speech into audible sounds or text. Decoding the neural 
correlates of attempted speech production (Brumberg et al., 2011) may be more 

desirable over approaches that decode covert internal speech (Leuthardt et al., 2011; 
Martin et al., 2016) or more abstract elements of language (Chan et al., 2011; Yang et 

al., 2017) because it leverages existing neural machinery that separates internal 310 

monologue and speech preparation from intentional speaking. The present results 

compare favorably to previously published decoding accuracies using ECoG (Mugler et 
al., 2014; Ramsey et al., 2018) despite our dorsal recording locations likely being 

suboptimal for decoding speech. Multi-electrode arrays placed in ventral motor cortex 
would be expected to yield even better decoding accuracies. Furthermore, recent 315 

order-of-magnitude advances in the number of recording sites on intracortical probes 
(Jun et al., 2017) point to a path that stretches far forward in terms of scaling the 

number of distinct sources of information (neurons) for speech BCIs. That said, the 
present results are only a first step in establishing the feasibility of speech BCIs using 

intracortical multielectrode arrays. Here we decoded amongst a limited set of discrete 320 

syllables and words in participants who are able to speak; future studies will be needed 

to assess how well intracortical signals can be used to discriminate between a wider 
set of phonemes (Brumberg et al., 2011; Mugler et al., 2014), in the absence of overt 
speech (Brumberg et al., 2011; Martin et al., 2016), and to synthesize continuous 

speech (Anumanchipalli et al., 2018). 325 

Third, we showed that two motor cortical population dynamics motifs present 

during arm movements — a large condition-invariant change at movement initiation 
and rotatory dynamics during movement generation – were also significant features of 

speech activity. We speculate that these neural state rotations are well-suited for 
generating descending muscle commands driving the out-and-back articulator 330 

movements that form the kinematic building blocks of speech (Chartier et al., 2018; 
Mugler et al., 2018). Future research involving recording from the relevant muscles 
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(Churchland et al., 2012) and causally stimulating the circuit (Dichter et al., 2018) is 
needed to test this hypothesis. The presence of these dynamics during both reaching 

and speaking could indicate a conserved computational mechanism that is 335 

ubiquitously deployed across behaviors to shift the circuit dynamics from withholding 

movement to generating the appropriate muscle commands from an oscillatory basis 
set.  
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METHODS 

Participants 
The two participants in this study were enrolled in the BrainGate2 Neural Interface 

System pilot clinical trial (ClinicalTrials.gov Identifier: NCT00912041). The overall 
purpose of the study is to obtain preliminary safety information and demonstrate proof 550 

of principle that an intracortical brain-computer interface can enable people with 

tetraplegia to communicate and control external devices. Permission for the study was 
granted by the U.S. Food and Drug Administration under an Investigational Device 

Exemption (Caution: Investigational device. Limited by federal law to investigational 
use). The study was also approved by the Institutional Review Boards of Stanford 555 

University Medical Center (protocol #20804), Brown University (#0809992560), 
University Hospitals of Cleveland Medical Center (#04-12-17), Partners HealthCare and 

Massachusetts General Hospital (#2011P001036), and the Providence VA Medical 
Center (#2011-009). Both participants gave informed consent to the study and 

publications resulting from the research, including consent to publish photographs and 560 

audiovisual recordings of them. 

Participant ‘T5’ (male, right-handed, 64 years old at the time of the study) was 

diagnosed with C4 AIS-C spinal cord injury ten years prior to these research 

sessions. He retained the ability to weakly flex his left elbow and fingers and some 
slight and inconsistent residual movement of both the upper and lower extremities. T5 565 

was able to speak normally and converse naturally without hearing assistance, but had 
some trouble hearing from his left ear. 

Participant ‘T8’ (male, right-handed, 56 years old at the time of the study) was 

diagnosed with C4 AIS-A spinal cord injury eleven years prior to these sessions. He 

retained restricted and non-functional voluntary shoulder girdle motion on both sides, 570 

and non-functional voluntary finger extension on his left side. He had no sensation 

below the shoulder. T8 was able to speak normally and converse naturally with the 
assistance of hearing aids in both his ears. 
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Prompted speaking tasks 

Participants performed a syllables task consisting of discrete trials in which they 575 

spoke out loud one of ten different phonemes or consonant-vowel syllables in 

response to an auditory prompt. These prompts were i (as in “beet”); ae (as in “bat”); a 
(as in “bot”); u (as in “boot”); ba; da; ga; sh (as in the start of “shot”), and the unvoiced 

k and p. All pronunciations were American English. Supplemental Video 1 provides a 

continuous audio recording of one set of each type of syllables task trial.  580 

Participants sat comfortably in a chair facing a microphone in a quiet room. 

They were instructed to refrain from attempting movements or speaking during trials 
except when prompted to speak by a custom experiment control software written in 

MATLAB (The Mathworks, USA). During trials they were also asked to fixate on the 
same object in front of them. A trial began with two beeps to alert the participant that 585 

the trial was starting. After 0.4 seconds, a pre-recorded syllable prompt was played via 
computer speakers. After 0.8 seconds, two clicks served as the go cue that instructed 

the participant to speak back the prompted sound. The next trial started 2.2 seconds 
later. There was also an eleventh ‘silent’ condition which was identical to the spoken 

syllables trials, except that instead of playing a syllable prompt, the speakers played a 590 

nearly-silent audio file consisting of ambient background noise recorded in the same 
environment as the syllable prompts. The participants had been previously instructed 

not to say anything in response to this silent prompt.  

