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Abstract

Studies of human mitochondrial (mt) genome variation may be undertaken to investigate the human history
and natural selection. By analyzing nucleotide co-occurrence over the entire human mt-genome, we have
developed a network model to describe human evolutionary patterns. Using 7,424 unique polymorphic sites,
we found evidence that mutation biases at second codon position and RNA genes were critical to producing
continental-level heterogeneity among human subpopulations. Further, the analysis highlighted richer co-
mutation regions of the mt-genome and thus provided evidence of epistasis. Specifically, a large portion
of COX genes co-mutate in Asian and American populations whereas, in African, European and Oceanic
populations, there was greater epistasis in hypervariable regions. Very interestingly, this study demonstrated
hierarchical modularity as a crucial agent for a nucleotide co-occurrence network make-up. More profoundly,
our ancestry-based nucleotide module analyses showed that nucleotide co-changes cluster preferentially in
known mitochondrial haplogroups. It was also conceived that contemporary human mt-genome nucleotides
most closely resembled the ancestral state and very few of them were ancestral-variants. Overall, these
results demonstrated that subpopulation based factors such as intra-species evolution do exert selection on
mitochondrial genes by favoring specific epistatic genetic variants.

Keywords: Human mitochondria, Genome evolution, Co-occurrence network, Epistasis, Hierarchical
modularity

Background

Genetic polymorphism varies among species and within genomes and has important implications for the
evolution and conservation of species. Polymorphism in the mitochondrial (mt) genome is routinely used to
trace ancient human migration routes and to obtain absolute dates for genetic prehistory [1]. The human mt-
genome is very small (16.6 kb), maternally inherited, evolves in both neutral and adaptive fashion, and shows
a great deal of variation as a result of divergent evolution. An absence of recombination within mt-genome
provides distinct polymorphic loci which have been used to define human genealogy by defining mt-genome
haplogroups [1]. These haplogroups are formed as a result of the sequential accumulation of mutations
through maternal lineages. Since mitochondria are essential to cellular metabolism, the mt-genome variation
has been associated with multiple complex diseases including Alzheimer’s disease in haplogroup U [2],
idiopathic Parkinson disease within JT haplogroup [3] and age-related macular degeneration with the JTU
haplogroup cluster [4]. Due to population migration, distinct lineages of mt-genome are associated with
major global groups (African, American, European, Asian and Oceanic) raising the possibility that mt-
genome variation could contribute to the differences in disease prevalence observed among both ethnic and
racial groups [5].

Conventionally, analyses of mt-genome evolution have been focused on individual mutations, particularly
in describing haplogroups, to understand and predict ancestral behavior. These approaches effectively iden-
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tify single mutations. However, the evolutionary behavior of mt-genome often involves cooperative changes
within and between genes which are difficult to detect using haplogroup analysis. For example, correlated
mt-genome mutations were reported among different oxidative phosphorylation subunits which were found
to affect population specific human longevity [6]. Besides, cooperative activities of both mitochondrial
proteins and tRNA genes are critical for mt-genome evolution. The importance of co-mutational interac-
tions has been well documented in the genomics field [7, 8]. Increasing evidence suggests that interactions
among polymorphic sites may confer a cumulative association of multiple mutations with many diseases
[8]. Interactions among polymorphic sites have also effectively been used to infer ancestry and functional
convergence in the human populations using mt-genome co-mutations [9]. Commonly used methods include
tree ensembles, functional nodal mutations and single nucleotide polymorphism (SNP) based enrichment
[10]. Important information about mt-genome evolutionary behavior, which is contained in the correlated
changes between nucleotide positions both within genes and between genes, is not captured by these tech-
niques. Despite strong evidence that mt-genome variation plays a role in the development and progression
of complex human diseases, the mitochondrial genetic variation has been largely ignored in the context of
co-mutations and particularly the mechanisms by which these co-mutations occur [11, 12]. Investigation of
joint polymorphism effects can, therefore, improve the explanatory ability of genetics twofold. Firstly, the
interaction between two informative genomic positions to explain a part of the trait heritability. Secondly,
finding significant statistical links between mutations could provide strong indications of molecular-level
interactions that differ between different populations [13].

Complex network science revolves around the hypothesis that the behavior of complex systems can be
elucidated in terms of structural and functional relationships between their constituents employing a graph
representation [14, 15, 16, 17]. The basis of the current study is that genome positions can impact each other
and co-occur within genomes [18, 19]. The interaction between two or more genetic loci is referred here as
the co-occurrence of nucleotide positions. Herein, nucleotide positions are network nodes and if they co-
occur together with a co-occurrence frequency, they form an edge. Co-occurrence among a pair of nucleotide
positions is a ratio of frequency between a nucleotide pair co-occurring and nucleotides in a pair occurring
separately in a set of genomes. There are previous studies which have used genomic co-occurrences as a
basis of the evolution of human H3N2 and Ebola viruses [19, 20]. These viral genome models have identified
the co-occurring nucleotide clusters, apparently underpinning the dynamics of virus evolution since these
clusters were antigenic regions of the viral capsid proteins [19, 20]. In another study, Shinde et al. [18]
demonstrated the impact of codon position bias while forming nucleotide co-occurrences using human mt-
genome. These studies have considered perfect nucleotide co-occurrence as causing factor for co-mutations.
However, the role of the co-occurrence frequency in these studies remains unclear. Here, we thoroughly
examined a set of networks associated with a range of co-occurrence frequencies and chose a particular co-
occurrence frequency for further network construction. Whilst, pair-wise nucleotide co-occurrences can be
straightforwardly perceived, however, the identification of larger sized functional units is not straightforward.
Here, we used community detection algorithms to enumerate lists of modules formed within networks and
described the functional relationships among nucleotide positions forming these modules.

