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Abstract

In an ever-changing environment, survival depends on learning which stimuli represent threat, and also

on updating such associations when circumstances shift. Humans can acquire physiological responses to

threat-associated stimuli even when they are unaware of them, but the role of awareness in updating

threat  contingencies  remains  unknown.  This  complex  process  –  generating  novel  responses  while

simultaneously suppressing learned ones – relies on distinct neural mechanisms from initial learning,

and has  only  been shown with awareness.  Can it  occur  unconsciously?  Here  we show that  it  can.

Participants underwent classical threat conditioning to visual stimuli that were suppressed from their

awareness.  One of  two images  was paired with an electric  shock;  halfway through the experiment,

contingencies were reversed and the shock was paired with the other image. We found that physiological

responses  reflected  changes  in  stimulus-threat  pairings  independently  of  stimulus  awareness,

demonstrating the sophistication of unconscious affective flexibility.
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Introduction

Flexible responses to environmental threats are essential for adaptive behavior. Cues that predict threat

constantly  change  -  new threats  may arise  while  old ones  cease  to  pose a  risk.  When consciously

perceiving such cues, we are able to flexibly update and shift threat responses from one cue to another

(1-3). But can we update our reaction to stimuli that predict danger when we are not aware of them? It is

known that  threat-conditioned stimuli  that are perceived without awareness can still  elicit  defensive

physiological  reactions  (4-7),  and  that  new  threat  associations  can  be  formed  through  classical

conditioning even without any awareness of the conditioned stimuli (8-10). Updating threat associations

when contingencies change, however, is an entirely different matter: it involves a complex process of

creating novel responses while simultaneously suppressing acquired ones. To date, such updating has

only been shown in humans who were aware of the stimuli (2), and in animals under conditions where

stimuli were fully available for perceptual processing (11); these studies have shown, furthermore, that

the neural  substrates of threat  updating differ from those of the initial  learning. It  is  thus unknown

whether the sophisticated re-evaluation involved in such affective flexibility requires awareness, or can

be accomplished without it. Here we show that it can, and furthermore, that stimulus awareness does not

seem to play a substantial role in such affective flexibility.

To examine  this,  we employed  the  reversal  paradigm,  a  laboratory  model  that  requires  flexible

updating  of  threat  contingencies  (2).  In  an  initial  acquisition  phase,  participants  encounter  two

conditioned stimuli (CSs) and learn that only one of them predicts an electric shock. Halfway through

the experiment, with no warning, these contingencies flip, initiating the reversal phase: Participants must

flexibly learn that the formerly safe CS now predicts the shock and that the old one no longer does. To
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assess learning, participants’ physiological arousal is recorded throughout the experiment, typically (and

here)  by  measuring  their  skin  conductance  responses.  Appropriate  response  reversal  requires  a

sophisticated form of updating, in that one must learn to respond to a cue that now predicts threat while

simultaneously inhibiting responses to the previously threatening cue that is now safe.

To  see  whether  reversal  of  conditioned  threat  requires  awareness,  we  had  a  large  group  of

participants (N = 86) undergo reversal learning with the CSs suppressed from awareness by continuous

flash suppression (CFS), a technique commonly used to examine unconscious perception (10, 12-14):

The CSs were visual images presented monocularly, while the other eye was shown a high-contrast,

dynamic image (the CFS mask) at the corresponding retinal location (See Figure 1 for a description of

the design and procedure).

CFS can suppress images from awareness for several seconds. However, it is also known that its

effectiveness may vary across trials and individuals, and the suppressed stimulus may "break through"

the suppression (15). Over the last decade, a growing body of work has raised concerns that the standard

approach - removing from analysis data (participants and trials) in which breaktrough had occurred -

may bias the findings (16, 17; See Supplementary Methods for further details of these issues.) Here, we

adopt  a  number  of  methodological  approaches  to  ensure  our  results  are  robust  to  these  potential

concerns.