The task was performed in blocks consisting of ten trial sets. Each set contained 

eleven trials: one trial of each syllable, plus silence, presented in a randomized order. 595 

After the task was explained to each participant, he was given time to practice a few 

sets of the task until he indicated that he was ready to begin data collection. At the end 
of each set we paused the task until the participant indicated that he was ready to 

continue. These inter-set pauses typically lasted less than ten seconds. Participants 
performed three consecutive blocks of the task during a research session, with longer 600 

pauses of several minutes between blocks during which we encouraged the participant 
to rest, adjust his posture for comfort, and take a drink of water. 
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Both the audio prompts played by the experiment control computer, and the 
participant’s voice, were recorded by the microphone (Shure SM-58). This audio signal 

was recorded via the analog input port of the electrophysiology data acquisition 605 

system and digitized at 30 ksps together with the raw neural data (see Neural 

Recording section). Each trial’s acoustic onset time (AO) was manually determined by 
visual and auditory inspection of the recorded audio data. During this review, we also 

excluded infrequent trials where the participant spoke at the wrong time or when the 
trial was interrupted (for example, if a caregiver entered the room). Isolated sounds can 610 

be difficult to discriminate, and our participants sometimes misheard a syllable prompt 
as a phonetically similar prompt. In particular, T5 misheard the majority of da as ga (or 

occasionally as ba). Both participants made a few other substitutions between similar 

syllables. In this study we were interested in the neural correlates of preparing and then 

generating speech, which should reflect the syllable that the participant perceived. We 615 

therefore labeled these misheard trials based on the spoken, rather than prompted, 

syllable for subsequent analyses. This left an insufficient number of T5 da trials for 

subsequent neural analyses; thus, there are eleven conditions shown in T8’s Figure 1B 

firing rate plots and Figure 3B confusion matrices, but only ten conditions for T5. The 

number of trials analyzed for each participant, after excluding trials and re-labeling 620 

misheard trials as described above, were: silent (30 trials for T5, 30 trials for T8); i (30, 

28); u (30, 31); ae (28, 30); a (30, 30); ba (31, 29); ga (50, 34); da (0, 27); k (30, 27); p (30, 

33); sh (30, 30). We refer to these datasets as ‘T5-syllables’ and ‘T8-syllables’. 

Participants also performed a words task which was identical to the syllables 

task except that they repeated back one of ten short words, rather than syllables, in 625 

response to the auditory prompt. Each participant performed three blocks of ten 
repetitions of each word during one research session. We refer to these datasets as 

‘T5-words’ and ‘T8-words’. Two consecutive trials were excluded from the T8-words 
dataset because of a large electrical noise artifact across almost all electrodes. The 

specific words, and the number of trials analyzed for each participant, were: “beet” (30 630 

T5 trials, 29 T8 trials); “bat” (30, 29); “bot” (30, 28); “boot” (30, 30); “dot” (30, 29); “got” 
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(29, 29); “shot” (29, 28); “keep” (30, 30); “seal” (30, 30); “more” (30, 30). As with the 
syllables task, there was also a silent condition (30 T5 trials, 30 T8 trials). 

Silent condition trials were assigned a ‘faux AO’ so that neural data from 
comparable epochs of silent and spoken trials could be visualized and analyzed (for 635 

example, for generating trial-averaged, AO-aligned firing rates in Figure 1 or for 

decoding silent trials’ neural activity in Figure 3). Specifically, each silent trial’s AO was 

set to equal the mean AO (relative to the go cue) for all the spoken syllables or words 

during the same block. 

Orofacial movement task 640 

Participants also performed an orofacial movement task with a similar trial structure as 

the syllables and words tasks. Seven different movement conditions were instructed 
with auditory prompts: “mouth open”, “lips forward”, “lips back”, “tongue right”, 

“tongue down”, “tongue up”, and “tongue left”. An additional “stay still” condition was 
analogous to the silent condition of the syllables and words tasks. Prior to the first 645 

block of the orofacial task, a researcher explained the prompts to the participant, 
demonstrated the movements, and ran the participant through a few practice sets. Due 

to clinical trial protocols, we did not collect kinematic tracking data such 
as electromagnetic midsagittal articulography (Chartier et al., 2018) or ultrasound 

recordings. A video recording of the participants’ faces (without markers) did allow the 650 

researchers to confirm that the participants were making the instructed movement with 

acceptable timing precision. Given this limitation, we limited our use of these data to 
broadly testing for neural responses during orofacial movements, rather than 

quantifying precise moment-by-moment relationships between neural activity and 
kinematics.  655 

Similar to the syllables and words task, a trial began with two ready beeps, after 
which the computer speaker played a movement prompt (e.g., “lips forward”). This was 

followed by the pair of go clicks; the participants were previously informed that they 
should begin moving after the second click. 1.3 seconds later, the experiment control 
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system played the verbal command “return”, which instructed the participant to return 660 

to a neutral orofacial posture (e.g., close the mouth after “mouth open”, move the 

tongue left after “tongue right”). The trial ended 1.2 seconds later. The purpose of 
using a return cue was so that there was a known epoch after the movement go cue 

during which we knew that the participant was not yet returning. The return cue also 
provided the participant with dedicated time to return to a neutral orofacial position, so 665 

that all trials would start from roughly the same posture. For T8, the “return” instruction 
was immediately followed by a go click. However, we observed that T8 started the 

return movement upon hearing “return” rather than waiting for the go click. We 
therefore removed the return go click prior to T5’s research sessions, and instead 

instructed T5 to start the return movement when he heard “return”. In the present 670 

study we did not examine the return portion of the orofacial movement task. 