We set out to develop a comprehensive approach to understand mitochondrial diversity using mitochon-
drial co-mutations. To this end, we conducted a comparative analysis of 24,167 sequenced mitochondrial
genomes. The paper is organized as follows. In the first two sections, we described the level of diversity
observed among underlying subpopulations concerning polymorphic site variations in human mitochondrial
genomes. In the third section, we provided a simple framework to investigate co-mutations which are crit-
ical in underlying complex mitochondrial evolution. To this end, we constructed nucleotide co-occurrence
networks which were used to identify modules of co-mutations and also made their comparison with cor-
responding random networks. We found both similarities and crucial difference among networks under
consideration. In the fourth section, we identified local topological phenomena which were crucial agents for
genomic networks’ make-up. We listed down modules comprised of co-mutations and demonstrated that the
identified modules indeed correspond to ancestry based associations. Overall, revealing the importance of
co-mutational biases among different human subpopulations, our analysis identified local preferences which
were key agents in forming mt-genome epistatic interactions.
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1. Methods and Material

1.1. Acquisition of genomic data

We prepared an extensive collection of mitochondrial genomes of geographically diverse Homo sapiens pop-
ulations (Fig. 1) from the Human Mitochondrial Database (Hmtdb) [21]. All downloaded genome sequences
were in FASTA format. In total, the dataset comprised of 24,167 mitochondrial genome sequences from the
five world continents, including 3426 African (AF), 2650 American (AM), 8483 Asian (AS), 8060 European
(EU) and 1548 Oceanic (OC) genomes. Antarctica was excluded from the present analysis since no data was
available. These continents were termed as genome groups. It should be noted that these genome groups
are the multiethnic cohorts representing the range of admixture populations across the continent. A brief
description of all the genomes and their origin is provided in S1 File.

1.2. Construction of nucleotide co-occurrence networks

Nucleotide co-occurrence calculations were carried out on each genome group independently. For each
of these five genome datasets, we constructed primary nucleotide co-occurrence networks in which nodes
represent genome positions, and edges between nodes represent co-occurring genomic mutations. There
were total M primary nucleotide co-occurrence networks constructed for each genome group. Subsequently,
we constructed five final nucleotide co-occurrence networks for five genome groups using these primary
nucleotide co-occurrence networks. The methodology for constructing primary and final nucleotide co-
occurrence networks schematically represented in Fig 1B and also given as follows:

1.2.1. Primary nucleotide co-occurrence network

All the steps of primary nucleotide co-occurrence networks construction were explained as follows. (1)
Since the current study was based on the analysis of specific nucleotide position in mt-genome, we considered
genome sequence data that was already end to end aligned. (2) All non-variable genome positions within
samples of a genome group were removed. We were thus left with only the polymorphic genome positions.
The count of polymorphic sites (Np) was given in Table 1. (3) Using only polymorphic nucleotide positions,
we calculated the frequency of occurrence of all the nucleotide pairs f(z;y;) = N(x;y;)/M where, N(z;y;)
denoted the number of co-occurrence pairs (z;y;) at position (¢, j) and M denoted total number of samples
in a genome group. Consequently, we calculated the frequency of individual occurrence of single nucleotides
f(x;) = N(z;)/M and f(y;) = N(y;)/M where, N(z;) and N(y;) denoted the number of single nucleotides
at their respective positions ¢ and j [19]. (4) Co-occurrence of two nucleotides (Cr) at position (i,7) was
denoted as,

fziy;)?

fxa) f(y;)

For a particular co-occurrence frequency threshold here we termed it as network efficiency score (described
in the next subsection), we constructed primary nucleotide co-occurrence networks. A network can be
represented mathematically by an adjacency matrix (A) with binary entries.

1 if Cp;; >=
AU:{ A ©)

Crpij = (1)

0 otherwise

As each genome sequence has its own information of co-occurring genome positions, a total M primary
networks were generated for each genome group.

1.2.2. Final nucleotide co-occurrence network.

Each of M primary nucleotide co-occurrence networks possess information of statistically significance
edges. This simplest form of information was used to construct final nucleotide co-occurrence networks.
Specifically, we listed down unique edges from all M networks of a genome group which make a final
nucleotide co-occurrence network. The total of five final nucleotide co-occurrence networks was further used
for network analysis and community detection.
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Table 1: Data statistics and the properties of final nucleotide co-occurrence networks. Here, Np, N, N¢, (k), (C),
r, @ represent the co-occurrence frequency, number of disconnected components, number of variable sites, number of nodes,
number of connections, the average degree, the clustering coefficient and the assortativity coefficient. All five networks were
sparsed, disassortative and modular in nature. Network statistics of the largest connected component and the disconnected
components are given in S1 Table and S2 Table.

Network « Np N Ne (kY (C) T Q
AF 0.99970 3716 2310 13721 12 0.33 -0.36 0.51
AM 0.99959 3581 2412 30283 25 0.31 -0.61 0.22
AS 0.999854 5405 2293 32705 29 0.22 -0.18 0.21
EU 0.999760 4557 2456 47952 39 0.18 -0.62 0.30
ocC 0.998800 1565 1208 7304 12 0.54 -0.25 0.54

1.3. Selection of network efficiency score («)

Network efficiency score («) was used to filter a group of edges required for network construction. To
select an « value for each network, should require scanning of C'r values among all pairs of polymorphic
positions. To consider a network with Cr values of least 10~* precision would require the construction
of 24,167 * 10* networks in total, which would be a very intensive computational process. Therefore, we
performed statistical sampling on each genome group interdependently by selection analysis of m samples
from each M population. Sample size was determined by Cochran’s sample size formula [22] with critical
value (z = 1.96). As the population was finite, the sample size was corrected by Cochran’s adjustment [22].