Specifically,  we  remove  no  data  and  instead  incorporate  individual  levels  of  reported  stimulus

awareness, as well as response patterns that might reflect residual awareness, into a regression model

accounting for physiological responses. The model also adjusts for baseline anxiety (which has been

previously  shown  to  correlate  with  unconscious  learning;  (10)).  Additionally,  we  use  a  Bayesian
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approach to establish that a model in which participants were updating their learning provides a better

account for the findings than a model in which they were simply (and independently of the stimulus)

predicting the probability of a shock on the next trial (18). Finally, in order to verify that our procedure

is able to induce reversal learning when participants are awareness of the stimuli,  we ran a no-CFS

group (N = 12), in which participants also viewed the CSs monocularly (as the CFS group did), but were

aware of them as no CFS masks were presented to their other eye.

We hypothesized that physiological responses to threat can be flexibly reversed without perceptual

awareness. We find that reversal indeed occurs independently of CS awareness, and that there is strong

evidence for the reversal of threat learning even in its complete absence.

Results

Overall assessment of physiological reversal learning

To assess the physiological arousal evoked by CSs, we used a model-based approach (19) to estimate

the amplitude  of anticipatory  sudomotor  nerve activity  (SNA) from skin conductance data  recorded

during stimulus  presentation.  A variational  Bayes  approximation  was employed to invert  a  forward

model that describes how hidden SNA translates into observable SCRs (see Materials and Methods).

Previous work has shown that  this  approach is  more sensitive  than conventional  SCR peak-to-peak

analysis (19-21). Figure 2A shows the time course of evoked SNA to Spiders A and B, separately for the

CFS and no-CFS groups. In both groups, responses to Spider A relative to Spider B were larger during

the acquisition phase and smaller during the reversal phase. To quantify the magnitude of physiological

reversal  learning,  we  calculated  a  reversal  learning  index  for  each  participant  (see  Materials  and
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Methods). The reversal learning index was positive and significantly greater than zero for both the CFS

and no-CFS groups (Figure 2B). A linear mixed model (see Materials and Methods for details) revealed

a significant interaction of stage and spider in both groups (CFS: β = 0.27, t (2935) = 4.23, P = < 0.001;

no-CFS: β = 1.23, t (2935) = 7.29, P = < 0.001). Note that a significant interaction is formally equivalent

to  a  significant  reversal  learning index.  On its  own,  however,  it  simply  reveals  a  difference  in  the

comparative magnitude of responses to the two CSs across the two halves of the experiment; follow-up

tests show that this difference is indeed due to reversal: Spider A evoked greater responses than Spider

B in the acquisition phase (CFS: t (341.9) = 3.0, P = 0.003; no-CFS: t (201.1) = 4.6, P < 0.001) and the

pattern was reversed in the reversal phase (CFS: t (341.9) = 2.8, P = 0.005; no-CFS: t (341.9) = 3.6, P =

0.0003). These results indicate that reversal learning was evident in both groups. Although Figure 2

shows  that  it  was  more  pronounced  in  the  no-CFS  group,  we  note  that  this  difference  is  not

straightforwardly interpretable because the no-CFS group (a control, intended to rule out an ineffective

manipulation  if  no effect  was  found for  the  CFS group)  was  substantially  smaller;  furthermore,  as

addressed in detail below, suppression from awareness was very heterogenous in the CFS group.

As previous work has found a negative association between anxiety and threat acquisition with and

without  awareness  (10),  we  also  calculated  correlations  between  the  CFS group’s  baseline  anxiety

measures (STAIT, STAIS, FSQ) and the reversal learning index. Overall, reversal learning decreased

significantly with increasing levels of state and trait anxiety, and to a lesser but non-significant extent

for spider phobia (Figure 2C).
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Reversal learning and perceptual awareness

The  CFS  manipulation  reduced  awareness  of  the  CSs;  as  expected,  however,  it  was  differentially

effective in doing so across participants, precluding an overall conclusion that all learning under CFS

happened  non-consciously.  The CFS group showed significantly  lower  accuracy  in  response  to  the

"which seen?" question (M = 0.46, SD = 0.29) compared to the no-CFS group (M = 0.86, SD = 0.16; t

(22.77) = -7.24, P < 0.001), and accuracy in the CFS group was not significantly different from the 50%

random-response level (t (85) = -1.21, P = 0.229). The CFS group also showed lower confidence (M =

1.73, SD = 0.65) than the no-CFS group (M = 2.83, SD = 0.08; t (95.38) = -15.05, P < 0.001).

