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Abstract

Investigation of human mitochondrial (mt) genome variation has been shown

to provide insights to the human history and natural selection. By analyzing

24,167 human mt-genome samples, collected for five continents, we have

developed a co-mutation network model to investigate characteristic human

evolutionary patterns. The analysis highlighted richer co-mutating regions of

the mt-genome, suggesting the presence of epistasis. Specifically, a large por-

tion of COX genes was found to co-mutate in Asian and American populations,

whereas, in African, European, and Oceanic populations, there was greater co-

mutation bias in hypervariable regions. Interestingly, this study demonstrated

hierarchical modularity as a crucial agent for these co-mutation networks.

More profoundly, our ancestry-based co-mutation module analyses showed

that mutations cluster preferentially in known mitochondrial haplogroups.

Contemporary human mt-genome nucleotides most closely resembled the

ancestral state, and very few of them were found to be ancestral-variants.

Overall, these results demonstrated that subpopulation-based biases may
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favor mitochondrial gene specific epistasis.

Keywords: Human mitochondria, Genome evolution, Co-mutation network,

Epistasis, Hierarchical modularity

1. Introduction

Genetic polymorphism varies among a species as well as within genomes

and carries important implications for the evolution and conservation of

species. Polymorphism in the mitochondrial (mt) genome is routinely used

to trace ancient human migration routes and to obtain absolute dates for

genetic prehistory (Chen, at al., 1995). The human mt-genome is very small

(16.6 kb), maternally inherited, evolves in both neutral and adaptive fashions,

and shows a great deal of variation as a result of divergent evolution. An

absence of recombination within mt-genome provides distinct polymorphic

loci which have been used to define human genealogy referred to as mt-genome

haplogroups (Chen, at al., 1995). These haplogroups are formed as a result

of the sequential accumulation of mutations through maternal lineages. Since

mitochondria are essential to cellular metabolism, mt-genome variation has

been associated with multiple complex diseases including Alzheimer’s disease

in haplogroup U (Van, et al., 2004), idiopathic Parkinson disease within JT

haplogroup (Hudson, et al., 2013) and age-related macular degeneration in

the JTU haplogroup cluster (Kenney, et al., 2013). Due to population migra-

tion, distinct lineages of mt-genome are associated with major global groups

(African, American, European, Asian and Oceanic) raising the possibility that

mt-genome variation could contribute to the differences in disease prevalence

observed among both ethnic and racial groups (Mishmar, et al., 2003; Shriner,

and Keita., 2016; Zanellati, et al., 2015).

Conventionally, analyses of mt-genome evolution have focused on individ-

ual mutations, particularly in describing haplogroups, and to understand and

predict ancestral behavior. However, the evolutionary behavior of mt-genome

often involves cooperative changes within and between genes which are diffi-
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cult to detect using haplogroup analysis. For example, correlated mt-genome

mutations were reported among different oxidative phosphorylation subunits,

which were found to affect population specific human longevity (Raule, et al.,

2014; Fan, et al., 2016; Giuliani, et al., 2018; Conte, et al., 2018). Besides,

cooperative activities of both mitochondrial proteins and tRNA genes are

critical for mt-genome evolution. The importance of co-mutational interac-

tions has been well documented in the genomics field (Lane, et al., 2012;

Chen, et al. , 2013; Haddad, et al., 2018). Increasing evidence suggests that

interactions among polymorphic sites may confer a cumulative association

of multiple mutations with many diseases (Chen, et al. , 2013). Interactions

among polymorphic sites have also effectively been used to infer ancestry and

functional convergence in the human populations (Ioannidis, et al., 2001).

Commonly used methods include tree ensembles, functional nodal mutations,

and single nucleotide polymorphism (SNP) based enrichment (Lunetta, at

al., 2004). Important information about mt-genome evolutionary behavior,

which is contained in the correlated changes between nucleotide positions

both within and between genes, is not captured by these techniques. Despite

strong evidence that mt-genome variation plays a role in the development

and progression of complex human diseases, mitochondrial genetic variation

has been largely ignored in the context of co-mutations and particularly the

mechanisms by which these co-mutations occur (Boles, et al., 1998; Goodman,

et al., 2006). Investigation of co-mutation effects can, therefore, improve

the explanatory ability of genetics twofold. Firstly, the interaction between

two informative genomic positions to explain a part of the trait heritability.

Secondly, finding significant statistical links between mutations could provide

strong indications of molecular-level interactions that differ between distant

populations (Hartwig, , 2013).

Complex network science revolves around the hypothesis that the behavior

of complex systems can be elucidated in terms of structural and functional

relationships between their constituents employing a graph representation
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(Albert, and Barabási., 2002; Shinde, et al., 2015; Shinde, and Jalan., 2015;

Whitwell, et al., 2018; Rai, et al., 2018; Ho, et al., 2014). The basis of the

current study is that genome positions can impact each other and co-mutate

within genomes (Shinde, et al., 2018; Du, et al., 2008; Sun, et al., 2014).

The interaction between two or more genetic loci is referred to here as the

co-mutation of nucleotide positions. There are previous studies which have

used genomic co-mutations as a basis of the evolution of human H3N2 and

Ebola viruses (Du, et al., 2008; Deng, et al., 2015). These viral genome models

have identified the co-mutating nucleotide clusters, apparently underpinning

the dynamics of virus evolution since these clusters were antigenic regions

of the viral capsid proteins (Du, et al., 2008; Deng, et al., 2015). In another

study, Shinde et al. (Shinde, et al., 2018) demonstrated the impact of

codon position bias while forming co-mutations using human mt-genomes.