1.4. Analysis of nucleotide co-occurrence networks

The degree of a node (k;), which can be defined as a number of edges connected to the node (k; =

Zj-vzl A;j). The clustering coefficient (C) is a measure of the extent to which nodes in a network tend
to cluster together. An average clustering coefficient of a network can be written as (C) = % Zivzl C;.
Another property of the network which turns out to be crucial in distinguishing the individual networks
was the assortative coefficient (1), which measure the tendency of nodes with the similar numbers of edges
to connect. The assortative coefficient, r, was defined as the Pearson correlation coefficient of degree
between pairs of linked nodes [23]. The value of r being zero corresponds to a random network whereas the
negative(positive) values correspond to dis(assortative) networks. For a stringent comparison, the precise
information of the number of nodes and edges of real-world nucleotide co-occurrence networks were used
to construct randomized networks. This comparison allowed to estimate the probability that a randomized
network with certain constraints has of belonging to a particular architecture, and thus assessed the relative
importance of different architectures. The randomized networks of size N and average degree (K) were
constructed using the Erdés Rényi random network model [24] by connecting each pair of nodes with the

. . K
probability (p) which was equal to %

1.5. Detection of module structures in the network

In recent years, numerous approaches were proposed to determine the modular organization of complex
networks wherein Girvan and Newman simplified graph-partitioning problems by introducing the concept
of modularity. Modularity is conceptualized as the most widespread quantity for measuring the quality of
a network partition, P. In its original definition [25], an unweighted and undirected network that has been

2NC

partitioned into communities has modularity (Q) as 53— Y cep 2o jec {Ai,j - } The indices i and

j run over the N nodes of the network whereas C runs over the modules of the partition, P. Modularity
calculates the number of edges between all combinations of nodes belonging to the same module and relates
it to the expected number of such edges for an equivalent random graph. Therefore, modularity assesses
how well a given partition incorporates the edges within the modules. We used the Louvain algorithm
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for community detection for our networks [26]. The Louvain method was a simple, efficient and easy-to-
implement method for identifying communities in large networks. The python package of Louvain algorithm
was used to enumerate module structures.

2. Results

2.1. Characterization of polymorphic sites

The starting point of our analysis was 24,167 sequenced mitochondrial genomes. We screened common
and independent polymorphic sites present among five genome groups. A total of 18,824 polymorphic sites
were screened from all the genome groups resulting in 7424 unique polymorphic nucleotide positions out
of 16,929bp genome size (43% as also reported by [18]). The number of polymorphic sites (Np) for each
genome group is summerised in Table 1 and Fig 2A. The number of independent polymorphic sites found
in each population was 13.9% (AS), 7.3% (EU), 5.4% (AF), 4.1% (AM) and 1.4% (OC). Alignment of
each genome against the Reconstructed Sapiens Reference Sequence (RSRS) showed the most and the least
diverged sequences have 73 and 22 polymorphic sites respectively (Fig 2B). The mean number of polymorphic
sites for each group was appromixely 50%, thus the extent of genomic diversity in each genome group was
similar (Fig 2B). We also assessed the contribution of each genome in providing the count of polymorphic
sites in an individual genome group by removing each time a single genome from a genome group and
calculating the number of polymorphic sites prescribed by the rest of genomes (Fig 2C). The minimum and
maximum contribution observed was one and ten unique polymorphic sites per genome respectively. More
than 99% of polymorphic sites in each genome group were contributed by individual genomes having 1-4
unique polymorphic sites (Fig 2C), suggesting a genome group with a higher number of genomes would
yield more polymorphic sites. However, the trend was not straight-forward (Table 1 and Fig 2C). When we
calculated the ratio of number of genomes in a genome group to number of polymorphic sites yielded, it
was observed that AM had the largest ratio (1: 1.35), followed by AF (1: 1.08), OC (1: 1.01), AS (1: 0.64)
and EU (1: 0.57). Overall, molecular sequence-based diversions concerning polymorphic sites were very well
conserved across genome groups as well as independently maintained within genome groups.

2.2. Classifying mt-genome Diversity

We evaluated the diversity in genetic regions of the mt-genome: 13 protein-coding genes, 22 tRNA
and two rRNA genes, four loci in the non-coding region and a few other non-coding positions dispersed
throughout protein-coding and non-coding region. To quantitatively assess this broad diversity, we examined
the observed polymorphisms among genes against gene size and possible substitutions that can arise at each
codon positions (Table 2).

2.2.1. Variations in Protein-Coding Genes

Considering only substitutions, 5,465 of 11,387 nucleotide positions (48%) located in protein-coding
regions (double counting few polymorphic sites detected in overlapping regions of two genes) were variable.
To understand the role of each codon position (CP), we broke the list of polymorphic sites down into
the individual CPs and compared these to the total number of possible changes at each position. It was
found that 60% of polymorphic sites was located at CP 3, 26% at CP 1 and 14% at CP 2. There was a
good correlation between the observed and the maximum number of possible changes at CP 1 in each of
the 13 protein-coding genes (r? = 0.7063; Fig 4). COX1 and ND/ had the lowest proportion of observed
polymorphic sites compared to all possible ones, and ATP6 had the largest proportion (Table 2). At CP
2 there was not only a smaller number of polymorphic sites but also a weak correlation (r? = 0.3692)
between the number of observed and possible changes at this position. In which COX1, NDj and ND5
had the smallest proportion of polymorphic sites and both ATP syntase genes, ATP6 and ATPS, has the
largest proportion of polymorphic sites (Table 2). Interestingly, there was a very strong correlation (r?
= 0.9986) among the observed, and the maximum number of polymorphic sites at CP 3 and all genes
unanimously showed high diversity at CP 3 (Table 2). Overall, both ATP synthase genes ATP6 and ATP8
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Table 2: Gene- and codon-wise polymorphisms among 13 protein-coding genes. The observed polymorphisms in
each of 13 protein-coding genes show mutational biases at codon positions. ATP genes contained the most polymorphisms. CP
2 showed fewer polymorphisms as compare to CP 1 and CP 3.

Gene Names (OMIM Ids) Gene (%) CP 1(%) CP2(%) CP 3(%)

ATP6 (516060) 69 69 51 88
ATPS (516070) 66 67 54 78
COX1 (516030) 41 25 11 88
COX2 (516040) a7 34 20 87
COX3 (516050) 50 39 26 86
CYB (516020) 55 49 26 90
ND1 (516000) a7 34 21 87
ND2 (516001) 46 36 19 84
ND3 (516002) 41 33 18 73
ND/ (516003) 42 27 13 87
ND/L (516004) 39 27 8 82
ND5 (516005) a7 36 17 88
ND6 (516006) a7 32 21 88

have demonstrated high mutation ability at all three CPs (Table 2) which corresponds to a higher gene
diversity among all protein-coding genes.