However, group differences in accuracy and confidence, and even random-level response accuracy,

are not sufficient to establish an absence of perceptual awareness in the CFS group. Notably, average

confidence of correct responses in this group was low but significantly greater than the minimum value

of 1 (t (77) = 10.79, P < 0.001), suggesting that at least some participants were aware of some of the

CSs; learning might thus have arisen from a subset of trials and/or participants where such awareness

occurred.  To address  this,  we quantified  CS awareness  by calculating  an awareness index for  each

participant, ranging in possible values from 0 for no awareness to 1 for full awareness (see Materials and

Methods). Although the awareness index of the CFS group (M = 0.28, SD = 0.34) was significantly

lower than the no-CFS group’s (M = 0.92,  SD = 0.18;  t (23.93) = -10.19,  P < 0.001),  it  was still

significantly higher than zero (t (85) = 7.59, P < 0.001).

Therefore, in order to test our main hypothesis that the reversal of acquired threat responses can be

achieved without perceptual awareness, we characterized the quantitative relation between the level of

awareness and the magnitude of reversal learning in the CFS group. To control for possible artifacts of
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regression to the mean (see Supplementary Methods), we first calculated the correlation between two

independent estimates of the awareness index (16), one calculated from even-numbered trials, the other

from odd-numbered trials. These measures were strongly correlated (r  (84) = 0.96,  P < 0.001; Figure

3A);  participants’  awareness  level  in  one  set  of  trials  was  thus  overwhelmingly  predictive  of  their

awareness in the other set. Thus, two independent measures of awareness showed very similar results

which suggests that the overall awareness index was unlikely to be influenced by extreme values that

were due to measurement-level noise. Such extreme values would have occurred in one but not the other

measure and would have thereby attenuated the correlation between even and odd trials considerably.

Next, we examined the association between the awareness index and the reversal learning index,

using values of both indices obtained separately from even (Figure 3B) and odd (Figure 3C) trials. As

the color-coding of Figure 3 shows, the relation between individual participants’ awareness and their

reversal learning was highly consistent across these separate measurements. In light of this, we pooled

the data from all trials  and regressed the reversal learning index on the perceptual awareness index

(Figure 3D). The parameter of interest was the intercept, which corresponds to the magnitude of reversal

learning at zero perceptual awareness. The intercept was positive and significantly different from zero.

Furthermore,  the awareness index regressor did not contribute significantly to prediction of reversal

learning; importantly, this finding was even stronger in models that accounted for STAIT scores and a

binary  factor  indicating  whether  participants  were  tracking  the  stimuli  with  their  responses  (see

Materials and Methods; Figure 3E and Table 1).
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Comparing learning and expectation-based accounts

Well-controlled  lab-based  conditioning  procedures  require  strict  constraints  that  preclude  complete

randomization of the number and order of different CSs; this comes with a cost: participants are able to

develop  expectations  with  above-chance  validity,  based  on the  sequence  of  trials  so  far,  about  the

likelihood of a shock on any upcoming trial (18). Even without any awareness of the CSs, a participant

should have been able to distinguish two types of trials: reinforced (with shock) and non-reinforced (no-

shock). In a study with two CSs and a 100% reinforcement rate like ours, such expectations would

correspond to an anticipated pattern of alternating trial-types (shock/no-shock or vice versa), with an

increase  in  shock  anticipation  after  every  no-shock  trial.  The  question,  therefore,  was  whether  the

physiological responses we had measured might simply reflect participants’ pattern-based anticipation

of shock, rather than learning of the contingencies associated with the CSs.

To answer this question, we used a Bayesian approach to compare the probability of our findings

being accounted for by a classic Rescorla-Wagner learning model (22) and a trial-sequence model. We

hypothesized that successful threat reversal without perceptual awareness should be better explained by

the  Rescorla-Wagner  learning  model,  whereas  simple  pattern-based  expectation  would  be  better

explained by the trial-sequence learning model. We used maximum likelihood estimation to assess the

log likelihood and calculate the Bayesian Information Criterion (BIC) of each model (See Materials and

Methods for details of each model and calculation of the BIC). A smaller BIC indicates a better model,

and BIC values can thus be compared by calculating the difference between them and interpreting the

resulting  Δ BIC as  providing  evidence  against  the  higher  BIC.  The  Rescorla-Wagner  model  (BIC:

562.1) outperformed the pattern-based expectation model (BIC: 584.9),  with the difference (Δ BIC:
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22.9) greater than 10, suggesting that the evidence against the trial switch model is very strong (23).