These studies have considered perfect co-mutation as causing factor for co-

mutations. However, the role of the co-mutation frequency in these studies

remains unclear. Here, we thoroughly examined a set of networks associated

with a range of co-mutation frequencies and chose a particular co-mutation

frequency for further network construction. Whilst pair-wise co-mutations

can be straightforwardly perceived, the identification of larger sized functional

units is not straightforward. Here, we used community detection algorithms

to enumerate lists of modules formed within networks and described the

functional relationships among nucleotide positions forming these modules.

We set out to develop a comprehensive approach to understand mitochon-

drial diversity using mitochondrial co-mutations. To this end, we conducted

a comparative analysis of 24,167 sequenced mt-genomes. The paper is orga-

nized as follows. In the first section, we briefly described the level of diversity

observed among underlying subpopulations concerning polymorphic site vari-

ations in human mitochondrial genomes. In the second section, we described

the framework to investigate co-mutations, which are critical in underlying

complex mitochondrial evolution. For this, we constructed co-mutation net-
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works which were used to identify modules of co-mutations and also compared

these results with those of the corresponding random networks. In the third

and fourth sections, we identified local topological phenomena, which were

crucial agents for co-mutation networks make-up. We listed down modules

comprised of co-mutations and demonstrated that the identified modules

indeed correspond to ancestry based associations. Overall, revealing the

importance of co-mutational biases among different human subpopulations,

our analysis identified local preferences, which were key agents in forming

mt-genome epistatic interactions.

2. Methods and Material

2.1. Acquisition of genomic data

Analysis of mt-genome variations in continental populations has revealed

the most ancient of all human continent-specific haplogroups in Africa and

their subsequent migration and settlement in other continents (Chen, at al.,

1995). Therefore, continents are constituents to defining different global-

ancestral lineages beyond being just landmasses. The global lineages among

each continent have been shown to explain a variety of signatures including

demographic history, climate and environmental changes, local-admixture

patterns (Conte, et al., 2018; Fonseca, et al., 2008; Derenko, et al., 2001;

Hudson, et al., 2013). Each continent has its own signatures as well as shared

signatures, as human migrations are known to happen differently among

different continents (Mishmar, et al., 2003).

Having this notion, we prepared an extensive collection of mitochondrial

genomes of geographically diverse Homo sapiens populations (Fig 1) from

the Human Mitochondrial Database (Hmtdb) (Rubino, et al., 2012). All

downloaded genome sequences were in FASTA format. In total, the dataset

comprised of 24,167 mitochondrial genome sequences from the five world

continents (genome groups), including 3426 African (AF), 2650 American

(AM), 8483 Asian (AS), 8060 European (EU) and 1548 Oceanic (OC) genomes.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/505818doi: bioRxiv preprint 

https://doi.org/10.1101/505818
http://creativecommons.org/licenses/by/4.0/


Antarctica was excluded from the present analysis since no data was avail-

able. It should be noted that these genome groups are multiethnic cohorts

representing a range of populations across the continent (Fig 1A). A brief

description of all the genomes and their origin is provided in S1 File.

2.2. Construction and preliminary analysis of co-mutation networks

Co-mutation calculations were carried out on each genome group distinctly.

Co-mutation network construction is broadly divided into two parts, con-

struction of primary networks for each genome sequence followed by the

construction of final networks for each genome groups. Each primary co-

mutation network represents an individual sequence, and thus for each genome

group, M primary co-mutation networks were generated where M is the num-

ber of sequences in the genome group. In a co-mutation network (for both

primary and final), nodes represent genome positions, and edges between

nodes represent genomic co-mutations. We constructed five co-mutation

networks for each genome group using their primary co-mutation networks.

Final co-mutation networks comprise of qualitative information of interactions

between genome positions. The methodology for constructing primary and

final co-mutation networks is schematically represented in Fig 1 and described

as follows:

2.2.1. Primary co-mutation network

(1) Genome sequence data was end to end aligned. (2) All non-variable

genome positions within samples of a genome group were removed, leaving only

polymorphic genome positions. The number of polymorphic sites (NP ) is given

in Table 2. (3) Using only polymorphic nucleotide positions, we calculated

the frequency of occurrence of all the nucleotide pairs f(xiyj) = N(xiyj)/M

where, N(xiyj) denoted the number of co-mutation pairs (xiyj) at position

(i, j). We then calculated the frequency of occurrence of single nucleotides

f(xi) = N(xi)/M and f(yj) = N(yj)/M where, N(xi) and N(yj) denoted

the number of single nucleotides at their respective positions i and j (Du,
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Figure 1: Schematic representation of mtDNA co-mutation network construc-
tion and analysis. (A) World map shows sequence data taken for the current study
covered a good distribution across the entire globe. (B) A schematic diagram is drawn for
a genome group with 5 sample sequences. The schematic diagram depicts (1) Alignment
of genomes. All mitochondrial genomes in a genome group were end to end aligned, and
therefore all aligned sequences had the same length. (2) Removal of non-informative sites.
A genome position consist of a single nucleotide among all samples was removed from
the analysis. (3) Calculation of co-mutation frequency (CF ) for each nucleotide pair. (C)
Selection of network efficiency score (α). α was a threshold when the average degree (〈k〉)
of a network is small, and the size of the largest connected component (NLCC) is high. For
each genome group, α was found to be different. (D) Each genome group has M genomes
i.e. M networks. A unique list of edges was picked up from M networks from a genome
group to construct a final weighted network for M networks in a genome group. Likewise,
five networks were constructed for five genome groups.
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et al., 2008). (4) Co-mutation of two nucleotides (CF ) at position (i, j) was

denoted as,

CFi,j =
f(xiyj)

2

f(xi)f(yj)
(1)

For a particular co-mutation frequency threshold, here, termed as network

efficiency score (see Section 2.3), we constructed primary co-mutation networks.