Each participant’s orofacial movements and syllables datasets were collected 
on the same day during the same research session; three blocks of the orofacial 

movements task immediately followed three blocks of the syllables task. We will refer 
to these orofacial movements task datasets as ‘T5-movements’ and ‘T8-movements’. 675 

No trials were excluded from these datasets; thus, there were 30 trials of each 
condition for each participant. 

Neural recording 
Both participants had two 96-electrode Utah arrays (1.5 mm electrode length, 
Blackrock Microsystems, USA) neurosurgically placed in dorsal ‘hand knob’ area of the 680 

left (motor dominant) hemisphere’s motor cortex. T5 and T8 had the arrays placed 14 
and 34 months prior to the present study, respectively. Arrays were placed in areas 

anticipated to have arm movement-related activity because two goals of the clinical 
trial are 1) testing the feasibility of intracortical BCI-based communication using point-

and-click keyboards and 2) restoration of reach and grasp function via control of a 685 

robotic arm or functional electrical stimulation. We note that these implant sites are 

distinct from the closest known speech area, which is the dorsal laryngeal motor cortex 
(Bouchard et al., 2013; Dichter et al., 2018). In this study, we looked for neural 
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correlates of speaking in dorsal motor cortex. To help contextualize the results, here 
we summarize the other intended behaviors associated with modulation of the neural 690 

activity recorded by these same arrays. Our previous studies have reported that T5 and 
T8 controlled BCI computer cursors by attempting movements of their arm and hand 

(Brandman et al., 2018; Pandarinath et al., 2017). T8 was also able to use intended arm 
movements to command movements of his own paralyzed arm via functional electrical 

stimulation (Ajiboye et al., 2017). We also recorded movement task outcome error 695 

signals from T5’s arrays; these signals indicated whether the participant succeeded or 

failed at acquiring a target using a BCI-controlled cursor (Even-Chen et al., 2018). 

Neural signals were recorded from the arrays using the NeuroPort™ system 

(Blackrock Microsystems). Voltage was measured between each of the 96 electrodes’ 
uninsulated tips and that array’s reference wire. Wire bundles ran from each array to 700 

cranially-implanted connector pedestals. During research sessions, a ‘patient cable’ 
with a unity gain pre-amplifier was connected to each array’s corresponding pedestal 

and carried signals to an isolated unity gain front-end amplifier. These signals were 
analog filtered from 0.3 Hz to 7.5 kHz, digitized at 30 kHz (250 nV resolution), and sent 

to the neural signal processor via fiber-optic link. As mentioned earlier, amplified 705 

analog voltage data from the microphone were input to the neural signal processor and 

were digitized time-locked with the neural signals. All of these digitized data were sent 
over a local network to a connected PC where they were recorded to hard disk for 
subsequent analysis. 

The naming scheme for neurons or electrodes in figures is <participant>_<array 710 

#>.<electrode #>. For example, “neuron T5_2.4” in Figure 1 refers to a participant T5 

neuron identified on the second array (which is the more medial of each participant’s 
two arrays) on electrode #4 (according to the manufacturer’s electrode numbering 

scheme). 

Neural signal processing 715 

Neuronal action potentials (spikes) were detected as follows. We first applied a 
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common average re-referencing to each electrode within an array by subtracting, at 
each time sample, the mean voltage across all electrodes on that array. These voltage 

signals were then filtered with a 250 Hz asymmetric FIR high pass filter designed to 

extract spike activity from this type of array (Masse et al., 2014). To measure single 720 

unit activity (SUA), time-varying voltages were manually ‘spike sorted’ by an 

experienced neurophysiologist using Plexon Offline Spike Sorter v3. This process 
identified action potentials belonging to putative individual neurons amongst the high 

amplitude voltage deviation events. Occasionally the same action potential can be 
recorded on multiple electrodes (this could happen if a neuron is very large, if an axon 725 

passes multiple electrodes, or if there is some electrical cross-talk in the recording 

hardware). To prevent creating duplicate single neuron units, we excluded ‘cross-talk 
units’ if their spike time series (using 1 ms binning) had greater than 0.5 correlation with 

another unit’s. When this happened, we kept the unit with the better spike sorting 
isolation. Unless otherwise stated, time-varying firing rate plots, also known as 730 

peristimulus time histograms (such as in Figure 1B) were constructed by smoothing 

spike trains with a 25 ms s.d. Gaussian kernel and averaging continuous-valued firing 

rates across trials of the same behavioral condition. 