Repeating this comparison for just the participants with zero mean awareness confirmed the lower BIC

for the Rescorla-Wagner model (BIC: 114.3) compared to the pattern-based expectation model (BIC:

125.7),  with  the  difference  again  greater  than  10  (Δ  BIC:  11.3;  see  also  Figure  S2).  This  model

comparison provides convincing evidence that a classical Rescorla-Wagner learning model explains our

findings better than an alternative expectation-based model.

Discussion

These  results  indicate  that  participants  were  able  to  update  their  defensive  physiological  responses

independently of their awareness of threat-related cues. Previous studies have shown that new threat

associations can be formed without perceptual awareness of the conditioned stimuli (5, 9-10). However,

until now it was unknown whether the far more complex process of threat reversal - shifting reactions

from a stimulus that no longer predicts danger to one that now does - can be accomplished without

awareness. Our finding of reversal learning occurring independently of the level of perceptual awareness

suggests that separate processes underlie affective flexibility and conscious processing (24). Conversely,

the negative correlation between reversal learning and anxiety suggests that the various impairments

caused by anxiety are not limited to systems underlying conscious processes.

Previous studies  have pointed out the limitations  of using accuracy and confidence measures to

assess  perceptual  awareness,  and  suggested  remedies  including  the  calculation  of  metacognitive

sensitivity  measures  (25),  Bayesian  statistics  (26),  or  parametric  variation  of  the  experimental

manipulation (27). The present study addresses an issue not covered in previous discussions, by showing
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that a trial-wise analysis may reveal hints for incomplete suppression that analyses relying on average

measures  might  easily  miss.  Future  studies  that  rely  on  forced-choice  questions  for  awareness

assessment  should  thus  examine  response  patterns  across  trials  in  addition  to  collecting  aggregate

measures. 

Notably, a previous study (10) that used CFS to investigate acquisition of threat responses without

awareness of the stimuli found that such acquisition can occur, but is rapidly forgotten. The present

study again showed that such acquisition can occur (and, additionally, be reversed), but did not find the

same rapid forgetting. The reasons for this are unclear, but we speculate that the difference may be due

to specific aspects of the stimuli, design and procedure: our use of pictures of spiders (rather than faces)

and a 100% (rather than 50%) reinforcement protocol may have altered the temporal characteristics of

acquisition.  Similarly,  the temporal  profile of reversal  may change if  the stimuli  and reinforcement

regime are different.

The present results add to a growing body of findings distinguishing functions that do and do not

require awareness. Such distinctions are important in guiding research into the neural mechanisms of

conscious and non-conscious processing. Previous research hints at the mechanism underlying the non-

conscious affective flexibility reported here, although it remains to be elucidated: The ability to reverse

conditioned responses depends on the integrity of circuitry spanning several neural regions, particularly

the ventromedial prefrontal  cortex (vmPFC) and its connections with the amygdala (1) where threat

associations are formed (28). Consistent with this, it is known that patients with anxiety disorders often

show rigid and inflexible threat responses in conjunction with prefrontal cortex dysfunction (29, 30).
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Indeed, the real-life settings that people with anxiety disorders find challenging often require the

updating and shifting of threat responses. Deficits in affective flexibility may thus explain the threat

learning and extinction deficits seen in such disorders (31). Compared to healthy controls, patients are

less able to distinguish between safe and unsafe stimuli in threat learning (when it is adaptive to do so),

and distinguish between them to a greater extent during extinction (when it is non-adaptive).  Threat

learning without perceptual awareness is also negatively correlated with baseline state anxiety in healthy

participants (10). Our new finding that baseline anxiety is negatively correlated with affective flexibility

suggests  a  potential  use  for  reversal  learning  as  a  model  paradigm  for  investigating  how  anxiety

modulates  various  processes  in  a  variety  of  disorders,  including,  for  example,  posttraumatic  stress

disorder, in which there is an impairment of threat inhibition (32).