A network can be represented mathematically by an adjacency matrix (A)

with binary entries.

Aij = { 1 if CFi,j >= α0 otherwise (2)

As each genome sequence has its own information of co-mutating genome

positions, a total M primary co-mutation networks were generated for each

genome group.

2.2.2. Final co-mutation network

Unique edges from all primary co-mutation networks of a genome group

were used to construct a final co-mutation network (Fig 1D). These five

final co-mutation networks were used for network analysis and community

detection.

We extracted hierarchical modules from final co-mutation networks and

compared these networks with random networks, hypothesizing that hierar-

chical modularity is the underlying phenomena of co-mutation networks and

is not a mere outcome of the random evolutionary process. Furthermore, we

characterized the identified module structures using ancestral markers.

2.2.3. Preliminary analysis of co-mutation networks

The degree of a node (ki) is defined as a number of edges connected to

the node such as ki =
∑N

j=1Aij where N denoted the number of nodes in a

network. The average degree connectivity 〈k〉 is the average nearest neighbor

degree of nodes with degree k. The clustering coefficient (C) is a measure

of the extent to which nodes in a network tend to cluster together. An
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average clustering coefficient of a network can be written as 〈C〉 = 1
N

∑N
i=1Ci.

Another property of the network which turns out to be crucial in distinguishing

the individual networks was the assortative coefficient (r), which measures

the tendency of nodes with the similar numbers of edges to connect. The

assortative coefficient, r, was defined as the Pearson correlation coefficient of

degree between pairs of linked nodes (Newman, et al., 2003). The value of r

being zero corresponds to a random network, whereas the negative (positive)

values correspond to dis (assortative) networks.

2.3. Selection of network efficiency score (α)

Network efficiency score (α) was used to filter edges required for network

construction. Selecting an α value for each network should require iterating

through a range of CF values. To consider a network with CF values of least

10−4 precision would require the construction of 24,167 ∗ 104 networks in

total, which would be a very computationally intensive process. Therefore,

we performed statistical sampling on each genome group interdependently by

selection analysis of m samples from each population. The sample size was

determined by Cochran’s sample size formula (Cochran,, 1997) with critical

value (z = 1.96). As the population was finite, the sample size was corrected

by Cochran’s adjustment (Cochran,, 1997).

A zero α value would result in co-mutation between each mutation and all

others, whereas α equal to one would give only those pairs of mutations which

have co-mutated perfectly in a genome group. In other words, zero α value

would result in the globally connected network (Fig 2B) and α = 1 would

result networks with many globally connected small sub-graphs (Fig 2E).

Even when the α value was as high as 0.99, networks remained very densely

connected (Fig 2C). Therefore, it was reasonable to propose a criterion to

select an α value, otherwise generated networks would be saturated structures

holding no information about co-mutations. In order to tackle this, we plotted

〈k〉 and the size of the largest connected component (NLCC) against all the

α values. We observed surprising network phenomena where at a particular
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α value, 〈k〉 is small whilst NLCC is large. At this point, networks are

sparser as compared to previous α values (Fig 2D). By a sparse network, we

would mean that the majority of elements of the adjacency matrix are zeroes.

After exceeding this α value, the network breaks into several disconnected

components.

With this criterion, we chose a particular α value for each genome group

and constructed primary co-mutation networks. Although the α value applied

to each genome group was very high (close to 1), this value was sufficient

to capture more than 50% of the polymorphic sites in each genome group

(except in AS; S4 Table and S3 Fig). A similar criterion of filtering network

edges has been earlier used to construct gene co-expression network (Jackson,

et al., 2018). It should be noted that α values for each genome groups were

different (Table 2).

2.4. Detection of module structures in co-mutation networks

We used the Louvain algorithm, a modularity maximization algorithm, for

community detection for our networks (Blondel, et al., 2008). The Louvain

method was a simple, efficient, and easy-to-implement method for identifying

communities in large networks. The python package of Louvain algorithm

was used to enumerate module structures (Blondel, et al., 2008), and Gephi

software was used for visualization (Bastian, et al. , 2009).

3. Results

Analysis of polymorphic sites is provided in supplementary materials and

summarised in Table 1 and Fig 3. Codon position (CP) 2 showed fewer

polymorphisms as compared to CP 1 and CP 3. Genes ATP6 and ATP8

demonstrated a higher level of polymorphisms at all three CPs. Similarly, all

three HVS regions have displayed a higher level of polymorphisms, whereas

genes of rRNA and tRNA have shown lower levels of polymorphisms.
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Figure 2: Evolution of mitochondrial co-mutation network. (A) The relative size
of the largest component and the average degree of the largest component are plotted
against co-mutation frequencies (CF ). The figure illustrates that at a particular α value
(for OC, α = 0.9988) co-mutation network has both a smaller value of the average degree
and the number of nodes in the largest component are sufficiently in large number. We
picked this CF value for network construction. (B-E) A sample network at different CF

values show how it evolves from a globally connected network to the network with many
disconnected components.
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Figure 3: Diversity among individual genome regions. Correlation between the
observed polymorphic positions and the gene size (bp) or maximum possible changes in
(A) the 13 protein-coding genes, (B-D) the codon positions 1, 2 and 3 among the 13
protein-coding genes, (E) tRNA genes and (F) non-coding genes.
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Gene Names (OMIM Ids) Gene (%) CP 1(%) CP 2(%) CP 3(%)