Spike sorting allows us to make statements about the properties of individual 

motor cortical neurons (for example, how many syllables they respond to, as in Figure 735 

S3B.) However, a limitation of spike sorting is that action potential event ‘clusters’ with 

insufficient isolation from other clusters are discarded. For chronic multielectrode array 
recordings, this can mean that activity recorded from the majority of electrodes is not 

analyzed, despite these neural signals having a strong relationship with the behavior of 
interest. This problem is particularly acute in human neuroscience, where replacing 740 

arrays, or using newer methods that provide a higher SUA yield (for example high 
density probes or optical imaging), is not currently possible. Analyzing voltage 

threshold crossings (TCs), i.e., relaxing the constraint that action potential events 

must be unambiguously from the same neuron, is an effective way to substantially 

increase the informational yield of chronic electrode arrays. In this study we examined 745 
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TCs in a number of analyses. Decoding TCs or other non-SUA signals has become 
standard practice in the intracortical BCI field (e.g., (Ajiboye et al., 2017; Brandman et 

al., 2018; Collinger et al., 2013; Even-Chen et al., 2018; Pandarinath et al., 2017)). This 
method also provides information about the dynamics of the neural state (i.e., can be 

used to make scientific statements about ensemble activity under many conditions) 750 

despite combining spikes that may arise from one or more neurons; we provide 

empirical and theoretical justifications in (Trautmann et al., 2017). In the present study, 
when we refer to an ‘electrode’s’ firing rate, we mean TCs recorded from that 

electrode. When we refer to a neuron’s firing rate, we mean sorted single unit activity. 

A threshold of -4.5 × root mean square (RMS) voltage was used for all analyses 755 

and visualizations except for the t-SNE visualization and decoding analyses shown in 

Figure 3. This threshold choice is somewhat arbitrary but is conservative; it accepts 

large voltage deviations indicative of action potentials from one or a few neurons near 

the electrode tip. For the Figure 3 analyses, we used a more relaxed threshold of -3.5 

× RMS because we found that this led to slightly better classification performance in a 760 

separate pilot dataset (consisting of T5 speaking five words and syllables, collected a 

month prior to the datasets reported here) which we used for choosing 
hyperparameters. The better performance of a less restrictive voltage threshold is 

consistent with collecting more information by accepting spikes from a potentially 
larger pool of neurons. This trade-off was acceptable because for these engineering-765 

minded decoding analyses, we were less concerned about the possibility of missing 
tuning selectivity or fast firing rate details due to combining spikes from more neurons. 

Electrodes with TC firing rates of less than 1 Hz (at a -4.5 × RMS threshold) were 
considered non-functioning and were excluded from analyses unless there was well-

isolated SUA on the electrode. This electrode exclusion applied to both spikes and the 770 

local field potential signal described below. Electrodes having TCs time series with 

greater than 0.5 correlation with another electrode(s)’ were marked for cross-talk de-
duplication. To determine which electrode to keep, we chose the one that had the 
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fewest spikes co-occurring (1 ms bins) with the other electrode(s)’ (i.e., we kept the 
electrode with putatively more unique information). 775 

For the neural decoding analyses (Figure 3) we also extracted a high-frequency 

local field potential (HLFP) feature from each electrode by taking the power of the 

voltage after filtering from 125 to 5,000 Hz (3rd order bandpass Butterworth causal 

filtering forward in time). HLFP is believed to contain substantial power from action 
potentials (Waldert et al., 2013); we view this feature as capturing spiking “hash”, i.e., 780 

multiunit activity local to the electrode with contributions from smaller-amplitude and 
more distant action potentials than TCs. Our previous study found that this signal is 
highly informative about hand movement intentions and is useful for real-time BCI 

applications (Pandarinath et al., 2017). This feature has some similarities to the ‘high 
gamma’ activity examined by ECoG studies; the definition of high gamma varies in 785 

exact frequency from study to study, but generally has a lower cutoff between 65 and 
85 Hz and an upper cutoff between 125 and 250 Hz (Bouchard et al., 2013; Chartier et 

al., 2018; Cheung et al., 2016; Dichter et al., 2018; Martin et al., 2014; Mugler et al., 
2014; Ramsey et al., 2018). However, the intracortical HLFP in this study should not be 

viewed as being the exact same as ECoG high gamma activity due to differences in 790 

electrode location, electrode geometry, and HLFP’s higher frequency range. 

Task-related neural modulation 

To quantify which electrodes’ spiking activity changed during speaking (Figure 1A 

insets, Figure S3), we calculated each electrode’s mean firing rate from 0.5 seconds 

before to 0.5 seconds after AO, yielding one datum per electrode, per trial. For each 795 

syllable, a rank-sum test was then used to determine whether there was a significant 
change in the distribution of single trial firing rates when speaking the syllable 

compared to the silent condition (p < 0.05, Bonferroni corrected for the number of 

syllables). To identify which electrodes responded to orofacial movements (Figure 2) 

we performed a similar analysis, except that the analysis epoch was from 0.5 s before 800 

to 0.5 s after the go cue. This epoch captures strong modulation, as can be seen by 

the example firing rate plots in Figure 2. We note that firing rate changes preceding the 
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go cue indicate either substantial movement preparation activity, or that the 
participants were “jumping the gun” and started moving in anticipation of the go cue; 

either way, this response indicates modulation related to making orofacial movements. 805 

In lieu of a silent condition, the movement conditions’ firing rate distributions were 

compared to that of the “stay still” condition. The same methods were used to quantify 
which single neurons’ spiking activity changed during speaking or orofacial 

movements; for this, we analyzed SUA rather than electrodes’ -4.5 × RMS TCs. 

