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Abstract

The higher-order genome organization and its variation in different cellular conditions remains poorly under-
stood. Recent high-resolution genome-wide mapping of chromatin interactions using Hi-C has revealed that
chromosomes in the human genome are spatially segregated into distinct subcompartments. However, due to
the requirement on sequencing coverage of the Hi-C data to define subcompartments, to date subcompartment
annotation is only available in the GM12878 cell line, making it impractical to compare Hi-C subcompartment
patterns across multiple cell types. Here we develop a new computational approach, named SNIPER, based
on an autoencoder and multilayer perceptron classifier to infer subcompartments using typical Hi-C datasets
with moderate coverage. We demonstrated that SNIPER can accurately reveal subcompartments based on Hi-C
datasets with moderate coverage and can significantly outperform an existing method that uses numerous epige-
nomic datasets as input features in GM12878. We applied SNIPER to eight additional cell lines to identify the
variation of Hi-C subcompartments across different cell types. SNIPER revealed that chromosomal regions with
conserved and more dynamic subcompartment annotations across cell types have different patterns of functional
genomic features. This work demonstrates that SNIPER is effective in identifying subcompartments without the
need of high-coverage Hi-C data and has the potential to provide new insights into the spatial genome organi-
zation variation across different cell types.

Introduction

In humans and other higher eukaryotes, chromosomes are folded and organized in 3D space within the nucleus
and different chromosomal loci interact with each other (Bickmore and van Steensel, 2013; Bonev and Cavalli,
2016; Rowley and Corces, 2018). Recent developments in whole-genome mapping of chromatin interactions,
such as Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014), have facilitated the identification of genome-
wide chromatin organizations comprehensively, revealing important 3D genome features such as loops (Rao et al.,
2014), topologically associating domains (TADs) (Dixon et al., 2012; Sexton et al., 2012; Nora et al., 2012), and
A/B compartments (Lieberman-Aiden et al., 2009). Specifically, at megabase resolution, chromosomes are largely
segregated into two compartments, A and B (Simonis et al., 2006; Lieberman-Aiden et al., 2009). Compartment
A regions generally contain open and active chromatin, while compartment B regions are mostly transcriptionally
repressed. Further analysis showed that these A/B compartment domains can be inferred from epigenetic status
including DNA methylation and chromatin accessibility (Fortin and Hansen, 2015). The separations of B and
A compartments in the genome also have near identical agreement with lamina associated domains (LADs) and
inter-LADs, respectively (Kind et al., 2015; van Steensel and Belmont, 2017), suggesting that A/B compartments
have different spatial positions in the nucleus. More recently, A/B compartment separations have been observed
using other genomic and imaging approaches to probing the 3D genome (Quinodoz et al., 2018; Beagrie et al.,
2017; Wang et al., 2016).
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In Rao et al. (2014), the A/B compartment definitions were greatly enhanced using high-resolution (up to 1kb)
Hi-C data generated from the human lymphoblastoid (GM12878) cell line. Specifically, Rao et al. (2014) identified
Hi-C subcompartments that divide A/B compartments into five primary subcompartments: A1, A2, B1, B2, and B3.
These Hi-C subcompartments show distinct and more refined associations with various genomic and epigenomic
features such as gene expression, active/repressive histone marks, DNA replication timing, and specific subnuclear
structures (Rao et al., 2014). A more recent study based on the new TSA-seq technology further demonstrated that
these subcompartments strongly correlate with cytological distance between the chromatin and specific subnuclear
structures such as nuclear speckles and nuclear lamina, reflecting the spatial localization of the chromatin in the
nucleus (Chen et al., 2018). Therefore, the annotation of Hi-C subcompartments could be extremely useful to
provide complementary perspective of the 3D genome in terms of its spatial position in cell nucleus.

Unfortunately, Hi-C data from GM12878, which has almost 5 billion mapped paired-end read pairs, is the
only dataset with sufficient coverage to allow reliable identification of subcompartments through clustering inter-
chromosomal contact matrices. When the same clustering procedure is applied on lower coverage inter-chromosomal
contact maps from most available Hi-C datasets that typically have 400 million to 1 billion mapped reads (Rao
et al., 2014), the inter-chromosomal contact matrices are often too sparse to reveal clear subcompartment patterns.
Recently, a neural network based method called MEGABASE was developed to predict Hi-C subcompartment as-
signments of chromosome regions with 100kb resolution using numerous epigenomic signals as features without
using Hi-C data (Di Pierro et al., 2017). Based on 84 protein-binding and 11 histone marks ChIP-seq datasets in
GM12878, MEGABASE was trained to predict the original subcompartment annotations in GM12878 from Rao
et al. (2014) with over 60% consistency in each subcompartment compared to the original annotations (except for
the B2 subcompartment). However, most cell types do not have as many ChIP-seq datasets as GM12878 does and
some histone marks may even exhibit drastically reduced abundance in other cell lines (Yan et al., 2015). Therefore
MEGABASE has limited application to most cell types and it is also unclear how MEGABASE would perform in
other cell types. Indeed, comparing Hi-C subcompartments across different cell types still has not been possible.