ATP6 (516060) 69 69 51 88
ATP8 (516070) 66 67 54 78
COX1 (516030) 41 25 11 88
COX2 (516040) 47 34 20 87
COX3 (516050) 50 39 26 86
CYB (516020) 55 49 26 90
ND1 (516000) 47 34 21 87
ND2 (516001) 46 36 19 84
ND3 (516002) 41 33 18 73
ND4 (516003) 42 27 13 87

ND4L (516004) 39 27 8 82
ND5 (516005) 47 36 17 88
ND6 (516006) 47 32 21 88

Table 1: Gene- and codon-wise polymorphisms among 13 protein-coding genes.
The observed polymorphisms in each of 13 protein-coding genes show mutational biases
at codon positions. ATP genes contained the most polymorphisms. CP 2 showed fewer
polymorphisms as compare to CP 1 and CP 3. COX1 and ND4 had the lowest proportion
of observed polymorphic sites, and ATP6 had the largest proportion.

3.1. Evolution of mitochondrial co-mutations

3.1.1. Co-mutations displaying intra- and inter- genomic loci biases

Analysis of pairs of co-mutations provides insight into the relationship

between two distinct genome locations. Co-mutations can be formulated

within a particular mitochondrial functional region (intra-loci) or between two

functional regions (inter-loci). We enumerated co-mutations present among

nine mt-genome functional regions. The number of polymorphic sites was

normalized by the total number of co-mutating polymorphic sites in a genome

group and used to construct Circos plots (Fig 4). Nine mt-genome functional

regions, comprising of four oxidative phosphorylation (OXPHOS) complexes,

two RNA and three non-coding regions, displayed different preferences to

co-mutate with other functional regions. In particular, OXPHOS complexes
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I, IV and HVS functional regions have a large contribution to the overall co-

mutation configuration in each network. To know more on how each functional

region has contributed in forming co-mutations, we plotted the number of

co-mutations in each functional region against the corresponding functional

region size for intra- and inter- loci (Fig 4). It was observed that co-mutations

among functional regions were evenly distributed among both intra- and

inter- loci in AM and AS. However, intra-loci were more evenly distributed as

compared to inter-loci. Interestingly, we reported few functional regions found

to be outside the 95% confidence intervals in both intra- and inter-loci (Fig

4). For intra-loci, rRNA was an outlier in all populations, HVS in AF and

OC whereas COX in AM and EU. For inter-loci, HVS was an outlier in AF,

EU, and OC whereas COX in AM and AS. ATP and miscellaneous regions

were outliers in AM, tRNA in AS and rRNA in OC. These statistical outlier

regions should have an assertive evolutionary role in a population. To explore

this further, we studied how these groups were separated from each other. We

calculated Frobenius distances between each pair of five co-mutation matrices

and then performed hierarchical clustering. A dendrogram clearly showed the

separation of five genome groups into two main branches i.e. {AM, AS} and

{AF, EU, and OC} (Fig 5).

To investigate global level co-mutation preferences between functional

regions, we analyzed unique co-mutations from all the genome groups. Fewer

co-mutation pairs were formulated among intra-loci than inter-loci. This

relationship between co-mutations and the spatial proximity is shown to be

conserved in the mt-genome since all 13 protein-coding genes formed many

interactions with OXPHOS complexes (Wong, et al., 1975; Thompson, et al.,

1994). However, co-mutation pairs formed among OXPHOS complex I or ND

genes which make 38% of total mt-genome participated in 31% of inter-loci co-

mutations but only 13% of intra-loci co-mutations. Both D-Loop and all three

hypervariable regions displayed a tendency to co-mutate with almost all other

mt-genome loci (Fig 4). The rRNA genes make-up 15% of total mt-genome
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Figure 4: Comparison of polymorphism among genomic loci. A co-mutation
configuration in the human mt-genome co-mutation network consisting of nine functional
regions. These nine regions were four mitochondrial complexes (ND, COX, ATP, and CYB),
three non-coding regions (DLoop, HVS, Miscellaneous) and two RNA regions (rRNA and
tRNA). Links or ribbons represent the frequency of CO pairs between two genomic loci. The
four functional regions make the mitochondrial oxidative phosphorylation machinery. In
large part, mtDNA-specified proteins are components of respiratory complexes: Complexes
I (NADH dehydrogenase), Complex III (cytochrome c), Complex IV (cytochrome c oxidase)
and Complex V (ATP synthase). The regression line is shown in blue (rigid) colour
whereas 95% confidence interval is shown with black (dotted) colour. Circular maps were
constructed using the rcirclize package in R.
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Network α NP N NC 〈K〉 〈C〉 r QReal QRand

AF 0.99970 3716 2310 13721 12 0.33 -0.36 0.51 0.20
AM 0.99959 3581 2412 30283 25 0.31 -0.61 0.22 0.10
AS 0.999854 5405 2293 32705 29 0.22 -0.18 0.21 0.09
EU 0.999760 4557 2456 47952 39 0.18 -0.62 0.30 0.07
OC 0.998800 1565 1208 7304 12 0.54 -0.25 0.54 0.21

Table 2: Data statistics and the properties of final co-mutation networks. Here,
α, NP , N , NC , 〈K〉, 〈C〉, r, Q represent the co-mutation frequency, number of polymorphic
sites, number of nodes, number of edges, the average degree, the clustering coefficient,
the assortativity coefficient and modularity coefficient for both real-world co-mutation
networks and random networks, respectively. All five networks were sparse, disassortative
and modular in nature. Network statistics of the largest connected component and the
disconnected components are given in S1 Table and S2 Table. The number of nodes
and edges forming final co-mutation networks were found to be different for each genome
group. 1000 degree sequence preserved random networks are constructed for comparison of
modularity in each co-mutation network and standard deviation was found to be less than
0.002 in average Q values of corresponding random networks.

but they participated in only 9% of co-mutating sites. All 22 tRNA genes,

which make 9% of total mt-genome, participated in 10% of co-mutating sites.