Methods

Participants

Ninety-eight healthy participants (mean age = 29.97; range 18-65) were assigned to one of the two

groups: reversal learning with CFS (CFS group; N = 86, 48 female) or without CFS (no-CFS group; N =

12, 5 female). Assignment was random until each group reached a size of 12; subsequent participants

were assigned to the CFS group. Measures of trait and state anxiety (Spielberger Trait-State Anxiety

Inventory (33); STAIT and STAIS, respectively) and spider phobia (Fear of Spider Questionnaire; FSQ

(34)) were taken prior to participation and did not differ between the groups (Table S1). The experiment

was approved by the Institutional Review Board of the Icahn School of Medicine at Mount Sinai. All

participants provided written informed consent and were financially compensated for their participation.

12

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2018. ; https://doi.org/10.1101/505545doi: bioRxiv preprint 

https://doi.org/10.1101/505545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimental procedure

Participants  viewed  the  stimuli  monocularly,  through  a  mirror  stereoscope  (StereoAids,  Australia)

placed at a distance of 45 cm from a 17-inch Dell monitor. The CSs (schematic low-contrast images of

spiders), presented to the left eye only, were suppressed from awareness in the CFS group: while the left

eye saw them, the right eye was presented with "Mondrians" - arrays of high contrast, multi-colored,

randomly generated rectangles alternating at 10 Hz. Both the CSs and the CFS masks were flanked by

identical textured black and white bars, to facilitate stable ocular vergence. The no-CFS group viewed

identical CSs (also presented monocularly), but with no Mondrians presented to the other eye.

The experiment consisted of 16 acquisition trials followed by 16 reversal trials. One of two spider

images  was  presented  on  each  trial.  The  spider  images  were  schematic  and  had  similar  low-level

features. During acquisition, spider A always terminated with a shock and spider B never did. Reversal

occurred halfway through the experiment: spider B now terminated with a shock and spider A did not.

The spider stimuli were presented for 6 s each in pseudorandomized order. One of four possible trial

orders was used for each participant. Orders were generated by imposing specific constraints on the trial

order, such that the first trial was always reinforced and no more than two of the same trial type ever

occurred consecutively.

Trial order and spider identity were counterbalanced across participants. To assess the effectiveness

of the awareness manipulation (35), 1 s after the offset of every CS participants were shown the question

"Which  seen?"  (1 = flower,  2  =  spider;  notably,  flowers  were  never  shown,  meaning the  question

addressed  detection  rather  than  discrimination  as  it  could  be  answered  correctly  even  with  a  brief

glimpse). This was followed by the question "How confident?" (1 = guess to 3 = sure; participants were
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instructed to indicate how confident they were of the flower/spider answer they had just given). Both

questions were presented binocularly (1.5 - 2 s each, during which responses had to be given by pressing

number keys on a standard keyboard). The second question was followed by an 8 to 10 s inter-trial

interval.

Psychophysiological stimulation and measurement

Mild electric shocks were delivered using a Grass Medical Instruments SD9 stimulator and stimulating

bar electrode attached to the participant’s right wrist. Shocks (200 ms; 50 pulse/s) were delivered at a

level  determined  individually  by  each participant  as  "uncomfortable  but  not  painful"  (maximum of

60V), during a work-up procedure prior to the experiment. 

Skin conductance responses (SCR) were measured with Ag-AgCl electrodes, filled with standard

isotonic NaCl electrolyte gel, and attached to the middle phalanges of the second and third fingers of the

left hand. SCR signals were sampled continuously at a rate of 200 Hz, amplified and recorded with a

MP150 BIOPAC Systems skin conductance module connected to a PC.

Analysis of physiological responses

Model-based analysis

We estimated SNA from SCR data with a model-based variational Bayes approximation (19), inverting

a forward model that describes how (hidden) SNA translates into (observable) SCR. A unit increase in

SNA corresponds to an increase in SCR of 1 micro Siemens. The model assumes that the observed SCR

can  be  decomposed  into  different  components  including  anticipation,  evocation,  and  spontaneous
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fluctuations, each of which are generated by bursts of SNA driven by changes in sympathetic arousal.