Here we develop a new computational method called SNIPER, for nuclear genome subcompartment inference
using imputed probabilistic expressions of high-resolution inter-chromosomal Hi-C contacts. We utilize a neural
network framework based on a denoising autoencoder (Vincent et al., 2008) and multi-layer perceptron (MLP)
classifier (Haykin et al., 2009) that uses modest coverage Hi-C contact maps, which are typically available, to
recover high coverage inter-chromosomal contact maps and predict the subcompartment labels of genomic regions
in 100kb resolution. A recently developed method HiCPlus (Zhang et al., 2018) used convolutional neural net-
works (Schmidhuber, 2015) to impute intra-chromosomal chromatin contacts, but as of now there are no methods
to directly impute inter-chromosomal contacts. We demonstrate that SNIPER can accurately recover high coverage
inter-chromosomal Hi-C contact maps in GM12878 such that we can reliably annotate subcompartments, and can
significantly outperform MEGABASE. We applied SNIPER to additional eight cell lines, including K562, IMR90,
HUVEC, HeLa, HMEC, HSPC, T Cells, and HAP1, to reveal Hi-C subcompartment changes across cell types
for the first time. We believe that SNIPER is a useful method to offer new perspectives of genome organization
changes with respect to Hi-C subcompartments in different cell types. The source code of SNIPER can be accessed
at: https://github.com/ma-compbio/SNIPER.

Results

Overview of SNIPER

The overall goal of SNIPER is to use only moderate coverage Hi-C data (e.g., approx. 500 million mapped read-
pairs) as input to infer subcompartment annotations (Fig. 1A). Rao et al. (2014) originally defined subcompart-
ments by using the inter-chromosomal Hi-C matrix from GM12878, constructed from Hi-C contacts between odd-
numbered chromosomes along the rows and even-numbered chromosomes along the columns. They used a Gaus-
sian hidden Markov model (HMM) to cluster on the rows of the inter-chromosomal matrix. Loci in odd-numbered
chromosomes were assigned to five clusters corresponding to the five primary subcompartments. Clusters were
separated into A1, A2, B1, B2, or B3 subcompartments based on the Spearman correlations between clusters. To
define subcompartments in even-numbered chromosomes, Rao et al. (2014) applied the clustering method to the
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Figure 1: Overview of SNIPER. (A) Flowchart of SNIPER’s training procedure. (B) SNIPER denoising autoencoder. Rows of
the low coverage Hi-C probability map are used in the input layer. Weights are optimized using binary cross-entropy (BCE)
loss between the reconstructed and ground truth contact probabilities. (C) SNIPER neural network classifier is trained using
latent variables from (B) as input and optimized using cross-entropy between predictions and the original annotations based
on the high coverage Hi-C data in Rao et al. (2014).

transpose of the inter-chromosomal matrix.
The SNIPER framework is comprised of two separate neural networks, a denoising autoencoder (Vincent et al.,

2008) (Fig. 1B) and a MLP classifier (Fig. 1C). The autoencoder takes as inputs rows in a sparse inter-chromosomal
Hi-C matrix (in 100kb resolution) for genomic regions in odd-numbered chromosomes along the rows and regions
in even-numbered chromosomes along the columns. The autoencoder outputs dense contacts between a given
region in odd-numbered chromosomes and all regions in even-numbered chromosomes. At the same time, its
encoder outputs low-dimensional latent variables that represent features in the sparse matrix which capture dense
chromatin contacts. The latent variable compresses high-dimensional genome-wide contacts of each genomic
region into a much lower dimension, and is subsequently input into the classifier that categorizes the regions into
one of five primary subcompartment classes – A1, A2, B1, B2, and B3 (based on GM12878 annotations). Note that
although Rao et al. (2014) defined an additional B4 subcompartment, it is only present and specifically defined in
chromosome 19, occupying less than 0.4% of the genome. We therefore did not train SNIPER to consider B4. We
then train a separate autoencoder and classifier to annotate regions in even-numbered chromosomes. We convert
Hi-C contacts into contact probabilities to mitigate the effects of extreme Hi-C signals (see Methods). By using
low dimensional representations of complex genome-wide chromatin contacts, we can predict subcompartment
annotations using a basic multi-layer perceptron network. A detailed description of SNIPER is provided in the
Methods section.

Note that GM12878 has very high Hi-C coverage (approx. 5 billion mapped read pairs) while other cell
types typically have just a few hundred million reads. To reflect coverage in other cells types, we downsampled
GM12878’s Hi-C dataset to around 500 million reads by randomly removing 90% of its original reads. The inter-
chromosomal Hi-C matrix from GM12878’s downsampled data is then used to train the autoencoder. Hi-C data
of lower coverage cell lines can then be input into the trained networks to infer their dense Hi-C matrices and
subcompartment annotations.

SNIPER can accurately predict Hi-C subcompartments in GM12878
We first evaluated the performance of SNIPER in inferring subcompartments in GM12878 using downsampled
Hi-C data because the annotation based on high-coverage Hi-C is readily available from Rao et al. (2014). We use
confusion matrices to assess the overall accuracy of SNIPER compared to Rao et al. (2014) annotations in GM12878
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Figure 2: SNIPER performance in GM12878. (A) Confusion matrix between SNIPER predictions and the original subcom-
partment annotation based on the high-coverage Hi-C in Rao et al. (2014). (B) Precision-recall curve and AUPR values for
the prediction of each subcompartment. (C) Accuracy of predicting GM12878 annotations for 100kb bins using the base-
line Gaussian HMM, MEGABASE (Di Pierro et al., 2017), and SNIPER (average across 10-fold cross validation). Highest
prediction accuracy for each subcompartment is highlighted. (D) Histone mark and replication timing fold change profiles
constructed for SNIPER results (top) and Rao et al. (2014) subcompartments (bottom).

and also show performance differences in different subcompartments. We define accuracy as the fraction of 100kb
chromatin regions whose SNIPER annotations match Rao et al. (2014) annotations. The neural networks in SNIPER
expect inputs with the same length, but the inter-chromosomal Hi-C matrix is not symmetric. We cannot simply
transpose the matrix and use a single SNIPER model to predict subcompartment annotations in both odd and even-
numbered chromosomes. We therefore trained two separate models of SNIPER, one to classify subcompartments
in odd-numbered chromosomes, and one for predictions in even-numbered chromosomes. The odd chromosome
model is trained on loci from chromosomes 1, 3, 5, and 7 and tested on loci in the remaining odd-numbered
chromosomes. Similarly, the even chromosome model is trained using chromosomes 2, 4, 6, 8, and 10 and tested
on the remaining even-numbered chromosomes.