Overall, co-mutations dispersed among mt-genome functional regions showed

that formation of co-mutations was driven mainly by local preferences within

each group. Furthermore, to investigate whether the identified co-mutations

can be mapped with previously known potential disease alleles, we extracted

information about potential disease alleles from Mitomap (Ruiz-Pesini, et al.,

2006), OMIM (Hamosh, et al., 2005), and COSMIC (Bamford, et al. , 2004)

databases. There were 5, 74, 34, 8, and 10 co-mutations mapped for AF, AM,

AS, EU, and OC genome groups respectively. The full list of co-mutations

mapped with potential disease allele is given in File S3 and Table S6.

3.1.2. Co-mutation networks exhibited similar network properties

Pair-wise co-mutations were not sufficient to fully reveal the underlying

structure of functionally related nucleotide positions. As described in Fig 1,
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Figure 5: Relationships among genome groups. These relationships are predicted
based on polymorphisms shown by their functional genomic loci. Five genome groups were
classified as two main branches of the dendrogram , i.e. {AM, AS} and {AF, EU, and
OC}. Here, Frobenius distance between co-mutation configuration matrices of different
genome groups were used to define height of dendrogram. The branch separations shown
in plot supports the routes of human migrations earlier discovered using global mt-genome
mutational phylogeny. In particular, Asian haplogroup M and European haplogroup N
arose from the African haplogroup L3 (Wallace, et al., 1999). Haplogroup M gave rise to
the haplogroups A, B, C, D, G, and F (Wallace, et al., 1999) in which Haplogroups A,
B, C, and D populated East Asia and the Americas. In Europe, haplogroup N led to the
European haplogroups H, J, T, U, and V (Torroni, et al., 1996) whereas Haplogroups S, P,
and Q are found in Oceania (Ruiz-Pesini, et al., 2006).

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/505818doi: bioRxiv preprint 

https://doi.org/10.1101/505818
http://creativecommons.org/licenses/by/4.0/


a co-mutation network was constructed for each genome group where poly-

morphic sites forming co-mutations constituted nodes, and edges represented

co-mutating nucleotide positions. All five networks exhibited high average

clustering coefficient, 〈C〉 values (Table 2), suggesting that the nodes of these

networks are densely connected. Most real-world networks, particularly social

networks, characterized by high 〈C〉 value, suggesting movie actors tend to

create tightly knit groups by high compact ties (Sarkar, et al., 2016). In

addition, all five networks displayed a highly negative degree-degree coefficient

(r) (Table 2), suggesting that co-mutation networks were dis-assortative where

high degree nodes, on average, prefer to link to low degree nodes (Newman,

et al., 2003). Many biological and social networks have negative r values,

suggesting that lack of a high degree node in a disassortative network has

a large effect on the connectedness of the network (Newman, et al., 2003;

Shinde, et al., 2015; Sarkar, et al., 2016). Overall, co-mutation networks have

shown both the properties of high clustering and disassortative nature. This

suggests the presence of dense subgraphs within the network and the pres-

ence of hierarchical structures. To explore more about the local interaction

patterns in co-mutation networks, we investigated module structures within

these networks.

3.2. High cohesiveness and hierarchical organization of co-mutation commu-

nities

Is real-world network organization driven by the non-random character, at

least to some extent, by modules present in the network? If this is the case,

it is expected that modules would be overrepresented in original co-mutation

networks compared to their counterparts such as random networks of the

same size (Prill, et al., 2005). To test this, we generated random networks,

referred to as a configuration model, with the same degree sequence as the

original co-mutation network (Csardi, and Nepusz., 2006). Random networks

lack organizing principles, therefore, the presence of modules in a random

network is determined by the density of edges (Itzkovitz, et al., 2003).
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Figure 6: Identification and characterization of network modules. Network mod-
ules are identified using Louvain modularity algorithm. Here, the network view of modules
is shown for OC network. Each network comprised of one large size module. Each polymor-
phic site in a module was classified as an ancestral or ancestral-variant polymorphic site.
Further, modules are classified into three categories: ancestral allele module (ancestral
polymorphic sites), ancestral-variant module (ancestral-variant polymorphic sites) and
mixed module (both ancestral and ancestral-variant polymorphic sites).
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The major challenge for identifying modules in a hierarchical organization

is to decide the depth to decompose the network, as the Louvain algorithm

fragments networks and subsequently modules until it finds the greatest

partition (Meunier, et al., 2009). In order to avoid large numbers of smaller

modules (size 2), the size of the second largest connected component was used

to decipher submodules among each hierarchy of parent modules. The size

of the second largest connected component was 11, 8, 9, 6, and 12 for AF,

AM, AS, EU, OC genome groups respectively. We calculated the modularity

coefficient (Q) for five final co-mutation networks and also for corresponding

random networks (Table 2). Q value ranges between -1 and 1, where it takes

positive values if there are more edges between same-group vertices than

expected, and negative values if there are less (Blondel, et al., 2008). We

tested the hypothesis that the average Q of random networks equals that of

the co-mutation network. Q value was clearly reduced in the randomized

networks (t-test, p < 0.001, for all co-mutation networks), relative to the

original data, indicating that our results on real-world co-mutation networks

were not trivially reproduced in random networks. A high Q value will

manifest if networks are modular in nature. There were 557, 571, 552, 622,

and 227 modules obtained for AF, AM, AS, EU, and OC genome groups

respectively. The full list of modules is provided in S2 File.