Out of 5465 polymorphic sites, 4670 (85%) have two alleles, 741 (14%) have three alleles, and 54 (1%)
have four alleles (Fig 2D). Moreover, when we screened polymorphic sites with two alleles, it turned out that
95% mutations were transitional, giving a transition: transversion ratio of 1:17.2, indicating transversion
mutations are more likely to occur than transitions. The dominance of transition substitutions in the
evolution of animal mt-genome (not just human mt-genome) has long been appreciated [27].

2.2.2. Variations in the control region, RNA genes and noncoding sites inside the coding region

26.8% of polymorphic sites were observed in the non-coding region (including tRNA), dispersed through-
out the 5539bp region. Out of 1502 polymorphic sites among non-coding DNA, 1161 positions have two
alleles, 280 positions have three alleles, and 61 positions have four alleles (Fig 2D). The ratio of observed
transitions and transversions was 1: 8.2 which was much smaller than protein-coding genes. When com-
paring observed and possible changes at non-coding positions in each of the seven non-coding regions, a
good correlation (r? = 0.8296; Fig 4F) was obtained with HVS-I having the highest proportion of observed
polymorphic sites. For each non-coding region, the number of polymorphic sites was 26% in 16sTRNA;
27% in 12stRNA; 44% in D-loop; 47% in noncoding sites inside the coding region; 59% in HVS-II; 67% in
HVS-III; and 68% in HVS-I. Furthermore, out of 490 polymorphic positions among all tRNAs, 434 posi-
tions have two alleles, 48 positions have three alleles, and only eight positions have four alleles (Fig 2D).
Similarly to the non-coding region, the ratio of translations and transversions was 1: 8.64. Given that the
sizes of the various tRNAs are quite similar, varying only from 61 to 84 bp, there were some interesting
differences in variability between the tRNA genes. The genes for the tRNAs Met, Tyr, Glu, Leu and Asn
showed the fewest polymorphisms (less than 15), whereas all the other tRNAs showed between 16 and 33
polymorphisms, except threonine Thr, which had 49 polymorphisms (Fig 4E). This observation renders the
relationship between observed polymorphisms and size totally uneven (r? = 0.05).

2.8. Evolution of mitochondrial co-mutations

Beyond simply measuring co-occurrence of these polymorphic sites, we evaluated the degree of correlation
among pairs of polymorphic sites within the context of genomic associations. The selection of a co-occurrence
frequency threshold («) was a critical task. As zero « value would give co-occurrence among each mutation
with all others whereas a equal to one would give only those pairs of mutations which have co-occurred
perfectly in a genome group. In other words, zero a value would result in the globally connected network
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(Fig 3B) and o = 1 would result networks with many globally connected small sub-graphs (Fig 3E). Even
though the « value attended a value as high as 0.999, networks remained very densely connected (Fig 3C).
Therefore, it was reasonable to propose a criterion to select an « value, otherwise generated networks would
be saturated structures holding no information about nucleotide co-occurrences. In order to tackle this, we
plotted (k) and Npcc against all the a values. We observed a surprising network phenomena where at a
particular « value, (k) is small whilst Npcc was large. At this point, networks were sparser as compared to
previous « values (Fig 3D). By a sparse network, we would mean that the majority of the elements of the
adjacency matrix were zeroes. After attending this « value, the network breaks into several disconnected
components.

Having this notion, we chose a particular a value for each genome group and constructed primary
nucleotide co-occurrence networks. Although the a value applied to each genome group was very high (close
to 1), this value was sufficient to capture more than 50% of the polymorphic sites in each genome group
(except in AS; S4 Table and S2 Fig). We believed the « shortlisted evolutionarily important interactions
among polymorphic sites as it preserved statistically important network edges. Further, it should be noted
that « values for each genome groups were different (Table 1). This observation is intuitive since the number
of polymorphic sites was different and therefore a preference for nucleotide co-occurrences should be different
in each genome group.

2.8.1. Co-mutations displayed intra- and inter- genomic loci adaptation

Analysis of pairs of co-mutations provided an essential understanding of the relationship between two
independent genome locations. Co-mutations can be formulated within a particular mitochondrial functional
region (intra-loci) or between two functional regions (inter-loci). We compared co-occurrence configuration
present among nine mt-genome functional regions. The number of polymorphic sites was normalized by the
total count of co-occurring polymorphic sites in a genome group, and this information was stored in the
co-occurrence configuration matrix and used to construct Circos plots (Fig 5). Nine mt-genome functional
regions, comprising of four oxidative phosphorylation (OXPHOS) complexes, two RNA and three non-coding
regions, displayed different preferences to co-mutate with other functional regions. In particular, OXPHOS
complexes I, IV and HVS functional regions have a large contribution to the overall co-mutation configuration
in each network. It was not surprising as these functional regions had large genomic lengths. Further, to
know more on how each functional region has contributed in forming co-mutations, we plotted the count of
co-mutations in each functional region against the corresponding functional region size for intra- and inter-
loci (Fig 5). It was observed that co-mutations among functional regions were evenly distributed among
both intra- and inter- loci in AM and AS. However, intra-loci were more evenly distributed as compared to
inter-loci. Interestingly, we reported few functional regions found to be outside the 95% confidence intervals
in both intra- and inter-loci (Fig 5). For intra-loci, rRNA was an outlier in all populations, HVS in AF and
OC whereas COX in AM and EU. For inter-loci, HVS was an outlier in AF, EU, and OC whereas COX in
AM and AS. Apart from that ATP and miscellaneous regions were outliers in AM, tRNA in AS and rRNA in
OC. These statistical outlier regions should have an assertive evolutionary role in a population. To explore
this further, we studied how these groups were separated from each other. We first calculated Frobenius
distances among each pair of five co-occurrence configuration matrices and then performed hierarchical
clustering of the calculated pairwise Frobenius distances. A dendrogram clearly showed the separation of
five genome groups into two main branches i.e. {AM, AS} and {AF, EU, and OC} (Fig 6).