The generative (forward) model thus describes how sympathetic arousal, the physiological measure that

is taken as an index of the psychological process of threat, translates into sudomotor nerve bursts which

then  generate  the  observable  SCR (19).  Using Bayesian  inference,  the  forward  model  can  then  be

reversed in order to estimate the most likely underlying SNA given the observed SCR:

(1)

where the most likely parameter vector Θ (corresponding to the SNA) given the observed outcome  y

(corresponding to the SCR) is given by the prior estimate of Θ weighted by the likelihood of y given Θ.

Solving this equation involves integration over the model evidence p(y) which is analytically hard to

compute (and possibly intractable). This can be resolved by replacing this integration problem by an

optimization problem, which can be approximated with Variational Bayes procedures (36), where the

log of the model evidence can be framed as the sum of the Kullback-Leibler divergence and the Free

Energy. By maximizing the Free Energy the Kullback-Leibler divergence is minimized, and a lower

bound to the log model evidence can be derived iteratively.

The  SNA  estimates  were  computed  using  previously  developed  software  package  PsPM  (19)

implemented in MATLAB R2016b (The Mathworks Inc, Natick, MA, USA). The statistical analyses

were conducted with the R software (37) (R version 3.4.2 (2017-09-28)) and the libraries lme4 (38) and
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lsmeans  (39).  Welch’s  t-tests  were  used  instead  of  two  sample  t-tests  when  groups  had  unequal

variances.

Reversal Learning Index

An estimate of SNA was obtained for each trial.  We expected Spider A to evoke greater SNA than

Spider B during the acquisition phase, and Spider B to evoke greater SNA than Spider A during the

reversal phase. The strength of reversal learning can thus be quantified by calculating, separately for the

acquisition and reversal phases, the difference between the average SNA evoked by each spider. To

quantify the degree of reversal (which is formally equivalent to the interaction of phase and stimulus),

the reversal learning index was calculated by subtracting the difference between mean SNAs evoked by

each spider during reversal from the difference during acquisition (the larger the index, the greater the

magnitude of reversal learning):

(2)

To formally test for group differences in the strength of reversal learning, we computed a linear

mixed model using the lme4 library in R. We used the skin conductance response (converted to a model-

based measure of sudomotor nerve activity, SNA) as the dependent variable and entered group (CFS,
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no-CFS), stage (acquisition, reversal), and spider (spider A, spider B) as well as a continuous variable

for  trial  (to  account  for  habituation)  as  predictors.  The random structure  of  the  model  included  an

intercept and slopes for stage and spider.

Assessments of perceptual awareness

Perceptual awareness index

To characterize participants’ reported awareness of CSs, each trial was assigned a perceptual awareness

score,  defined  by  a  combination  of  detection  and  confidence  responses:  Correct  answers  with  a

confidence  rating  of  1  (guess)  and  incorrect  answers  irrespective  of  confidence  were  assigned  an

awareness score of 0; correct answers with a confidence rating of 2 (medium) were assigned a score of

0.5, and correct answers with a confidence rating of 3 (high) were assigned an awareness score of 1. A

perceptual awareness index was calculated for each participant by averaging awareness scores across all

trials.

Stimulus-response association patterns ("tracking")

We also assessed response patterns across trials, to see whether participants were able to track stimuli

with their  responses,  accurately discriminating the images despite  not being able  to label  them. We

plotted individual trial-by-trial responses to the question "Which seen?", overlaid on the trial-by-trial

presentation of spiders (spider A, spider B; Figure S1A). We then calculated the number of consecutive

"hits", defined as the number of consecutive trials where these two time-courses were either identical or

consistently in opposition, suggesting that there was a possible association between the stimulus and the
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response during those trials. The probability of such consecutive hits occurring by chance alone can be

derived as follows:

Let p = 0.5 be the probability of a hit, k the number of consecutive hits, n the number of trials left, i

the number of consecutive hits already observed; the chance of observing  k consecutive hits for the

remaining n trials can then be formulated as a recursive problem: 

(3)

which can be solved analytically with dynamic programming or recursion. Trivially, fp, k(k, n) = 1 for n

≥ 0 since k consecutive hits have already been observed, and fp, k (i, n) = 0 for k − i > n since there are

not enough trials left to observe k consecutive hits. 