In these networks, small sized modules (size less than 20) were predominant

alongside one or two large sized modules i.e. AF (size of 119), AM (270), AS

(217 and 216), AS (294) and OC (104) (S5 Fig). This signature of large-sized

modules found in co-mutation networks was not displayed by corresponding

random networks. Interestingly, large sized modules were only comprised

of polymorphic sites from non-coding regions (except in OC). Similarly to

co-mutations, we also noted that polymorphic sites among each module could

be from any of mt-genome loci. For example, in the OC population, module

59 had polymorphic sites only from COX1 gene, whereas module 3 had all

polymorphic sites from different genes (S2 File). We noted that protein-coding
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functional regions have a predominant role in the formation of modules (S7

Table and S8 Table). Particularly, ND and COX participated in >65% and

>40% of modules in each of the five networks, respectively. Additionally, we

also observed a total of 391 modules out of a total of 2529 modules where

all polymorphic sites in the module were from a single functional group.

Such mono-functional region modules were also prevailed by ND and COX

functional regions, 70% and 14% of total mono-functional region modules,

respectively (S7 Table).

AF AM AS EU OC

Modules
Ancestral allele modules 501 (79%) 529 (76%) 488 (69%) 583 (75%) 205 (86%)

Ancestral-variant modules 26 (4%) 12 (2%) 11 (1%) 12 (1%) 12 (5%)
Mixed modules 30 (17%) 30 (22%) 53 (30%) 27 (24%) 10 (9%)
Total modules 557 571 552 622 227

Ancestral lineage polymorphism
ALPS1 163 192 136 177 122

Modules with atleast one ALPS 45 60 40 49 70
Modules with >1 ALPS 16 25 16 13 24
Modules with all ALPS 8 10 5 5 10

Table 3: Statistics of modules and ancestral lineage polymorphism. Count of
modules among each genome group and percentage of nodes participating in those modules
(brackets) is given. Mixed modules observed to the confined of the largest size modules. 1

referes ancestral lineage polymorphic sites (ALPS)

3.3. Modules of co-mutating polymorphic sites indicate ancestral relationships

To investigate if the modules identified from the analysis of the network

structure were evolutionarily related, we examined polymorphic sites in

the individual modules for ancestral alleles from the Reconstructed Sapiens

Reference Sequence (RSRS). If a non-RSRS allele was present in more than
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1% of samples in a genome group, we termed it an ancestral-variant allele.

Thus, we assigned ancestral-variant information to all of the network modules

and noted three distinct types of modules (Fig 6), which are explained in

following.

In the first and most common (more than 90% of total modules), all

polymorphic sites were closely related to ancestral alleles (Table 3) and we

termed them ancestral allele modules. All the polymorphic sites in these

modules had ancestral alleles (or non-RSRS alleles present in < 1% of samples).

Ancestral alleles were reported to be common throughout human mt-genome

tree (Ruiz-Pesini, et al., 2006) and were also observed in large numbers

in our genome group data (Table 3). In the second type of module, all

the polymorphic sites were ancestral-variant alleles. We termed them as

ancestral-variant modules and were of our particular interest because all

polymorphic sites among these modules consist of the evolved character from

RSRS. Ancestral-variant modules were observed the least out of three types of

modules, both in terms of module count and the number of polymorphic sites

present in these modules (Table 3). In the third type of module, polymorphic

sites in a module were a mixture of ancestral and ancestral-variant alleles, and

we termed them mixed modules. The polymorphic sites among these modules

were hypothesized to have recently diverged. Mixed modules comprised of the

large-sized modules, therefore even though the module count was found to be

lower, these mixed modules still possessed a higher number of nodes (Table

3). We also confirmed that count of each module type in all five co-mutation

networks is significantly different than those of corresponding random networks

(t-test, p < 0.0001; Fig S8, S9, S10). In addition, ancestral-variant modules

were difficult to produce in random networks.

Modules were mapped to all known haplogroups, which showed that each

polymorphic site contributed to one or many haplogroups, and thus entire

module structure can be related to a single mt-genome haplogroup (S2 File).

Further, we investigated the relationship between modules corresponding to
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ancestral haplogroup lineage markers (or top-level haplogroups). Information

of ancestral lineage markers was taken from the Mitomap database, and

polymorphic sites among each module were mapped to ancestral lineage

markers. These ancestral lineage markers were observed to participate in

the formation of entire module structures, and there were a total of 38

such modules structures obtained (Table 3; File S1). Out of the observed

38 modules, where all nodes were ancestral lineage polymorphic sites, 23

were ancestral-variant modules, 13 were ancestral modules, and two were

mixed modules. Since all polymorphic sites among these 38 modules were

the ancestral lineage markers, it would be reasonable to say that not only

sub-level haplogroups but also top-level haplogroup markers have shown a

tendency to be associated to each other.

4. Discussion

We used comparative genome analysis to investigate 24,167 mt-genomes

and devised a network model comprising pairs of co-mutating nucleotides over

the human mt-genome. The method presented here provides a perspective on

epistatic interactions using only sequence information as well as serves as a

comparative tool to understand intra-species variations. Our study showed

the presence of heterogeneity in both epistatic mutations and functional

modules across investigated genome groups.