To investigate global level co-occurrence preferences between functional regions, we analyzed unique
co-mutations from all the genome groups. Fewer co-mutation pairs were formulated among intra-loci than
those of inter-loci. This relationship between co-mutations and the spatial proximity would occur to be
natural in mt-genome since all 13 protein-coding genes formed heavily interacting OXPHOS complexes
[28, 29]. However, co-mutation pairs formed among OXPHOS complex I or ND genes which make 38% of
total mt-genome, participated in 31% of inter-loci co-mutations but only 13% of intra-loci co-mutations.
Both D-Loop and all three hypervariable regions displayed a tendency to co-mutate with almost all other
mt-genome loci (Fig 5). The rTRNA genes make-up 15% of total mt-genome but they participated in only
9% of co-mutating sites. All 22 tRNA genes which make 9% of total mt-genome participated in 10% of co-
mutating sites. Overall, co-mutations dispersed among mt-genome functional regions showed that formation
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of co-mutations was driven mainly by local adaptive forces among each group. There are also preferences
among functional regions to formulate inter- or intra-loci co-mutations.

2.8.2. Co-occurrence networks exhibited similar network properties

Pair-wise nucleotide co-occurrences were not sufficient to fully reveal the underlying structure of function-
ally related nucleotide positions. As described in Fig 1, a nucleotide co-occurrence network was constructed
for each genome group where polymorphic sites forming co-mutations constituted the nodes, and the edges
represented co-occurring nucleotide positions. The number of nodes and edges forming final nucleotide
co-occurrence networks were found to be different for each genome group (Table 1). This observation was
intuitive since the formation of co-mutations is totally determined by the number of polymorphic sites
formed and the significance of their relationships within each group. To get an overview of the network-level
organization of the genomic interactions, the topological properties of nucleotide co-occurrence networks
were analyzed. It should be noted that selected networks were sparsed which means they have a very
small average degree (Table 1). Furthermore, we investigated two essential network topological properties
to understand local interactions in individual networks. All the networks exhibited high average clustering
coefficient, (C') values (Table 1), suggesting that the nodes of these networks are densely connected. All five
networks also displayed a highly negative value of the degree-degree coefficient (r) (Table 1). The negative
r value suggested that networks were dis-assortative where high degree nodes, on average, tend to attach to
low degree nodes [23]. Many paths between nodes in these networks were dependent on high degree node(s).
Many biological and social networks displayed negative r value, suggesting that failure of a high degree node
in a disassortative network have more impact on the connectedness of the network [23, 15, 30].

Overall, nucleotide co-occurrence networks have shown both the properties of high clustering and the
presence of dissortative nature. This observation suggests the presence of dense subgraphs within the
network and the presence of hierarchical structures. To explore more about the local interaction patterns
in nucleotide co-occurrence networks, we investigated module structures within these networks.

2.4. High cohesiveness of nucleotide co-occurrence communities

This work is a first attempt to uncover the hierarchical organization of nucleotide co-occurrence networks.
The major challenge for identifying modules in a hierarchical organization is to decide the depth to decompose
network, as the Louvain algorithm can fragment networks and subsequently modules until it finds the
greatest partition. In order to avoid large numbers of smaller modules (size 2), the size of the second largest
connected component was used to decipher submodules among each hierarchy of parent modules. The size
of the second largest connected component was 11, 8, 9, 6 and 12 for AF, AM, AS, EU, OC genome groups
respectively. We calculated the modularity coefficient (Q) for five final nucleotide co-occurrence networks
and also for corresponding random networks (Table 1). Q value was clearly reduced in the randomized
networks, relative to the original data, indicating that our results on real nucleotide co-occurrence networks
were not trivially reproduced in random networks. A high Q value will manifest if networks are modular
in nature. There were 557, 571, 552, 622 and 227 modules obtained for AF, AM, AS, EU, and OC genome
groups respectively. The full list of modules is provided in S2 File. In these networks, small sized modules
(size less than 20) were predominant alongside one or two large sized modules i.e. AF (size of 119), AM
(270), AS (217 and 216), AS (294) and OC (104) (S4 Fig). Interestingly, large sized modules were only
comprised of polymorphic sites from non-coding regions (except in OC). Similarly to co-mutations, we also
noted that polymorphic sites among each module could be from any of mt-genome loci. For example, in OC
population module 59 had polymorphic sites only from COX1I gene, whereas module 3 had all polymorphic
sites from different genes (S2 File). We noted that protein-coding functional regions have a predominant role
in the formation of modules (S5 Table and S6 Table). Particularly, ND and COX participated in >65% and
>40% of modules in each of five networks, respectively. Additionally, we also observed a total of 391 modules
out of a total of 2529 modules where all polymorphic sites in the module were from a single functional group.
Such mono-functional region modules were also prevailed by ND and COX functional regions, 70% and 14%
of total mono-functional region modules, respectively (S6 Table).
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Table 3: Statistics of modules and ancestral lineage polymorphism. Count of modules among each genome group and
percentage of nodes participating in those modules (brackets) is given. Mixed modules observed to the confined of the largest
size modules.

AF AM AS EU ocC
Modules
Ancestral allele modules 501 (79%) 529 (76%) 488 (69%) 583 (75%) 205 (86%)
Ancestral-variant modules 26 (4%) 12 (2%) 11 (1%) 12 (1%) 12 (5%)
Mixed modules 30 (17%) 30 (22%) 53 (30%) 27 (24%) 10 (9%)
Total modules 557 571 552 622 227
Ancestral lineage polymorphism
ALPS! 163 192 136 177 122
Modules with atleast one ALPS 45 60 40 49 70
Modules with >1 ALPS 16 25 16 13 24
Modules with all ALPS 8 10 5 5 10

L Ancestral lineage polymorphic sites (ALPS)