To visualize single-trial high dimensional neural data (Figure 3A) we used t-810 

distributed stochastic neighbor embedding (tSNE), a dimensionally reduction technique 
which seeks to represent high-dimensional vectors (such as our time-varying, 

multielectrode neural data) in a low-dimensional space (such as a 2D plot that can be 
easily visualized). The tSNE algorithm finds a nonlinear mapping such that similar high-

dimensional feature vectors end up close together in the low-dimensional view, while 815 

dissimilar vectors end up far apart (Van Der Maaten and Hinton, 2008). A neural feature 

vector was constructed for each trial as follows: for each functioning electrode, spike 
rates and HLFP power were calculated in ten 100 ms bins that spanned from 0.5 s 

before to 0.5 s after AO. These features were concatenated into a vector; for example, 
for the T5-syllables dataset, a single trial’s neural data were represented as a 104 820 

electrodes × 2 features per electrode × 10 time bins = 2080-dimensional vector. All 
trials’ feature vectors were then projected into a 2D space using the tsne function in 

MATLAB R2017b’s Statistics and Machine Learning Toolbox with NumDimensions = 

2 ; Perplexity = 15 (this is the number of local neighbors examined for each 
datum); Algorithm = exact (suitable for our relatively small dataset); and 825 

Standardize = true (this z-scores the input data, which was desirable due to the 

variability between different electrodes and the vastly different scales between spike 
rates and HLFP power). All other algorithm parameters were set to their defaults. 

Figure 3A does not have axis labels because t-SNE does not return meaningful axes or 

units; only the relative distances between points have meaning. 830 
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Speech decoding 
We evaluated how well the identity of the syllable or word being spoken could be 

decoded from neural data by classifying single trial neural data. Neural feature vectors 
were constructed for each trial as described above. These vectors were then 

associated with a class label, which was the sound being spoken (i.e., word, syllable, 835 

or silence). We trained support vector machines (SVMs), a standard classification tool, 

to predict the class label from a “new” neural feature vector which the classifier had 
not been trained on. Prediction accuracies were cross-validated using a leave-one-

trial-out paradigm in which the classifier was trained on all trials except the trial being 
classified, and this was repeated for all trials in a dataset. Multiclass classification was 840 

achieved using the error-correcting output code (ECOC) technique, which trains 
multiple binary SVMs between all pairs of labels, i.e., a one-versus-one coding design. 

When classifying new input data, the ECOC technique picks the class that minimizes 
the sum of losses over the set of binary SVM classifiers. Specifically, we used MATLAB 

R2015a’s implementation: a multiclass model object was fit (fitcecoc) using the SVM 845 

template (templateSVM). Key parameters were to use a linear kernel; 

OutlierFraction = 0.05 (expecting 5% of data points to be outliers); and 

Standardize = true (which z-scores the neural features based on the training data). 

All other parameters were set to their default values. We note that we did not heavily 
optimize our classification method; rather, our goal here was to use a standard tool to 850 

gauge the classification performance that these intracortical neural signals support. 
More sophisticated techniques from machine learning (e.g., (Angrick et al., 2018; 

Livezey et al., 2018)) are likely to provide additional improvements. 

To measure chance prediction performance, we used a shuffle test in which we 

randomly permuted the class labels associated with all trials’ neural data. The same 855 

classifier training and leave-one-out prediction process was then repeated on these 

shuffled data 101 times. 

Neural population dynamics 

An underlying motivation for the neural population dynamics analyses described in the 
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next several sections is the idea that the activity of many thousands or millions of 860 

neurons in a circuit (of which we can only measure on the order of 100 in humans with 

current technology) can be summarized by the time-varying activity of a handful of 
latent ‘factors’. In this framing, individual neurons’ firing rates reflect various mixtures 

of these underlying factors; in all of the analyses we used, this mapping from factors to 
firing rates is assumed to be linear. These factors are not meant as discrete physical 865 

“things” in the brain, but rather are mathematical abstractions which capture 
meaningful patterns in the behavior of networks of neurons. They are useful insofar as 

they can generate hypotheses about the computations being performed. To this end, 
not only can latent factors succinctly describe the ‘neural state’ (i.e., the firing rate of all 

neurons at a given moment in time), but furthermore, the time evolution of these factors 870 

is often more conducive to interpretation and understanding than more complex 

descriptions of all the individual neurons’ firing rates. 

Here, for example, we build on previous studies showing that these factors’ 

changes over time can be effectively modeled as a lawful time-varying oscillatory 
dynamical system (Churchland et al., 2012), and that they reveal a simple population-875 

level pattern in which there is a stereotyped response at the initiation of many different 
movements (Kaufman et al., 2016). This ‘dynamical system’ framework is extensively 

reviewed in (Shenoy et al., 2013) as well in the two key studies that inspire the neural 
population dynamics analyses of the present study (Churchland et al., 2012; Kaufman 
et al., 2016). We looked for the aforementioned dynamical motifs using two different 880 

dimensionality reduction techniques that were specifically designed to reveal the 
presence (or absence) of these population dynamics features. 