SNIPER’s annotations of A1, A2, B1, B2, and B3 for each 100kb genomic region in GM12878 match 91.0%,
97.1%, 84.2%, 81.8%, and 93.9% of Rao et al. (2014) subcompartment annotations, respectively (Fig. 2A). Using
chromosomes 9, 11, 13, 15, 17, 19, and 21 as the training set for the odd chromosome model, SNIPER achieves
similarly high accuracy (Fig. S1). The average precision of SNIPER predictions in each subcompartment also
remains high, with areas under the precision-recall curve (AUPR) of 0.981, 0.974, 0.939, 0.957, and 0.974, respec-
tively (Fig. 2B). In 10-fold cross validation, SNIPER’s accuracy remains high with low variance among training
folds (Fig. 2C). Latent variables for all chromatin regions were divided into 10 partitions, each of which achieved
similar accuracy compared to Rao et al. (2014) annotations (Table S1).

Importantly, we found that the SNIPER outperforms the baseline Gaussian HMM (Fig. S2A) and the recently
published MEGABASE (Fig. S2B) by using the original Hi-C subcompartment annotations in Rao et al. (2014)
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Figure 3: SNIPER predictions correlate with various functional genomic data. (A) Reconstruction of the inter-chromosomal
Hi-C contact matrix in IMR90. This example between chromosomes 2 and 3 shows that SNIPER imputes missing contacts
in the sparse matrix, recovers subcompartment-specific contact patterns, and predicts annotations that correlate with DNA
replication timing Repli-seq, H3K27ac ChIP-seq, and RNA-seq (FPKM). (B) Relative histone mark signal p-value changes
at the boundary between A2 (left) and B1 (right) in GM12878, IMR90, and K562. (C) Subcompartment distribution in
K562 SON TSA-seq deciles for SNIPER’s K562 subcompartments (left) and Rao et al. (2014)’s GM12878 subcompartments
(right).

as a benchmark. Fig. 2C shows that SNIPER significantly outperforms MEGABASE and the Gaussian HMM in all
subcompartments. Most notably, SNIPER accurately annotates B2 and B3 regions, whereas MEGABASE frequently
confuses B2 and B3 (Fig. S2B).

We then compared the prediction from SNIPER with histone mark ChIP-seq and DNA replication timing data
in GM12878 (Fig. 2D) obtained from ENCODE (Consortium, 2012). We determined enrichment of different epi-
genetic marks in each SNIPER subcompartment and Rao et al. (2014) subcompartment by following the procedure
in the Supplement Section V.b.2 from Rao et al. (2014). Overall we found that the enrichments with histone marks
and replication timing are very consistent with the results in Rao et al. (2014) (Fig. 2D). This further suggests the
overall high concordance between the predictions from SNIPER, which only uses downsampled data (10% of the
original read pairs), and the original Hi-C subcompartment annotations from Rao et al. (2014).

We then determined the minimum Hi-C coverage level at which SNIPER remains accurate. We also compared
the accuracy of SNIPER and the Gaussian HMM at various coverage levels to determine the point at which SNIPER
no longer outperforms the HMM. SNIPER accurately predicts subcompartment annotations for cell types with at
least 250 million Hi-C read pairs. At 200 million read pairs, we also found that SNIPER outperforms the Gaussian
HMM baseline, but remains far less accurate compared to the results based on 250 million read pairs (see Table S2).

SNIPER annotations in other cell types are supported by genomic and epigenomic data
Because subcompartment annotations from high-coverage Hi-C data are only available in GM12878, we cannot
directly compare the SNIPER predicted subcompartments in other cell types to the results based on high-coverage
Hi-C. We therefore used functional genomic data in K562 and IMR90, where a large number of epigenomic
datasets are available, to evaluate SNIPER predictions. Fig. 3A is an example showing that SNIPER recovered
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missing contacts from the the sparse low coverage inter-chromosomal contact map of IMR90, revealing much
clearer compartmentalized contact patterns whose boundaries strongly correlate with shifts in functional genomic
data. A1 and A2 regions generally have early replication timing and dense H3K27ac and RNA-seq signals, whereas
regions in B1, B2, and B3 replicate later and have lower transcriptional activities (see Fig. S3 and Fig. S4).

In addition, we observed significant shifts of histone mark signals in 400kb neighborhoods around subcom-
partment boundaries between A2 and B1 (Fig 3B for results in GM12878, K562, and IMR90) and other subcom-
partment boundaries (see Fig. S5). We focus on A2 to B1 transitions as they are usually the most frequent amongst
the cell types in our analysis, e.g., about six times more frequent than A1 to B1 transitions. Furthermore, A2
and B1 are associated with euchromatin and facultative heterochromatin, respectively (Rao et al., 2014), and can
both be transcriptionally relatively active. As a result, the large shift in histone mark signals across their bound-
aries signifies SNIPER’s ability to differentiate spatially close and functionally similar subcompartments. Active
marks such as H3K9ac, H3K27ac, and H3K36me3 are generally more enriched in A2 than B1 with a dramatic
drop moving across the boundary, consistent with the significantly lower enrichment of active marks in B1 (see
Fig. S2C), whereas the facultative heterochromatin mark H3K27me3 becomes more enriched across the A2-B1
boundary. These patterns of changes in epigenomic signals at the boundaries of subcompartments are consistent
with changes in histone mark signals at subcompartment boundaries shown by Rao et al. (2014) and more recently
by Chen et al. (2018), and the average log ratio between two epigenomic signals shown by Robson et al. (2017). We
also observed changes of histone mark signals around A2 and B1 boundaries in downsampled GM12878, K562,
and IMR90 using subcompartment annotations from Gaussian HMM clustering (Fig. S6). Compared to what we
observed from the predictions based on SNIPER, the patterns of signal changes around A2 and B1 boundaries in
GM12878 and IMR90 based on Gaussian HMM are similar. However, signals in K562 annotated by Gaussian
HMM showed no noticeable difference around A2 and B1 boundaries. This observation suggests that Gaussian
HMM may not be appropriate to identify subcompartments with accurate boundaries for all cell types.