2.5. Modules of co-occurring polymorphic sites indicated ancestral relationships

To investigate if the modules identified from the analysis of the network structure were evolutionarily
related, we examined polymorphic sites in the individual modules with ancestral alleles from RSRS. If a non-
RSRS allele was present in more than 1% of samples in a genome group, we termed it an ancestral-variant
allele. Here, we used conventional definition of SNP to define ancestral-variant allele. Thus, we assigned
ancestral-variant information to all of the network modules and noted three distinct types of modules (also
schematically showed in S5 Fig). In the first and most common (more than 90% of total modules), all
polymorphic sites were closely related to ancestral alleles (Table 3) and we termed them ancestral allele
modules. All the polymorphic sites in these ancestral allele modules had ancestral alleles (or non-RSRS
alleles present in < 1% of samples). Ancestral alleles were reported to be common throughout human mt-
genome tree [31] and were also observed in large numbers in our genome group data (Table 3). In the second
type of module, all the polymorphic sites were ancestral-variant alleles. We termed them as ancestral-variant
modules and were of our particular interest. Ancestral-variant modules were observed the least out of three
types of modules, both in terms of module count and the number of polymorphic sites present in these
modules (Table 3). In the third type of module, polymorphic sites in a module were a mixture of ancestral
and ancestral-variant alleles and we termed them mixed modules. The polymorphic sites among these
modules were hypothesised to be recently diverged. Mixed modules comprised of the large-sized modules,
therefore even though the module count was found to be lower, these mixed modules still possessed a higher
number of nodes (Table 3). Full lists of these modules were mapped it to all known haplogroups and showed
that each polymorphic site had contributed to one or many haplogroups. Although this observation was
intuitive since every new polymorphism in the mt-genome have been successfully characterized in defining
haplogroups [31], this mapping has given valuable information that entire module structure can be related
to a single mt-genome haplogroup. For a complete list of modules and corresponding haplogroups for each
polymorphic site in a module, see S2 File. Further, we showed the relationship among modules corresponding
to ancestral haplogroup lineage markers (or top-level haplogroups). Thus, we characterized an entire list
of modules for whether their polymorphic sites were related to ancestral lineage markers. Information of
ancestral lineage markers was taken from the Mitomap database, and polymorphic sites among each module
were mapped to ancestral lineage markers. Out of the total 350 ancestral lineage markers, most of them were
present in the American population, followed by European, African, Asian and Oceanic populations (Table
3). These ancestral lineage markers were also observed to participate in the formation of entire module
structures and there were a total of 38 such modules structures obtained (Table 3; File S1). Out of the
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observed 38 modules, where all nodes were ancestral lineage polymorphic sites, 23 were ancestral-variant
modules, 13 were ancestral modules, and two were mixed modules. Since all polymorphic sites among
these 38 modules were the ancestral lineage markers, it would be reasonable to say that not only sub-level
haplogroups but also top-level haplogroup markers have shown a tendency to be associated to each other.

3. Discussion

We used comparative genome analysis to investigate 24,167 mt-genomes and devised a network model
comprising pairs of co-occurring nucleotides over the length of the human mt-genome. The method presented
here can provide a new perspective on epistatic mutation as well as serving as a comparative tool for intra-
species evolution. Our study showed the presence of heterogeneity in both epistatic mutations and functional
modules across investigated genome groups.

3.1. Polymorphism among mt-genome loci

Mitochondrial DNA is one of the most preserved genomes which is highlighted by the observation that
maximum divergence from RSRS was only 73 bp (~ 0.005% of mt-genome) and a large proportion of mt-
genome polymorphic sites possessed as few as two alleles. However, our study also reported as high as
43% mt-genome positions were at least once mutated. These observations strongly suggest that although
individual mt-genomes have very few divergences, a large number of genome positions have been utilized to
provide intra-species separation. Furthermore, the comparison of observed polymorphisms with gene size
clearly showed two essential features in providing maximum functional level diversity with the minimum
level of genomic changes. First, genetic conservation at CP 2 but not at CP 3, was key to provide a structural
diversity of mt-genome complexes. Second, the restriction of mutations in structurally important genes of
tRNA and rRNA. These two observations of biases against mutations at CP 2 and RNA genes were earlier
reported by Pereira et al. with 5140 human mt-genome [32]. The similar positive selection of CP 2 and
tRNA genes was also reported among mitochondrial genomes of other primates including Macaca, Papio,
Hylobates, Pongo, Gorilla, and Pan whereby the constraint of selection was determined in each lineage
by the ancestral state of each codon position [33]. Among non-coding genes, all three HVS regions have
displayed a higher level of polymorphisms whereas genes of rRNA and tRNA have shown lower levels of
polymorphism. Our study, apart from providing the detailed enlisting of diversity present among five genome
groups, reiterated that both codon level mutation bias and restriction of mutations among RNA genes were
more evident at the subpopulation level which earlier reported to be at global level. Furthermore, given
the ubiquitous variation in mt-genome, genetic flexibility may have evolved as a mechanism to maintain
OXPHOS under a range of environments.

3.2. Evolution of co-mutations

Despite the clear and reasonable biases against polymorphisms at CP2 in the protein-coding genes, our
analysis indicated similar other biases were also evident. Firstly, our results with intra- and inter- loci
adaptations clearly suggested the dominance of polygenic mutations in human mt-genome. On a protein
level, the richness of co-ordinated mutations between mitochondrial complexes will affect protein-protein
interactions within individual OXPHOS complexes as well as supercomplex interactions between electron
chain transport complexes I, ITI, and IV in the respirasome. The communication among OXPHOS complexes
is driven by a highly constrained selection [34] and also by protein-protein interactions of Mito-interactome
[35]. Second, our analysis highlights regions of the mt-genome rich in co-mutations and thus provides
evidence of epistasis. In particular, a large portion of COX genes co-mutate in AS and AM populations
whereas in AF, EU and OC populations, there was greater epistasis in functional regions of HVS. OXPHOS
complexes consist of both nuclear and mitochondrial proteins, and nuclear-mitochondrial interactions are
known to contribute epistatically in shaping mitochondrial evolution. However, epistasis has also been
observed among mitochondrial genes, for example, the joint effect of genetic variants has been reported in
Han Chinese family [36]. These two point mutations are known to act synergistically causing migration of
gonadotropin-releasing hormone neurons [36]. Also, epistatic phenomena have been widely observed among
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mitochondrial tRNA genes guided by homoplasy [37]. There were similar other mitochondrial co-mutations
which have reported to have the role in mitochondrial diseases [38]. We extended information accompanied
by the two-loci genome model broadly by constructing nucleotide co-occurrence networks.