For these analyses, we examined the prompted word speaking task datasets 
because this was a more naturalistic behavior than the prompted syllable speaking 

task. Participants reported that it was more difficult to discriminate syllables than 885 

words, and that speaking stand-alone syllables felt somewhat awkward; they 

expressed doubt about whether they were saying the syllables correctly, whereas 
saying words was easy. Consequently, a practical benefit of the words task over the 
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syllables task is that behavior was more stereotyped across trials, which facilitates 
trial-averaging, and there were very few mis-heard or mis-spoken words. Unlike for the 890 

syllables task, in the words task both participants had close to 30 trials each for all ten 
speaking conditions. 

Both of these sets of neural population state analyses were performed on TCs, 
which contained more information about the neural population state than the more 

limited number of recorded SUA. All electrodes with TC firing rates greater than 1 Hz 895 

were included. The Churchland-Cunningham and Kaufman studies analyzed a 

combination of both SUA from single-electrode recordings and TCs from 
multielectrode recordings, depending on the dataset, while (Pandarinath et al., 2015) 

also analyzed just TCs. To avoid cumbersome switching of terms when describing our 
methods and comparing them to those of these previous studies, we will use the 900 

generic term ‘unit’ to refer to a single channel of neural information, whether it be SUA 
or TCs. 

Condition-invariant signal 
The first population dynamics motif we tested for was a specific form of population-

level structure at the initiation of movement: a large condition-invariant signal, 905 

previously described by Kaufman and colleagues (Kaufman et al., 2016). We closely 

followed Kaufman’s analysis methods, adapting them as necessary for these human 
speaking datasets. As in (Kaufman et al., 2016), spike trains were trial-averaged within 
a behavioral condition (in our case, speaking one of the ten different words), smoothed 

with a 28 ms s.d. Gaussian, and ‘soft normalized’ with a 5 Hz offset. Normalization 910 

means that each unit’s firing rate was normalized by its range across all times and 

conditions. This prevents units with very high firing rates from dominating the estimate 
of neural population state. The ‘soft’ refers to adding an offset (5 Hz in these analyses) 

to the denominator to reduce the influence of units with very small modulation. Trial-
averaged firing rates were calculated from 200 ms before go cue to 400 ms after the go 915 

cue in order to focus on the epoch when speech production was being initiated. This 
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yields a N × C × T data tensor, where N is the number of units, C is the number of word 

conditions (10), and T is the number of time samples (600, using 1 ms sliding bins). 

We used demixed principal components analysis (dPCA), a dimensionality-

reduction technique developed by Kobak, Brendel and colleagues (Kobak et al., 2016), 920 

to look for condition-invariant activity patterns in these high-dimensional neural 

recordings. This dimensionality reduction method is conceptually similar to PCA, in that 
it finds a specified number of dPC ‘components’ that can be thought of as “building 

blocks” from which the responses of individual units can be composed. As with PCA, 
dPCA attempts to compress the data by identifying dimensions that capture a large 925 

fraction of the variance. This takes advantage of the fact that unless the responses of 
neurons are all independent from one another (which in practice is not the case), then 

most of the variance of the full population response can be accurately reconstructed as 
a weighted sum of a smaller number of dPC components. Where dPCA differs from 

PCA is that it can explicitly attempt to find components that marginalize variance 930 

attributable to different parameters of the experiment (such as time or task variables). 

This is possible because dPCA is a supervised method that trades off finding 
dimensions that maximize variance in favor of finding dimensions that partition the 

variance based on labeled properties of the data. 

In our case, this ‘demixing’ was attempted between: 1) condition and condition 935 

+ time interactions, which together form the condition-dependent (CD) components of 

the neural population activity; and 2) time only, which form condition-invariant (CI) 
components. In other words, dPCA sought a set of components of the population 

activity for which the time-varying neural responses during producing different words 
look the same, and also for another set of components which vary across speaking 940 

conditions (i.e., are “tuned” for what word is being spoken). Importantly, such variance 
marginalization (i.e., demixing the parameters) may not be achievable; it depends on 

the structure of the data itself. Each component that dPCA returns is associated both 

with how much overall neural variance it captures (the lengths of the bars in Figure 

4A), and how much of this variance is CI or CD (red and blue fraction of each bar, 945 
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respectively). Thus, the success of this demixing can be examined based on how 
purely CI or CD each component is. This in turn reveals whether there exists a large 

and almost completely condition-invariant component of the population neural activity. 

Kaufman and colleagues used an earlier version of the dPCA method and code 

package, called ‘dPCA-2011’ (Brendel et al., 2011). We used the MATLAB 950 

implementation of ‘dPCA-2015’ (Kobak et al., 2016), downloaded 

from http://github.com/machenslab/dPCA. This is an updated, improved, and widely 
adopted version of the technique which was not yet available at the time when the 

(Kaufman et al., 2016) analyses were performed. We specified that dPCA should return 
eight total components, which was less than then 10 to 12 used in (Kaufman et al., 955 

2016). This reflects the reduced complexity of our datasets, in the sense that they had 
fewer conditions (10 versus 27-108) and fewer units (96-106 versus 116-213). We also 

repeated the analyses using 5 to 12 dPCs and observed very similar results. Default 
dpca function parameters were used.  