We found that genomic regions replicate much earlier in A1 and A2 subcompartments than in B subcompart-
ments (Fig. S7A) in GM12878, K562, and IMR90. In addition, it is known that the level of histone modification
of H3K27ac is associated with enhancer activities (Creyghton et al., 2010) and sometimes also transcriptionally
active inter-LADs (van Steensel and Belmont, 2017). We found that H3K27ac generally has much higher sig-
nal in predicted A1 and A2 than in B compartment regions, and is virtually absent in predicted B2 and B3 (see
Fig. S7B). Higher H3K27ac signals in B1-annotated regions suggest less transcriptional activity than regions in A1
and A2 but more activity than B2 and B3. Intermediate levels of transcriptional activity and increased abundance
of H3K27me3 in the predicted B1 regions are indicative of its association with facultative heterochromatin (van
Steensel and Belmont, 2017) (see Fig. S7C).

The recently developed TSA-Seq technique can reveal cytological distance between chromosomal regions to
specific subnuclear structures (Chen et al., 2018). We compared SNIPER subcompartments with TSA-seq scores
(Fig. 3C). We used SON and LaminB TSA-seq that measures the distance to nuclear speckles and nuclear lamina
in K562, respectively (note that TSA-seq is not available for other cell types studied in this work). We found that
SON TSA-Seq signal shows significant stratification of the predicted subcompartments in K562. In particular, the
highest TSA-SON decile is almost exclusively associated with A1 regions in the SNIPER annotations. In contrast,
using Rao et al. (2014) GM12878 annotations, a significantly higher portion of the highest decile is associated
with B1 regions. Furthermore, none of SNIPER’s predicted A2 regions are binned into the lowest 2 deciles while
Rao et al. (2014)’s A2 regions are present in all low deciles. A scatter plot of SON TSA-seq and LaminB TSA-
seq percentiles (Fig. S8) shows that almost all subcompartments tend to cluster better based on SNIPER K562
subcompartment annotations instead of the original GM12878 subcompartment annotations. We found that in
general SNIPER annotations in K562 are partitioned into subcompartments with narrower TSA-SON and TSA-
LaminB signal ranges compared to Rao et al. (2014) annotations in GM12878. These results suggest that the
SNIPER subcompartment annotations in K562 are accurate and offer a more appropriate comparison with SON
and LaminB TSA-seq in K562 than the Rao et al. (2014) GM12878 subcompartment annotation (which was the
approach Chen et al. (2018) used).
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Figure 4: SNIPER allows comparisons of subcompartments across different cell types. (A) (Top) Distribution of thirteen
conservation states in the genome. (Bottom) Distribution of subcompartment regions in each conservation state. (B)
UCSC genome browser shot displaying the information content (IC), cross cell type predictions, H3K27ac fold change,
and smoothed Repli-seq wavelets of each 100kb region. Subcompartments offering the most information, associated with
taller bars in the IC track, are more conserved across nine cell types. (C) For each conservation state, we show Repli-seq
signal distribution in the most frequent subcompartment annotations among nine cell types at each 100kb region. Regions
in conservation state 1 are the most conserved, reflected by low variance of Repli-seq signal in each subcompartment.
Regions in the NC state are the most dynamic, suggesting multiple annotations for a single chromatin region and high
variance in Repli-seq signal. (D) Hi-C reconstructions across cell types in chr18 (47.1-47.9Mb) where IMR90 is A2-specific
and other cell lines are predicted as B3.

SNIPER facilitates the identification of subcompartment patterns across different cell types
We next applied SNIPER to predict Hi-C subcompartments in K562, IMR90, HeLa, HUVEC, HMEC, HSPC, T
Cells, and HAP1. Together with the subcompartments in GM12878, this allows us to perform a detailed compari-
son of subcompartment conservation and changes across multiple cell types. 100kb genomic regions are partitioned
into 13 conservation states (see Methods for detailed definitions) based on each region’s subcompartment anno-
tation distribution among nine cell types. States are termed states 1-12 and NC, sorted by ascending entropy of
cross cell type annotations, of which state 1 has the lowest entropy and refers to genomic regions with the most
conserved cross cell type annotations, states 2-12 gradually increase in entropy and decrease in conservation, and
state NC refers to the dynamic non-conserved state. Conservation states 2, 5, 7, and 8 also denote genomic regions
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that contain cell type specific subcompartment annotations. States 1-3 occupy large fractions of the genome, in-
dicating that a large portion of the genome contains relatively conserved subcompartment annotations (Fig. 4A).
Notably, the A1 subcompartment appears to be the most conserved subcompartment across cell types, with about
40% representation in the most conserved state 1. By contrast, there is less B1 presence in the more conserved
states, consistent with the observations in Rao et al. (2014) that B1 is associated with facultative heterochromatin.
The NC state comprised about 15% of the genome and contained relatively few A1 and B3 regions, suggesting A1
and B3 may be more conserved across cell types than other subcompartments.