For example, assuming we want to know how likely it is to observe k = 8 consecutive hits within n =

32 trials given p = 0.5, i.e., f0.5, 8 (0, 32), we find that this yields a probability of 0.050.

Alternatively, the probability can be derived by simulation for all possible numbers of consecutive

hits within 32 trials (i.e., from 1 to 31). For each possible number, we thus also simulated 105 draws of a

binomial distribution and calculated the average probability of that number of hits being consecutive. As

can be seen in Figure S1B, the result for 8 consecutive hits (0.04991) was very close to the analytical

solution. Fifteen participants showed evidence of tracking the spiders or the shocks with their responses

(8 or more consecutive hits); notably, 3 of these participants appeared to have a perceptual awareness
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index of zero. We thus adjusted our subsequent analysis with an additional binary covariate, indicating

whether participants did or did not show 8 or more consecutive hits.

Comparing learning and expectation-based models

The Rescorla-Wagner model (22) describes how the prediction for each trial is updated according to a

prediction error and learning rate:

(4)

where  xn is  the  conditioned  stimulus  on trial  n (Spider  A or  Spider  B),  and δn is  the  punishment

prediction error that measures the difference between the expected and the actual shock (rn) on trial n.

The learning rate α for the value update is a constant free parameter. The value for the CS not observed

on trial n remains unchanged. To derive the best fits for the Rescorla-Wagner model, we assumed that

V0 = 0.5, reflecting the assumption that getting a shock or not was equally likely for the first trial.

For the alternative trial-sequence learning model, we assumed that a participant expecting a strict

sequence  of  alternating  trial  types  (shock/no  shock  or  vice  versa)  would  update  this  expectation

according to the actually encountered trial types and a constant learning rate:
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(5)

where  V'n+1 is the expected trial type switch at trial  n+1 (if  V'n+1 is larger than 0.5, a trial switch is

expected), α' is the learning rate, and δ'n is the prediction error. The prediction error corresponds to the

difference between the actual trial type switch for trial  n (r'n; coded as one for a trial type switch and

zero for an equal trial type) and the expectation for trial n. A changing trial type for trial n was tracked

by τn, which was one if the preceding trial was zero and zero if the preceding trial type was one. To map

these expectations onto expected values, we assumed that

(6)

where the expected value for trial  n+1 was calculated according to whether a trial  type switch was

expected (V' > 0.5) or not. 

We performed a formal model comparison between the conventional Rescorla-Wagner model and

the trial switch model for our data set (Figure S2), using maximum likelihood estimation and non-linear

optimization  (implemented  with  the  fmincon  function  in  MATLAB R2016b  (The  Mathworks  Inc,
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Natick, MA, USA). Using the log likelihood, we calculated the Bayesian Information Criterion (BIC) to

compare the two models as follows:

(7)

where n is the number of data points, k is the number of regressors, and K̂  is the maximized value of the

likelihood function.
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Figures and Tables