Unlike the dPCA-2011 used by (Kaufman et al., 2016), dPCA-2015 does not 960 

enforce that the neural dimensions found for capturing variance attributable to different 

parameters (here, the CI and CD components) be orthogonal. For example, while the 

three different CI components for T5 in Figure 4A are orthogonal by construction (as 

are the five different CD components), the CI and CD components need not be 
orthogonal. We therefore quantified the degree of orthogonality between the CIS1 965 

component and the CD components by measuring the principal angle between CIS1 
and the subspace defined by CD components. Specifically, we used the subspacea 

package for MATLAB, downloaded from 

https://www.mathworks.com/matlabcentral/fileexchange/55-subspacea-m (Knyazev 
and Argentati, 2002).  970 

Rotatory dynamics 
The second form of neural population structure we tested for was rotatory (i.e., 

oscillatory) low-dimensional dynamics. We applied methods previously developed to 
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identify and quantify rotatory dynamics in motor cortex during NHP arm reaching 
(Churchland et al., 2012). These methods were also recently applied to show rotatory 975 

dynamics during hand movements of BrainGate2 study participants (Pandarinath et al., 
2015). Churchland, Cunningham and colleagues introduced the jPCA dimensionality 

reduction technique for this purpose; we employed their MATLAB analysis package, 
downloaded from https://churchland.zuckermaninstitute.columbia.edu/content/code.  

Trial-averaged firing rates for each word speaking condition were generated 980 

from 150 ms before to 100 ms after voice onset time to capture an epoch when 

speech-producing articulator movements were being produced. Following (Churchland 
et al., 2012; Pandarinath et al., 2015), these firing rates were soft-normalized with a 10 

Hz offset and smoothed with a Gaussian kernel; we used a 30 ms s.d. kernel as in 
(Pandarinath et al., 2015). These firing rates were ‘centered’ by subtracting the across-985 

condition mean firing rate of each unit at each time point, and then sampled every 10 
ms. The dimensionality of these data was reduced via PCA to six; this ensured that 

rotatory dynamics would be sought within population activity components that were 
strongly present in the data. jPCA was then used to find planes with rotatory structure 

within this six-dimensional subspace. The jPCs are found by fitting the following linear 990 

dynamical system:  

 ẋ = Mskew x (equation 1) 

where x is the neural state (i.e., the PCA dimensionality-reduced population firing rate) 

at a given time, ẋ is its time derivative, and Mskew is constrained to be a skew-

symmetric matrix. The first jPC plane, which has the strongest rotatory dynamics, is 995 

defined by the two complex eigenvectors of Mskew with the largest eigenvalues. The 

choice of real vectors jPC1 and jPC2 within this plane is arbitrary and, following 

convention, were chosen such that conditions’ activities are maximally spread along 

jPC1 at the start of the analysis epoch. Figures 5A and S5 plot the trial-averaged 

population activity during speaking each word (after subtracting the across-conditions 1000 

mean) in this top jPC plane. The red/black/green color of each word condition’s neural 
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trajectory corresponds to its projection along jPC1 at the start of the epoch; this display 
style is intended to assist in observing that amplitude and phase tend to unfold lawfully 

from the initial neural state. It is worth emphasizing that each jPC is simply a linear 
weighting of different units’ firing rates, and that the six jPCs form an orthonormal basis 1005 

set that spans the same subspace as the top six PCs. The strength of rotatory 

dynamics was quantified as the goodness of fit for equation 1 for a 2×2 Mskew in the 

first jPCA plane, and for a 6×6 Mskew in the 6-dimensional subspace defined by the top 

6 PCs of the data. Figure 5B reports this 6D fit quality. 

Statistical testing of rotatory dynamics 1010 

To calculate the statistical significance of rotatory population dynamics structure in our 
data, we applied the ‘neural population control’ approach developed by Elsayed and 

Cunningham (Elsayed and Cunningham, 2017). This method was developed to address 
a potential concern that many specific phenomena that an experimenter could test for 
(such as fitting low-dimensional rotatory dynamics to neural data) can be found “by 1015 

chance” in a sufficiently high-dimensional, complex dataset such as the time-varying 
firing rates of many neurons. To address this, the method tests whether an observed 

feature of the population activity is “novel” in the sense that it cannot be trivially 
predicted from known simpler features in the data. This is achieved by constructing 

surrogate datasets with simple population structure (in the form of means and 1020 

correlations across time, neurons, and behavioral conditions) matched to the real data. 

If the neural recordings contain population-level structure that is coordinated above 
and beyond these first and second-order features, then the quantification method used 

to describe this structure should return a stronger read-out when applied to the original 
dataset than to the surrogate datasets. 1025 

In our case, we used this approach to test whether it is “surprising” to see 
rotatory dynamics in neural population data, given the particular smoothness across 

time, units, and word speaking conditions present in these data. A similar approach 
was used in (Elsayed and Cunningham, 2017) to further validate the original rotatory 

dynamics finding of (Churchland et al., 2012). We used the MATLAB code associated 1030 
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with (Elsayed and Cunningham, 2017) from https://github.com/gamaleldin/TME to 
generate 1,000 surrogate datasets with time, neuron, and condition means and 

covariance matched to the real data using the tensor maximum entropy algorithm 
(‘surrogate-TNC’ flag in fitMaxEntropy). We then ran the same jPCA analyses described 

above on these surrogate datasets and recorded the rotation dynamics goodness of fit 1035 

for the best Mskew matrix found for each surrogate dataset. This distribution of 

surrogate dataset R2 values serves as a null distribution for significance testing: we 

calculated a P value by counting how many of the surrogate datasets’ R2 exceeded 

that of the true original dataset. 
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SUPPLEMENTAL MATERIALS 