Information content (see Methods), H3K27ac ChIP-seq fold change, and smoothed Repli-seq signals at each
region of the Genome Browser shot (Fig. 4B) show conserved and dynamic functional genomic patterns across
cell types. Similar to information content of position weight matrices for transcription factor binding motifs,
subcompartment information content reflects the information gained from annotations across all cell types in 100kb
genomic bins. Genomic regions with high information content have significantly more conserved annotations
across cell types than regions with low information content. Conserved A2 regions, shown in the purple segment
of Fig 4B, can be expected to retain conserved annotations and functional genomic patterns even in cell lines not in
our analysis. Less informative regions (Fig 4B, yellow and blue) exhibit inconsistent functional genomic signals.
Regions with HeLa-specific A2 annotations (Fig 4B, blue rectangle) show increased abundance of H3K27ac signal
and much earlier replication timing compared to other cell lines. These regions are annotated as B1, B2, and B3 in
other cell types and correspond to lower H3K27ac signals and later replication timing.

The amount of information gained in each conservation state is reflected in the Repli-seq distribution in sub-
compartment modes across states (Fig. 4C). For each region in a conservation state, its cross cell type Repli-seq
signals were binned according to the region’s mode, defined as the most frequent subcompartment annotation
among 9 cell types. We then plotted the violin plots of Repli-seq signals in each mode of the conservation state.
We binned Repli-seq signals for all other conservation states except states 10, 11, and 12, which contained too
few 100kb regions. We found that more conserved states show less variance of Repli-seq signals in each mode
because cross cell type predictions are less varied. Less conserved states such as states 8 and 9 exhibit much higher
Repli-seq variance in each mode, especially B1 and B3. Repli-seq distributions of all modes virtually overlap in the
NC state, further showing high variance of functional genomic signals in more dynamic subcompartment regions
across cell types. Because Repli-seq is virtually identically distributed in B2 and B3, the two subcompartments are
merged in Fig. 4C.

Hi-C reconstructions at genomic regions with cell type specific annotations are distinct from the same regions
in other cell types. Fig. 4D shows an example of A2 regions specific to IMR90 that exhibit significantly more
frequent contacts compared to the same region in other cell types, which are annotated as B3.

Taken together, these results demonstrate that SNIPER provides us with the capability to reliably compare
Hi-C subcompartment annotations in multiple cell types and analyze cross cell type patterns of conservation and
variation of Hi-C subcompartments.

Conserved and cell type specific subcompartment patterns show distinct gene functions
Genomic regions where transcription activity is high in a single cell type may reveal genes that contribute to unique
cellular functions. Here we focus on cell type specific A2 regions instead of A1 even though both subcompartments
have high transcription activity. Cell type specific A1 regions are frequently annotated as A2 in other cell types,
and therefore likely to show high transcription activity across multiple cell types, obscuring cell type specific gene
activity. Conversely, cell type specific A2 regions are much less frequently annotated as A1 in other cell types
(see Fig. S9), and are more likely to reveal cell type specific gene activity. Such regions are much less likely to
share high transcription activity across multiple cell types. Gene Ontology (GO) biological processes associated
with constitutive genes (Table. 1) may reveal housekeeping processes required for basic cellular functions. The
most enriched biological processes from GO enrichment analysis include catabolism, translation, protein targeting,
molecular transport, and RNA metabolism among others. Furthermore, log10 p-values of enriched processes show
that genes in constitutive A2 regions contain significant housekeeping functions.

We then compiled cell type specific A2 annotations across 9 cell types and highly expressed genes in cell type
specific A2 regions. We divided genes into cell type specific A2 sets (see Methods), used the method in (Reimand
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Biological Process (Constitutive A2)  p-value 
SRP-dependent cotranslational protein targeting to membrane -27.6498 
mRNA metabolic process -26.1152 
translational initiation -25.6716 
nuclear-transcribed mRNA catabolic process -22.2874 
cellular localization -21.5243 
peptide transport -17.4056 
cellular amide metabolic process -16.1778 
macromolecule localization -16.163 
nitrogen compound transport -15.5272 
cellular protein metabolic process -15.1904 

Biological Processes (T Cell Specific A2)  

Immune system process -8.523 
T cell activation -6.319 

Biological Processes (K562 Specific A2)  
Ribonucleoprotein complex biogenesis -5.355 
rRNA metabolic process -3.3224 

Table 1: GO term enrichment of genes in genomic regions with conserved A2 annotations across cell types and cell type
specific A2 annotations in T cells and K562.

et al., 2007) to obtain GO terms associated with genes in each set, and removed redundant GO terms using RE-
VIGO (Supek et al., 2011). Cell type specific subcompartment annotations can provide a clear picture of functions
and pathways enriched in certain cell types such as T cells. Specifically, genes in T cell-specific A2 regions are
highly associated with the immune system process and T cell activation, functions characteristic of T cells. How-
ever, genes in facultative A2 regions in other cell types do not necessarily produce enrichment that explains cell
type specific functions. RNP complex biogenesis and rRNA metabolic process are among the most highly enriched
processes in K562, but are also significantly enriched in constitutive A2. However, a single cell type specific re-
gion may contain many genes that act as passenger genes to a small number of key genes for driving such spatial
localization changes of chromatin in nucleus (e.g., Khanna et al. (2014)), obscuring cell type specific functions and
pathways.

Discussion

In this work, we introduced SNIPER, a new computational method that imputes inter-chromosomal contacts miss-
ing from sparse Hi-C datasets and predicts subcompartment annotations at 100kb scale across multiple cell types.
We found that SNIPER annotated subcompartments in the GM12878 with high accuracy and outperformed a state-
of-the-art method, MEGABASE. In GM12878, K562, IMR90, HeLa, HUVEC, HMEC, HSPC, T cells, and HAP1,
we showed that SNIPER predictions correlate well with functional genomic data including histone marks, repli-
cation timing, RNA-seq, and TSA-seq. Genomic regions with conserved SNIPER annotations across these 9 cell
types occupy a significant portion of the genome and shared similar abundance of epigenomic signals. Regions
with constitutive A2 predictions are generally associated with housekeeping functions and pathways. Cell type
specific A2 predictions correlate with biological processes specific to some cell types.