The comparison of observed polymorphisms with gene size clearly showed

two essential features in providing maximum functional level diversity with

the minimum level of genomic changes. First, genetic conservation at CP

2 but not at CP 3, was key to providing a protein diversity of mt-genome

complexes. Second, the restriction of mutations in tRNA and rRNA. These

two observations of biases against mutations at CP 2 and RNA genes were

earlier reported by Pereira et al. with 5140 human mt-genome sequences

(Pereira, et al., 2009). The similar biases of CP 2 and tRNA genes were

also reported among mt-genomes of other primates including Macaca, Papio,
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Hylobates, Pongo, Gorilla, and Pan whereby the strength of selection was

determined in each lineage by the ancestral state of each codon position

(Kivisild, et al., 2006). Among non-coding genes, all three HVS regions have

displayed a higher level of polymorphisms, whereas genes of rRNA and tRNA

have shown lower levels of polymorphism. Our study, apart from providing the

detailed enlisting of diversity present among five genome groups, reiterated

that both codon level mutation bias and restriction of mutations among

RNA genes were more evident at the subpopulation level despite infrequently

reported to be at a global level. Furthermore, given the ubiquitous variation in

mt-genome, genetic flexibility may have evolved as a mechanism to maintain

OXPHOS under a range of environments.

As well as biases against polymorphisms at CP 2 in protein-coding genes,

our analysis indicates other biases with co-mutations. First, our results

with intra- and inter- loci preferences clearly suggested the dominance of

polygenic mutations in the human mt-genome. These polygenic mutations

are the outcome of a highly constrained organization of OXPHOS complexes

(Fonseca, et al., 2008) and also due to protein-protein interactions of the mt-

interactome (Schweppe, et al., 2017). Second, our analysis highlights regions of

the mt-genome which are rich in co-mutations and thus suggests the presence

of epistasis. In particular, a large portion of COX genes co-mutate in AS

and AM populations whereas in AF, EU and OC populations, there was

greater co-mutation bias in functional regions of HVS. Although mitochondrial

genome epistasis is largely described in the context of mitochondrial-nuclear

interaction due to the closed assembly of OXPHOS complexes (Fonseca, et

al., 2008; Picard, et al., 2018; Connallon, et al., 2018; Schweppe, et al., 2017),

there are many reports describing the presence of mitochondrial-mitochondrial

epistasis, for example, shared family features in Han Chinese family (Wang,

et al., 2015) and homoplasy guided by mt-tRNA genes (Moreno-Loshuertos,

et al., 2011). Furthermore, few co-mutations were found to be mapped with

previously known potential disease alleles, implicating association of disease
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phenotypes within mt-genome sequences. Mitochondrial epistasis has been

reported for its role in mitochondrial diseases (Morrow, and Camus., 2017;

Smith, and Lusis., 2002; Pritchard, et al., 2010; Schrider, and Kern., 2017). We

also note that these individual mapped co-mutations do not possess potential

disease alleles in other genome groups. In view that mt-genome lineages are

functionally different, it reflects that the same epistatic interaction can be

advantageous in one environment and might be maladaptive in a different

environment (Mishmar, et al., 2003). Hence, lineage-defining haplotypes

could be contributing to bioenergetic disorders as the migration takes place

(Mishmar, et al., 2003). Third, similar to polymorphic sites, co-mutations also

showed biases at the subpopulation level. Genome group-wise comparison

of co-mutations associated with mt-genome functional regions has helped in

classifying these five human subpopulations into two prominent groups i.e.

{AF, EU, OC} and {AS, AM}. This result was supported by a global mt-

genome mutational phylogeny (Ruiz-Pesini, et al., 2006) showing the routes of

human migrations (Fig 5). Overall, variations probed by epistatic interactions

have provided local preferences among different mt-genome loci. These local

preferences might have helped in not only forming the closed-assembly of

OXPHOS complexes but also classifying subpopulations.

In our network model, the emergence of sparse networks was not a smooth,

gradual process: the very dense largest connected component collapsed into

a sparse largest connected component through a sudden change in the α

curve (Fig 2). For all five genome groups, we encountered such a distinct

phenomenon. A similar critical phenomenon was first observed by Erdös and

Rényi through their random network model where the isolated nodes and tiny

components observed for small 〈K〉 would collapse into one largest connected

component (Erdos and Rnyi., 1960). Interestingly, the nature of discontinuous

transformations was earlier reported in biological networks (Fontana, and

Schuster., 1998; Liu, et al., 2012) and have been hypothesized that biological

processes follow discontinuous transformation during their evolution (Fontana,
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and Schuster., 1998).

We selected edges for inclusion in co-mutation networks based on their

best fit to a network sparseness. Sparseness is one of the essential properties

of biological networks since links are more difficult to create due to the

evolutionary cost involved in forming more links. It is well known that

co-mutational events are very selective and require a group of cooperative

supporting mechanisms (Du, et al., 2008). Previously, modules of highly

correlated genes were identified using similar edge-filtering based methods

like weighted correlation network analysis (Jackson, et al., 2018). Network

sparseness or similar data-driven approach avoids arbitrary selections of

network edges and provides a uniform rationale that can be implemented to

generate co-mutation network structures across different genome datasets.

Therefore, it was reasonable to choose an α value where a network should

have both the lowest value of 〈K〉 and the largest component with a higher

count of nodes.

There was clear evidence for hierarchical modularity in our genome

datasets, and the modular structure of the networks at all levels of the

hierarchical patterns was reasonably similar across genome groups, suggesting

that mt-genome functional modularity is likely to be a replicable phenomenon.