 
Figure S1. Prompted speaking task. 
(A) Schematic of the experiment setup. Participants performed a prompted speaking task in which they heard 
a syllable or word played from a computer speaker. They were instructed to speak back that sound after hearing 
a go cue. Motor cortical neural signals were recorded during the task. A microphone captured both the prompts 
and participant’s speech. The microphone recording was amplified and captured as an analog input by the 
neural signal processor, thus synchronizing the audio data with the neural data. 
(B) Example acoustic waveform recorded during one trial (top) and the trial’s corresponding task event timeline 
(bottom). The syllable prompt played by the computer speaker and the subsequent response spoken by the 
participant are colored in pink. Two beeps indicated the start of a trial, and the second of two clicks was the 
go cue that instructed the participant to repeat back the prompted sound. AO is acoustic onset time. 
(C) Acoustic spectrograms for the participants’ spoken syllables. Power was averaged over all analyzed trials. 
Note that da is missing for T5 because he usually misheard this cue as ga or ba.  
(D) Same as panel c but for the T5-words and T8-words datasets.  
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Figure S2. Motor cortical modulation is greater during speaking than hearing speech prompts. 
(A) Firing rates for the same neurons shown in Figure 1B are shown here aligned to the auditory prompt (when 
the syllable was played to the participant via computer speaker) as well as to the go cue that instructed the 
participant to speak. 
(B) Many electrodes recorded action potential events that could not necessarily be attributed to an individual 
neuron based on their waveforms (i.e., could not be spike-sorted). Nonetheless, these threshold-crossing 
spikes (TCs) exhibited speech-related activity. We therefore included them in our analyses to maximize the 
available information about the motor cortical population ensemble. Firing rates for three example electrodes’ 
TCs (at a voltage threshold of -4.5 x RMS) are shown. Insets show these TCs’ spike-triggered waveforms in the 
same format as the sorted single neurons’ waveforms. 
(C) Population activity change from baseline for all four speech datasets, aligned to hearing the prompted sound 
and to the go cue to speak the sound. Prompt- and Go-aligned firing rates were calculated for all electrodes’ -
4.5 × RMS TCs. We then subtracted each electrodes’ ‘baseline activity’ from these responses to yield a time-
varying firing rate change. Each trace shows, for a given syllable or word, the mean absolute value firing rate 
change across electrodes. Baseline was defined as the firing rate during the silent inter-trial period (specifically, 
from 1.25 to 0.75 seconds before the beep indicating the start of the trial). Colors corresponding to each word 
are the same as in Figure S1.  
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Figure S3. Neural correlates of spoken syllables are not spatially segregated in dorsal motor cortex. 
(A)  Electrode array maps similar to Figure 1A insets are shown for each syllable separately to reveal where 
modulation was observed during production of that sound. Electrodes where the TCs firing rate changed 
significantly during speech, as compared to the silent condition, are shown as colored circles. Non-responding 
electrodes are shown as larger gray circles, and non-functioning electrodes are shown as smaller dots. Adding 
up how many different syllables each electrode’s activity modulates in response to yields the summary insets 
shown in Figure 1A. These plots reveal that electrodes were not segregated into distinct cortical areas based 
on what syllables they responded to. 
(B) Histograms showing the distribution of how many different syllables evoke a significant firing rate change 
for electrode TCs (each participant’s left plot) and sorted single neurons (right plot). The first bar in each plot, 
which corresponds to electrodes or neurons whose activity only changes when speaking one syllable, is further 
divided based on which syllable this response was specific to (same color scheme as in panel a). This reveals 
two things. First, single neurons or TCs (which may capture small numbers of nearby neurons) were typically 
not narrowly tuned to one sound. Second, there was not one specific syllable whose neural correlates were 
consistently observed on separate electrodes/neurons from the rest of the syllables.  
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Figure S4. Example neural activity while speaking short words. 
Firing rates during speaking of short words for three example neurons (blue spike waveform insets) and three 
example electrodes’ -4.5 × RMS threshold crossing spikes (gray inset waveforms). Data are presented similarly 
to Figure 1B.  
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Figure S5. Rotatory dynamics for participant T8. 
Participant T8’s neural state trajectories projected into the first jPCA plane (left), and statistical testing of 
whether the goodness of fit of rotatory dynamics exceeds that of surrogate datasets (right). Data are presented 
as in Figure 5.  
 
 
 
 
Supplemental Movie 1.  
(duration: 1m 12s) Example audio and neural data from eleven contiguous trials of the prompted syllables 
speaking task. The audio track was recorded during the experiment and digitized alongside the neural data; it 
starts with the two beeps indicating trial start, after which the syllable prompt was played from computer 
speakers, followed by the go cue clicks, and finally the participant speaking the syllable. The video shows the 
concurrent -4.5 × RMS threshold-crossing spikes rate on each electrode. Each circle corresponds to one 
electrode, with their spatial layout corresponding to electrodes’ location in motor cortex as in the Figure 1A 
inset. Each electrodes’ color represents its firing rate (soft-normalized with a 10 Hz offset, smoothed with a 50 
ms s.d. Gaussian kernel), with the color map going from pink (minimum rate) to yellow (maximum rate). Non-
functioning electrodes are shown as small gray dots. Data from the T5-syllables dataset, trial set #23. 
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