SNIPER is able to achieve accurate subcompartment annotations in cell types with Hi-C coverage as low as 250
million reads. In this study, Hi-C data for different cell types typically have more than 250 million Hi-C read pairs,
between 400 million to 1 billion, suggesting that the SNIPER subcompartment predictions are accurate. Compared
to GM12878 annotations in Rao et al. (2014), we only need approximately 20 times fewer Hi-C reads to reliably
annotate subcompartments using SNIPER. Therefore, SNIPER has the potential to significantly reduce the cost of
Hi-C experiments to analyze subcompartments across many different cellular conditions.

The Hi-C subcompartment predictions from SNIPER can be compared to results based on other analysis ap-
proaches and datasets. For example, we expect that the SNIPER predictions of Hi-C subcompartments can be
used to further validate and compare with results from polymer simulations (Sanborn et al., 2015; Nuebler et al.,
2018), 3D genome structure population modeling (Tjong et al., 2016; Hua et al., 2018), and regulatory commu-
nities mining based on whole-genome chromatin interactomes (Dai et al., 2016). In addition, recently published
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new genome-wide mapping methods (Chen et al., 2018; Quinodoz et al., 2018; Beagrie et al., 2017) may provide
additional training data other than Hi-C, as well as experimental data validation to improve our method.

Currently SNIPER is limited by its training data, which contains about 500 million mapped read pairs from
the original Hi-C reads in GM12878. The Hi-C coverage of other cell lines tends to vary, which can impact
SNIPER’s overall accuracy when applied to some cell lines. As a result, SNIPER could incorrectly annotate some
regions in a cell line if Hi-C coverage is too high or too low. In addition, the ratio between intra-chromosomal
and inter-chromosomal reads can vary across cell lines, which we did not explicitly control for. This ratio could
exhibit high variance across different cell types and influence the accuracy of SNIPER’s predictions. Future work
should make SNIPER more coverage invariant and produce consistent annotations regardless of the Hi-C coverage
of its inputs. In addition, the Hi-C subcompartment annotations used in SNIPER are also largely relying on the
original annotations in GM12878 from Rao et al. (2014). Although the results in this work demonstrate that these
subcompartment definitions may well represent primary subcompartments in many cell types, it is also possible
that some cell types may have their distinct subcompartment organizations. Future work can be performed to
train SNIPER to categorize genomic regions into different sets of subcompartments not limited to the five primary
subcompartments used in this work. Furthermore, the inability to isolate cell type specific functions in some cell
types suggests more work should be done to determine genes in facultative subcompartment regions that most
significantly contribute to cell type specific spatial localization and function. Nevertheless, this work demonstrated
that SNIPER has the potential to become a useful tool to offer new perspectives of 3D genome organization changes
in different cell types.
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Methods

The denoising autoencoder for inferring high resolution inter-chromosomal Hi-C contacts
We aim to recover missing contacts from sparse inter-chromosomal Hi-C contact maps by constructing a denoising
autoencoder (Vincent et al., 2008) (Fig. 1B), which uses rows of the downsampled Hi-C contact probability matrix
(see later section) in GM12878 as inputs, and targets the corresponding rows of the dense matrix. Each row of
the matrix is a vector of contact probabilities between one locus in an odd (or even) chromosome and all loci in
the even (or odd) chromosomes. The denoising autoencoder in SNIPER contains a total of 9 sequential layers with
Nloci, 1024, 512, 256, 128, 256, 512, 1024, and Nloci neurons, respectively, where Nloci refers to the number
of rows or columns in the input contact matrix. Layers with Nloci neurons are the input and output layers, the
layer with 128 neurons is the latent layer, and the remaining layers are hidden layers. The autoencoder network
is trained using a moderate coverage Hi-C matrix obtained by randomly removing 90% of the original GM12878
Hi-C read pairs to reflect the sparsity and coverage levels of other cell types. We input a subset of N total rows
into the autoencoder’s input layer. Its output layer targets corresponding rows in the high coverage Hi-C matrix.
The layers of the encoder and decoder, pertaining respectively to the layers before and after the autoencoder’s
latent layer, contain 12-14 million parameters, approximately 10% of the N ⇥ Nloci ⇡ 145 million sparse inputs
in the training matrix. The 128 dimension of the latent layer limits the number of parameters in the autoencoder to
approximately match our downsampling ratio of 1:10, and enables the downstream classifier to accurately predict
subcompartment annotations.

Linear transformations to compute neural layer outputs
We developed a denoising autoencoder that is comprised of linear layers with neurons whose activations are com-
puted by:

zi(xi) = gi(Wixi + bi) (1)

where zi is the activated output of layer i, xi is the n-dimensional input to layer i, Wi is the m ⇥ n-dimensional
weight matrix (where m is the layer’s output dimensionality) of layer i, bi is the m-dimensional bias vector of
layer i, and gi is the activation function applied element-wise to the output vector for layer i.

Nonlinear activation to promote separability and consistency of autoencoder outputs
We apply rectified linear unit (ReLU) activation (Nair and Hinton, 2010) to the hidden layers:

ReLU(z) =

(
z (z > 0)

0 (z  0)
(2)

where all non-positive values in the output vector z are set to 0 to introduce sparsity. Sparse neural activation is
less entangled, more linearly separable, and more efficiently propagates information throughout the network. In
addition, ReLU has been shown to be suitable for naturally sparse data (Glorot et al., 2011).