Figure  1:  Schematic  description  of  experimental  design  and  procedure.  In  each  trial  of  the
acquisition phase, participants were presented with one of two stimuli (schematic pictures of spiders,
presented monocularly for 6 sec and suppressed from awareness by a CFS mask shown to the other eye).
One image (spider A) always terminated with a mild electric  shock to the wrist,  whereas the other
(spider B) never did. Halfway through the experiment, with no warning, the contingencies flipped and
the reversal phase began: the formerly safe stimulus (spider B) now predicted the shock, and the old
threat-associated one (spider A) was now safe. Each spider was shown 8 times in each phase. Trial order
was pseudorandomized (see Materials and Methods) and spider identity (A and B) was counterbalanced
across  participants.  To assess  the  success  of  the  awareness  manipulation,  participants  answered the
questions "Which seen?" (1=flower, 2=spider) and "How confident?" (1=guess to 3=sure), presented
binocularly (1.5 - 2 s each), beginning 1 s after the offset of every CS, and followed by an 8-10 s inter-
trial  interval (the questions are only shown here for the first depicted trial,  but were repeated in all
trials). Participants who underwent the same procedure without CFS were shown identical CSs, but the
CFS mask was absent.
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Figure 2: Physiological reversal learning. A. Time courses reveal reversal of threat responses with and
without continuous flash suppression. Data points represent trial-wise mean responses to spider A (the
CS+  during  acquisition)  and  spider  B  (the  CS-  during  acquisition).  Both  groups  showed  reversal
learning,  as  indicated  by  greater  responses  to  Spider  A  during  the  acquisition  phase  and  greater
responses to Spider B during the reversal phase. Error bars represent standard errors. B. Mean reversal
learning index for  each group.  Error  bars  represent  95% confidence  intervals,  indicating  that  the
interaction  of  stage  and  stimulus  and  thus  the  magnitude  of  reversal  learning  in  both  groups  was
significantly greater than zero. C. Heightened anxiety is associated with impaired reversal learning
under  CFS.  A  negative  correlation  between  baseline  anxiety  measures  and  the  strength  of  threat
reversal learning is evident for state and trait anxiety. Blue lines show linear fits of each score to the
reversal  index, and ribbons around lines indicate  bootstrapped 95% confidence intervals  around the
estimate.  Abbreviations: STAIS/STAIT,  state/trait  anxiety  subscale  of  the  Spielberger  State-Trait
Anxiety Inventory; FSQ, Fear of Spider Questionnaire, ~, P < .1; *, P < .05.
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Figure 3: Characterizing the relation between perceptual awareness and reversal learning in the
CFS group. A. Correlation between the awareness index of even and odd-numbered trials. Each
data  point  represents  an  individual  participant.  The  strong  positive  correlation  between  these
independent measures of awareness demonstrates that individual participants’ awareness ratings - even
those with extreme values of zero or one - are unlikely to be due to measurement noise. For illustrative
purposes, the color scheme marks all participants with an awareness index of 0 in even trials in red (UA,
unaware,  N = 27) and classifies the rest of the CFS group in 3 tertiles (T1-T3). Note that some data
points  overlap.  B. Reversal  learning plotted  against  perceptual  awareness  for individual
participants, for data obtained from even-numbered trials. The color scheme is the same as in Panel
A. C. Reversal learning plotted against perceptual awareness for individual participants, for data
obtained from odd-numbered trials. Individual participants are marked with the same color as in the
previous panels; the overall distribution of participants is highly similar across panels. This suggests that
two independent measures of awareness (even and odd trials) showed very similar results, indicating
that  the overall  awareness index was unlikely to  be influenced by extreme values that  were due to
measurement noise. D. Reversal learning as a function of perceptual awareness in the CFS group,
using data pooled from all trials. The intercept, indicating the magnitude of reversal learning in the
absence of awareness, is positive and significantly different from zero.  E. Reversal Index intercepts
and their 95% confidence intervals in a series of regression models. Model 1 depicts the intercept
(the value of the reversal index when the awareness index equals zero) shown in Panel D. Model 2
shows the intercept  when the regression model includes STAIT scores in addition to the perceptual
awareness index. Model 3 regresses the reversal index onto the perceptual awareness index, STAIT and
tracking scores. (Excluding the potential outlier in the top left corner of panel D weakens significance of
the intercept in model 1, P = 0.07; the intercepts of model 2 and 3 remain significant after removal of
this outlier). Blue lines show linear fits, and ribbons around lines indicate bootstrapped 95% confidence
intervals around the estimate.
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Model Predictor Beta SE t P
1 Intercept 0.3 0.2 2.1 0.035
1 Awareness index -0.1 0.4 -0.4 0.692
2 Intercept 1.4 0.5 3 0.004
2 STAIT 0 0 -2.3 0.024
2 Awareness index -0.2 0.4 -0.5 0.596
3 Intercept 1.5 0.5 3.1 0.003
3 STAIT 0 0 -2.4 0.021
3 Tracking score -0.3 0.3 -1 0.318
3 Awareness index -0.2 0.4 -0.5 0.597

Table 1: Regression coefficients for all awareness index models. Reversal learning was the dependent
variable  in all  models.  Model 1 included an intercept  and the perceptual  awareness index; model  2
additionally included STAIT scores; model 3 additionally included STAIT and tracking scores.
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