A combination of co-mutations at different mitochondrial regions, that are

closely linked, tend to be inherited together. This study provides a complete

listing of the current knowledge of mt-genome variation in the human popu-

lation, also with respect to their higher level associations with hierarchical

modules. Every set of co-mutations found to originate from and remain part of

a preceding single group of co-mutations. This nested hierarchy suggests the

conservation of ancestral as well as inherited co-mutations throughout human

lineages. Similar hierarchical modularity in brain network was related to func-

tional regions in the brain and sub-set of brain functions have been reported

to be associated among each hierarchy (Meunier, et al., 2009). Modularity is

one of the main features of co-mutation networks, and evolutionary processes
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may favor the emergence of modularity by a combination of structural and

functional preferences in forming molecular interactions (Clune, et al., 2013).

Therefore, it was reasonable to say that evolutionary processes may favor

modularity by allowing both the specificity and autonomy of functionally dis-

tinct subsets of genomic positions. Overall, we demonstrated that molecular

changes, such as mutations, were not randomly distributed across the genome,

but instead concentrated within modules. In this sense, the concentration

of genomic positions within modules provided a way to understand module

integration, favoring distinct functional roles developed by genomic positions

in distinct modules. In the human mt-genome, modules were associated

with mitochondrial subcomplexes that act in distinct steps of the electron

transport assembly and function. Thus, the closed assembly of mitochondrial

complexes might favor the emergence of highly integrated genomic subunits,

in which effects of pairwise interactions may also activate indirect effects on

non-interacting genomic positions associated with the same function (Fonseca,

et al., 2008). In addition, the OXPHOS system is intrinsically incapable of

evolving to a fixed and general optimum state; therefore, both functional

and genetic heterogeneity plays a vital role in providing robustness to the

evolving OXPHOS system (Enriquez., 2016). Based on these results, we

would expect that genome positions connecting modules were more conserved

across evolution or, at least, less prone to failures that alter their function.

It was expected that module level associations would reflect evolutionary

relationships between underlying genomic positions as each module consisted

of ancestrally similar genomic polymorphisms. Our results added that the

distinction between ancestral and ancestral-variant mitochondrial polymor-

phisms was clear when the entire module was made up of ancestral-variant

polymorphic sites. However, a large number of modules (more than 90% of

total modules) were made-up of ancestral polymorphic sites. In addition, the

large number of nodes in mixed modules were of ancestral origin (S2 File).

Using the list modules of all five networks, it would be reasonable to assert
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that contemporary mt-genome nucleotide bases most closely resembled the

ancestral state and very few of them were ancestral-variants. This observation

was in agreement with previous studies which found co-mutation among

nucleotide positions to be higher between genetically similar taxa (Chaffron,

et al., 2010). This fact was widely observed in our data as both sub-level, and

top-level haplotype markers were associated with each other in a closed group

of network modules. Furthermore, mitochondrial polymorphic positions adapt

from ancestral state to ancestral-variant state (Keightley, and Jackson., 2018),

is also demonstrated by a larger count of transient state mixed modules.

Overall, these evolutionarily closed associations suggest that interactions

between nucleotide positions might evolve within genetically related genomic

polymorphic positions (more likely of having similar functionality) responding

to intra-species biases (Du, et al., 2008).

Understanding the formation of the network would require an extension

of the described approaches. Here, we used simplistic information possessed

by each genome position in terms of their underlying ancestral markers.

Previously, this ancestral marker information has been used in order to define

taxa (precisely haplogroups) in mitochondrial phylotrees which have provided

the exact mapping of mitochondrial signatures to infer the routes of human

intra-species diversification events (Nakatsuk, et al., 2017; Derenko, et al.,

2001). Similarly, our co-mutation modules have provided a detailed listing of

mitochondrial co-mutations which were ancestrally associated together.

Consistent with the proposed importance of mt-genome variation in human

adaptation (Wallace., 2015), regional haplotypes are generally founded by one

or more functionally significant polypeptide, tRNA, rRNA, and control region

variants. These variant traits, beyond being retained in the descendant popu-

lation, manifest functional signatures about affecting phenotypic variations

in the subpopulation. Particularly, a list of singular events involving both

mt-genome variation and epistatic interactions have been evaluated in terms

of affecting phenotypic variation in metabolism, fitness, and life-history traits

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/505818doi: bioRxiv preprint 

https://doi.org/10.1101/505818
http://creativecommons.org/licenses/by/4.0/


(Wallace., 2015; Shlush, et al., 2008; Li, et al., 2015). Hence, it is intuitive

to observe epistatic patterns of both genotype and phenotype variants along

with life-history traits at the subpopulation level. However, at the between-

population level, the evidence in support of the relationship between human

mt-genome variation and the metabolic rate is compelling.

5. Conclusion

We constructed and investigated human mt-genome co-mutation networks

of continents using a combined framework of genomics and network theory.

Our principal result was that mitochondria undergo substantial levels of

co-mutational biases. Codon-level mutation bias, particularly at CP 2, and

restriction of mutations in RNA genes was also evident at the continental

level, which was earlier only reported in the global human population. The

analysis highlighted regions of mt-genome rich for co-mutations and thus

suggested the presence of epistasis. In particular, a large portion of COX and

ND genes found to be co-mutated in AS and AM populations whereas in AF,

EU, and OC populations, there was greater co-mutation bias between regions

of HVS and ND, thus our networks identified differences in co-mutation bias

between human populations. It was of great interest to investigate and verify

different co-mutation patterns of various geographical regions. Importantly, we

deduced hierarchical modular structures formed within co-mutation networks.

Downstream analysis of these modules suggested that contemporary human

population are dominated by ancestral states. In addition, ancestral-variant

module structures are found to be in a lesser number, and such modules

have found to be difficult to produce in corresponding random networks. The

analysis presented here can be extended to study the complexity of mt-genome

evolution by forming various geographical groups as well as to understand

alterations in personal traits leading to complexity in mt-genome evolution.
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