Of the hidden layers, those with 1024 and 256 neurons are forwarded into 25% dropout layers to reduce
overfitting (Witten et al., 2016). The latent and output layers are activated linearly and sigmoidally, respectively,
with no dropout:

�(z) =
1

1 + exp(�z)
(3)

where the values in the activated output �(z) are constrained between 0 and 1 as the exponential converges to 0
and 1 (as values in a layer’s output z go to �1 and +1). The latent layer is linearly activated to maximize the
encoding space that latent variables can occupy. The output layer is sigmoidally activated to match the range of
values in the input probability matrix.
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Binary cross-entropy to optimize the autoencoder
We use binary cross-entropy (BCE) loss to assign weights to samples whose autoencoder output values deviate
significantly from corresponding target values:

✓̂ = argmin
✓

(
�

NX

i=1

�
yT
i log(ŷi) + (1� yi)

T log (1� ŷi)
�
)

(4)

where the autoencoder parameters ✓ are optimized to minimize the cross entropies between model outputs ŷi and
target outputs yi for all training inputs i 2 {1, ..., N}. The autoencoder can also be optimized using mean-squared
error loss with little difference in performance (Creswell et al., 2017).

For implementation, gradients of the weights and biases in the model are computed using backprogation (Rojas,
1996) and weights are updated using the RMSProp (Hinton et al., 2012). The autoencoder is trained for 25 epochs
using a batch size of 32 and learning rate of 0.001.

The training set contains the first 7,000 rows in the contact probability map, which includes genomic loci in
chromosomes 1, 3, 5, and 7, occupying about 55% of all loci in odd-numbered chromosomes. The remaining
rows in the contact probability map form the test set. We found that using different sets of chromosomes did not
significantly affect the recovery of high coverage Hi-C data and the annotation of subcompartments (see Fig. S1).
In addition, the autoencoder was re-trained using even-numbered chromosomal regions as training inputs. This
new training set includes loci in chromosomes 2, 4, 6, 8, and 10 and occupied about 60% of loci in even-numbered
chromosomes. We transpose the downsampled Hi-C matrix, compute its probability maps, and follow the same
training process, targeting the transposed high coverage Hi-C probability map. The re-trained autoencoder model
outputs the same Hi-C map as the initial model (see Fig. S10). The size of the input and output layers is adjusted
to equal the number of contacts between each even-numbered chromosomal region and all odd-numbered regions.

The classifier for predicting Hi-C subcompartment annotations
We developed a multi-layer perceptron model with two hidden layers to classify latent representations of inter-
chromosomal contacts into subcompartment assignments (Fig. 1C). The MLP network contains layers with 128,
64, 16, and 5 neurons. The 128-neuron layer pertains to the input layer, the 64- and 32-neuron layers are the
hidden layers, and a 5-neuron layer is the output layer (corresponding to five primary subcompartments). The
network is trained using the latent representations of inter-chromosomal contacts and the corresponding GM12878
subcompartment labels from Rao et al. (2014). We then input the 128-dimensional representations of genome-wide
contacts in other cell types into the trained classifier to infer their subcompartment annotations.

Sigmoid activation is applied to the input latent variables, limiting input values between 0 and 1 and mitigating
bias towards high numerical inputs. We apply ReLU activation to the output of each hidden layer, which will
subsequently be forwarded to 25% dropout layers. The output layer contains 5 neurons (each representing a pos-
sible subcompartment annotation) which are activated with softmax to ensure that subcompartment probabilities
summed to 1:

�(zc) =
exp(zc)PC
j=1 exp (zj)

(5)

where the exponential activation of a class c, exp(zc), is normalized by the sum of exponential activation across
all classes C,

PC
j=1 exp(zj). The output likelihoods indicate the most likely annotation of a 100kb genomic bin.

The training set is balanced (see Methods below) to ensure that each subcompartment is equally represented
in the training set. Our classifier uses a balanced set of latent representations of the same loci used to train the
autoencoder as inputs and targets their corresponding subcompartment annotations y based on high coverage Hi-C
in Rao et al. (2014). We validated the model by comparing the predicted annotations of the remaining loci’s latent
variables to the Rao et al. (2014) annotations. The model is optimized using categorical cross-entropy loss between
predicted and target outputs:

LMLP (y, ŷ) = �
NX

i=1

X

c2C
yi[c] log ŷi[c] (6)
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where ŷ is the predicted output, y is the target output, and c 2 C are the possible output classes. The loss function
sums over the class-specific entropy loss yi[c] log ŷi for all classes in each training sample i 2 {1, ..., N}. The
weights in the classifier are updated by computing gradients of the loss function with respect to the weights:

✓̂ = argmin
✓

LMLP (y, ŷ) (7)

where ✓ is the set of model weights. Each epoch’s learning rate is adjusted using RMSProp (Hinton et al., 2012).
Two independent classifiers are trained to annotate regions in odd- and even-numbered chromosomes.

Converting Hi-C contact maps into Hi-C contact probabilities
We converted Hi-C contacts into contact probabilities to mitigate the effects of extreme Hi-C signals and enable
neural networks to use binary cross-entropy loss. Eq. 8 was applied element-wise to an inter-chromosomal Hi-C
map, returning a matrix of contact probabilities Pij constrained between 0 and 1.