Third, similar to polymorphic sites, co-mutations also showed biases at the subpopulation level. Con-
sistent with the proposed importance of mt-genome variation in human adaptation, regional haplogroups
are generally founded by one or more functionally significant polypeptide, tRNA, rRNA, and control region
variants. These variants are retained in the descendant mt-genomes creating the haplogroups [39]. Therefore
it was intuitive to observe patterns of variants at the subpopulation level. Genome group-wise comparison
of co-mutations associated among mt-genome functional regions has helped in classifying these five human
subpopulations into two prominent groups i.e. {AF, EU, OC} and {AS, AM}. This result was supported by
a global mt-genome mutational phylogeny which implicated few peculiar routes of human migrations [31].
Asian haplogroup M and European haplogroup N arose from the African haplogroup L3 [40]. Haplogroup M
gave rise to the haplogroups A, B, C, D, G, and F [40] in which Haplogroups A, B, C, and D populated East
Asia and the Americas. In Europe, haplogroup N led to the European haplogroups H, J, T, U, and V [41]
whereas Haplogroups S, P, and Q are found in Oceania [31]. Overall, variations probed by epistatic inter-
actions have provided local preferences among different mt-genome loci. These local preferences might have
helped in not only forming the closed-assembly of OXPHOS complexes but also classifying subpopulations.

3.8. Discontinuous transition in nucleotide co-occurrence network

In the nucleotide co-occurrence networks, we found that o was the main edge filter when intersecting
networks and also produced the optimum network in relation to size and architecture. In our network models,
the emergence of sparse networks was not a smooth, gradual process: the very dense largest connected
component collapsed into a sparse largest connected component through a discontinuous transition (Fig 3).
For all five genome groups, we encountered such a distinct phenomenon. A similar critical phenomenon was
first observed by Erdos and Rényi through their random network model where the isolated nodes and tiny
components observed for small (K) would collapse into one largest connected component [24]. Similarly,
such phenomenon was also observed in computer traffic network and biomolecular interaction network in
acute lung injury, etc. [43, 44]. However, in these networks with a largest connected component, several
smaller disconnected components were observed similar to our networks. Interestingly, the nature of such
transformations was earlier related to neutral genetic drift and hypothesized that biological processes have
proceeded in discontinuous transitions [42].

We selected edges for inclusion in co-occurrence networks based on their best fit to a network sparseness.
Sparseness is one of the essential property of real-world networks, particularly biological networks since
biological networks are usually large, and there is evolutionarily cost involved to form more links and hence
links are more difficult to create. It is well known that co-mutational events are very selective events which
require a group of supporting mechanisms to perform co-activity [19]. Previously, the similar approximation
for the inclusion of edges was used in microbial interaction networks using methods like WGCNA [45]. Using
a network sparseness or similar data-driven approach avoids entirely arbitrary selections of network edges
and provides a uniform rationale that can be implemented to generate co-occurrence network structures
across different genome datasets. Therefore, it was reasonable to choose an « value where a network should
have both the lowest value of (k) value and the largest component with a higher count of nodes.

3.4. Hierarical modularity

Following network construction, we utilized a modularity maximization algorithm to detect communi-
ties in the network. There was clear evidence for hierarchical modularity in our genome datasets, and the
modular structure of the networks at all levels of the hierarchical patterns was reasonably similar across
genome groups, suggesting that mt-genome functional modularity is likely to be a replicable phenomenon.
This study provided a complete listing of the current knowledge of mt-genome variation in the human pop-
ulation, also with respect to higher level associations with hierarchical modules. Overall, we demonstrated
that molecular changes, such as mutations, were not randomly distributed across the genome, but instead
concentrated within modules. Modularity was one of the main features of nucleotide co-occurrence networks,
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and evolutionary processes may favor the emergence of modularity by a combination of molecular interac-
tions and natural selection [46]. Similar hierarchical modularity in brain network was related to functional
regions in the brain and sub-set of brain functions have been reported to be associated among each hierarchy
[47]. Therefore, it was reasonable to say that selection may favor modularity allowing both the specificity
and autonomy of functionally distinct subsets of genomic positions. In this sense, the concentration of
genomic positions within modules provided a way to understand module integration, favoring distinct func-
tional roles developed by genomic positions in distinct modules. In the human mt-genome, modules were
associated with mitochondrial subcomplexes that act in distinct steps of the electron transport assembly
and function. Thus, the closed assembly of mitochondrial complexes may favor the emergence of highly
integrated genomic subunits, in which effects of pairwise interactions may also activate indirect effects on
non-interacting genomic positions associated with the same function [34]. Based on these results, we would
expect that genome positions connecting modules were more conserved across evolution or, at least, less
prone to failures that alter their function.

3.5. Co-occurrence patterns among network modules

It would be expected that module level associations reflected evolutionary relationships among underly-
ing genomic positions as each module were constituted of ancestrally similar genomic polymorphisms. Our
results of modules added that distinction between the ancestral and the derived mitochondrial polymor-
phisms was clear in very few cases where the entire module was made up of ancestral-variant polymorphic
sites. However, a large number of modules (more than 90% of total modules) were made-up of ancestral
polymorphic sites. In addition, the large number of nodes in mixed modules were of ancestral origin (S2
File). Using the list modules among all five networks, it would be reasonable to assert that contemporary
human mt-genome nucleotide bases most closely resembled the ancestral state and very few of them were
ancestral-variants. This observation was in agreement with previous studies which found co-occurrence
among nucleotide positions to be higher between genetically similar taxa [48]. This fact was widely ob-
served in our data as both sub-level, and top-level haplogroup markers were associated with each other in a
closed group of network modules. Haplogroup level association of genetic markers, particularly Haplogroup
T markers, recently shown to be involved in risk of colorectal cancer [49]. Therefore, these evolutionar-
ily closed associations suggest that interactions among nucleotide positions might evolve within genetically
related genomic polymorphisms (more likely of having similar functionality) responding to intra-species
adaptation. These associations between mutations have been reported to be a major driver of co-occurrence
patterns in intra-species evolution. For instance, modules of H3N2 viral genome co-mutations were found
to be important agents in mediating protein binding sites [19].