Pij = exp

✓
� 1

Cij

◆
(8)

where Cij refers to the contact frequency between genomic loci i and j. Contacts probabilities with values con-
strained between 0 and 1 allow a neural network’s weights to be optimized using BCE loss instead of mean-
squared-error (MSE) loss and mitigate the effects of extreme outliers. High frequency chromatin contacts can
disproportionately influence activation in a neural network with linear neurons, leading to incorrect chromatin
subcompartment annotations and a less robust neural network. Even after log-normalization in Rao et al. (2014),
SNIPER can still become skewed by the logarithms of extreme values. Furthermore, the value range of the input
exceeds the (0, 1) range and pushes SNIPER to compute gradients derived from MSE loss. MSE loss optimizes
for mean-squared distance between network outputs and targets, which can result in regression to the mean of the
targets. Using BCE loss retains Hi-C contact patterns in the autoencoder output. SNIPER’s goal is to capture con-
tact frequency patterns in order to infer subcompartment annotations, making optimization for patterns far more
important than optimizing for mean-squared distance. In addition, extreme outliers in the contact matrix will have
corresponding contact probabilities that converge to 0 or 1, values which will introduce much less bias into the
autoencoder. While SNIPER’s inputs could also be constrained between 0 and 1 by applying a sigmoid function to
the input layer activation, the input would have to be further balanced by training an additional set of weights and
biases.

Probability maps were computed for cell types GM12878, K562, IMR90, HeLa, HUVEC, HMEC, HSPC,
T-Cells, and HAP1. Because GM12878’s Hi-C coverage is much higher compared to the other cell types, we
simulated the sparsity of other cell types’ Hi-C maps by downsampling GM12878’s inter-chromosomal matrix by
1:10 and computing its downsampled probability map. The downsampled probability matrix serves as the training
input for the SNIPER autoencoder and GM12878’s dense matrix serves as its target output during training.

Training set balancing
The training set of the classifier was balanced so that each subcompartment was equally represented to remove bias
towards specific subcompartments. We set the number of samples per subcompartment to be a number N that is
greater than the number of regions in the most common subcompartment in the GM12878 training set. We then
define an array B corresponding to the balanced training set containing 5 ⇥N training samples – N samples per
subcompartment.

For each of the five primary subcompartments c, we randomly sample two latent variables x and y of chromatin
regions that belong to subcompartment c. We subsequently compute r, a vector novel to the training set whose
values lie at a random point in between the values x and y, i.e.,

r = x+ (y � x)⇥ rand(0, 1) (9)

where rand(0, 1) is a random variable sampled from a uniform distribution between 0 and 1. We then append r to
B and repeat random sampling for N � 1 iterations. N random samples are then taken for each of the remaining
subcompartments.
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Methods of comparing SNIPER results in different cell types
Transition of histone marks near subcompartment boundaries
Epigenomic marks can serve as indicators of the overall accuracy of predicted annotations, even though they are not
perfectly predictive of subcompartment state. We compiled histone marks ChIP-seq p-values in genomic regions
within 400kb of subcompartment boundaries, defined as nucleotide positions where subcompartment annotations
of adjacent 100kb chromatin regions are different.

Conserved and dyanmic subcompartment annotations across multiple cell types
In this work, SNIPER is applied to 9 cell lines – GM12878, K562, IMR90, HeLa, HUVEC, HMEC, HSPC, T cells,
and HAP1 – to determine regions whose subcompartment annotations are conserved and dynamic across multiple
cell types. We divided subcompartment annotations in thirteen conservation states based on the entropy of each
100kb region cross cell type annotations as follows:

Si =
CX

c=1

(�pi,c log pi,c) (10)

pi,c =

PN
j=1 �(ai,j , c)

N
(11)

where Si is the total entropy of region i subcompartment annotations, summed over the entropy of all C subcom-
partments. The fraction of subcompartment c at region i, pi,c, is computed by counting the number of occurrences
of subcompartment c over all N cell types,

PN
j=1 �(ai,j , c), and dividing by the total number of cell types N .

�(ai,j , c) = 1 if the annotation ai,j of cell type j is equal to c at region i.
Because annotations are discrete, Eq. 10 and 11 yielded 23 possible entropy values, each corresponding to a

unique distribution of annotations across cell types. Of these 23 states, 11 were associated with fewer than 5 out
of 9 cell types sharing the same subcompartment annotation. The 11 states without a majority subcompartment
were merged into a single non-conserved (NC) state. We sorted the remaining 13 states in order of entropy, with
the lowest entropy state 1 denoting the most conserved cross cell type regions, and the higher-numbered states
denoting less conserved and more dynamic regions.

To represent subcompartment conservation and dynamics, we computed information content of each 100kb
region. Information content was computed similar to entropy, but normalizing subcompartment-specific fractions
by a background probability within the logarithm term:

ICi,c =

����(pi,c log
pi,c
qc

)

���� (12)

where ICi,c is the information content of subcompartment c at region i, pi,c is computed in Eq. 11, and qc = 0.2 is
the background probability of subcompartments assuming uniform subcompartment distribution. High information
content corresponds to regions with more conserved annotations while low information content corresponds to
more dynamic regions across cell types.

Isolating genes in regions with cell type specific annotations
Genomic regions in the A2 subcompartment have increased gene expression in general, but they are not guaranteed
to have high gene expression, characterized by their overall but not universally high RNA-seq signals. Genes in
regions with low RNA-seq signal are poorly expressed and can obscure the enrichment of Gene Ontology (GO)
terms associated with highly expressed genes in cell type specific A2 regions. We instead used a combination of
SNIPER’s A2 annotations and FPKM from RNA-seq gene quantification to substantially decrease the size of gene
sets in cell type specific A2 regions and reveal far more enriched GO terms. For each cell type, we sorted genes by
their FPKM and added genes with FPKM above a threshold into our GO analysis set. The threshold depends on
the number of cell type specific A2 regions in a cell type and gene density in these cell type specific regions, and
was selected to limit the size of our gene sets to 2000.
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Hi-C data acquisition
The Hi-C data of GM12878, K562, IMR90, HeLa, HUVEC, and HMEC were obtained from Rao et al. (2014). The
Hi-C data of HSPC, T Cell, and HAP1 was obtained from (Joeng et al., 2017). We used the Juicebox tool (Durand
et al., 2016) to extract 100kb inter-chromosomal contacts from .hic files.
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