Beyond identifying network modules, understanding their formation would require an extension of the
described approaches to quantification of each module using the evolutionary information they possess. Here,
we used simplistic information possessed by each genome position in terms of their underlying ancestral
marker information. Previously, this ancestral marker information has been used in order to define taxa
(precisely haplogroups) in mitochondrial phylotree which have provided exact mapping of mitochondrial
signatures to infer the routes of human intra-species diversification events in the past [50, 51]. Similarly,
our nucleotide co-occurrence modules have provided a detailed listing of mitochondrial co-mutations which
were ancestrally associated together.

4. Conclusion

We constructed and investigated the human mt-genome nucleotide co-occurrence networks among geo-
graphical regions using a genomics and network theory framework. Our principal result was that mitochon-
dria undergo substantial levels of co-mutational biases. Codon-level mutation bias, particularly at CP 2, and
restriction of mutations in RNA genes was even evident at the continental level which was earlier reported
to be among the global human population. The analysis highlighted regions of the mt-genome that were
rich for co-mutations and thus provided evidence of epistasis. In particular, a large portion of COX and ND
genes found to be co-mutated in AS and AM populations whereas in AF, EU and OC populations, there
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was greater epistasis between regions of HVS and ND. Our networks identified differences in epistasis and
codon-bias between human populations. From the co-occurrence network analysis of regional co-mutations,
it was of great interest to investigate and verify the different co-occurrence patterns among mutations of
various geographical regions. This analysis presented here can be extended further to study the complexity
of the mt-genome evolution by forming various geographical groups as well as to understand alterations in
personnel traits leading to complexity in mt-genome evolution. This understanding can provide the enve-
lope of the network information which encodes the changes during the progression of the disease, where
information of genomic alteration with time is available.
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Figure 1: Schematic representation of mtDNA nucleotide co-occurrence network construction and analysis.
(A) World map shows sequence data taken for the current study covered a good distribution across the entire globe. (B)
A schematic diagram is drawn for a genome group with 5 sample sequences. Schematic diagram depicts (1) Alignment of
genomes. All mitochondrial genomes in a genome group were end to end aligned, and therefore all aligned sequences had the
same length. (2) Removal of non-informative sites. A genome position consist of a single nucleotide among all samples was
removed from the analysis. (3) Calculation of co-occurrence frequency (Cr) for each nucleotide pair. (C) Selection of network
efficiency score (a). a was a threshold when the average degree ((k)) of a network is small, and the size of the largest connected
component (Npcc¢) is high. For each genome group, a was found to be different. (D) Each genome group has M genomes
i.e. M networks. A unique list of edges was picked up from M networks from a genome group to construct a final weighted
network for M networks in a genome group. Likewise, five networks were constructed for five genome groups.
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Figure 2: Distribution of variable sites across genome groups and the distance between each genome from the
reference sequence (RSRS). (A) Variable sites occurred at similar genome positions in a different set of genome groups such
as two, three, four and all five. Additionally, certain polymorphic sites were only found in a particular group. AS displayed
the most number of unique polymorphic sites. The largest portion of variomes commonly occurred among {all five genome
groups: 11.3%}, {AF, AM, AS and EU: 13.5%}, {AM,AF and AS : 5.5%}, {AF, AS and EU: 5.2%}, {AS and EU: 7.5%} sets
of genome groups. These values indicated that human population habituating in AF, AM, AS and EU geographical regions
shared more common polymorphism as compared to the OC geographical region. Also, AF and AS genome groups shared
a large number polymorphisms with individual AM and EU populations. (B) The distance between each genome and RSRS
sequence. All genome groups had a similar spread of distances. Multiple numbers of peaks were observed among AM, AS and
EU populations. Each peak here would signify a subpopulation with a certain range of polymorphic sites. This would not be
surprising as these genome groups span entire continents, there could be a huge amount of diversity within each continent. (C)
Each genome posses new mutations as well as ancestral rnutai'ons. Set of all these mutations would make polymorphic sites
in a genome group. Individual genome contribution in genom Zroup follows behaviors where a large number of genomes gave
only 1-4 unique polymorphic sites. (D) The majority of polymorphic sites possess two alleles (red) whereas polymorphic sites
with three alleles (green) and four alleles (blue) were in less number.
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Figure 3: Evolution of mitochondrial nucleotide co-occurrence network. (A) The relative size of the largest component
and the average degree of the largest component are plotted against nucleotide co-occurrence frequencies (Cr). The figure
illustrates that at a particular a value (for OC, a = 0.9988) nucleotide co-occurrence network has both a smaller value of the
average degree and the number of nodes in the largest component are sufficiently in large number. We picked this Cr value for
network construction. (B-E) A sample network at different C'r values show how it evolves from a globally connected network
to the network with many disconnected components.
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Figure 4: Diversity among individual genome regions. Correlation between the observed polymorphic positions and the
gene size (bp) or maximum possible changes in (A) the 13 protein-coding genes, (B-D) the codon positions 1, 2 and 3 among
the 13 protein-coding genes, (E) tRNA genes and (F) non-coding genes.
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Figure 5: Comparison of polymorphism among genomic loci. A co-occurrence configuration in the human mtDNA
nucleotide co-occurrence network consisting of nine functional regions. These nine regions were four mitochondrial complexes
(ND, COX, ATP, and CYB), three non-coding regions (DLoop, HVS, Miscellaneous) and two RNA regions (rRNA and tRNA).
Links or ribbons represent the frequency of CO pairs between two genomic loci. The four functional regions make the mitochon-
drial oxidative phosphorylation machinery. In large part, mtDNA-specified proteins are components of respiratory complexes:
Complexes I (NADH dehydrogenase), Complex III (cytochrome c), Complex IV (cytochrome c¢ oxidase) and Complex V (ATP
synthase). The regression line is shown in blue (rigid) colour whereas 95% confidence interval is shown with black (dotted)
colour. Circular maps were constructed using the rcirclize package in R.
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Figure 6: Relationships among genome groups. These relationships are predicted based on polymorphisms shown by
their functional genomic loci. Five genome groups were classified as two main branches of the dendrogram , i.e. {AM, AS}
and {AF, EU, and OC}.
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