1	Microbiome composition comparison in oral and atherosclerotic
2	plaque from patients with and without periodontitis
3	
4	Daichi Isoshima ¹ , Keisuke Yamashiro ¹ , Kazuyuki Matsunaga ¹ , Makoto Taniguchi ² ,
5	Takehiro Matsubara ³ , Shuta Tomida ³ , Kazuhiro Omori ¹ , Tadashi Yamamoto ¹ , and
6	Shogo Takashiba ^{1,} *
7	
8 9 10	¹ Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences. 2-5-1 Shikata-cho, Kita- ku, Okayama 700-8525, Japan
 11 12 13 14 	² Taniguchi Dental Clinic, Oral Bacterial Flora Analysis Center, 1-9-14, Tokiwa-cho, Takamatsu, Kagawa, 760-0054, Japan
15 16 17	³ Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
18	*Corresponding author:
19 20	E-mail: stakashi@okayama-u.ac.jp (ST)
21	Short title: Microbiome comparison of oral and atherosclerotic plaque
22	
23	
24 25	
23 26	

27 Abstract

28	There is no conclusive evidence regarding a causal relationship between periodontitis
29	and atherosclerosis. In this study, we examined the microbiome in the oral cavity and
30	atheromatous plaques from atherosclerosis patients with or without periodontitis to
31	investigate the role of oral bacteria in the formation of atheromatous plaques. We chose
32	four patients with and without periodontitis, who had undergone carotid endarterectomy.
33	Bacterial samples were extracted from saliva on the tongue surface, from periodontal
34	pocket (during the oral examination), and from the atheromatous plaques. We
35	investigated the general and oral conditions from each patient and performed next-
36	generation sequencing analysis for all bacterial samples. There were no significant
37	differences between both groups concerning general conditions. However, the
38	microbiome patterns of the gingival pocket showed differences depending on the absence
39	or presence of periodontitis, while those of the saliva were relatively similar. The
40	microbiome pattern of the atheromatous plaques was entirely different from that in saliva
41	present on the tongue surface and gingival pocket, and oral bacteria were seldom detected.
42	However, the microbiome pattern in atheromatous plaques was different in the presence

or absence of periodontitis. These results indicated that oral bacteria did not affect the
formation of atheromatous plaques directly. However, the metabolic products of
microbiome or the host inflammatory response might indirectly influence the
composition of atheromatous plaques.

47 Introduction

48 More than 100 trillion microbes reside in niches within the human body. Collectively, 49 these microbes constitute the microbiome [1]. The co-existence and interactions between 50 eukaryotic and microbial cells is vital in regulating physiological functions. The 51 microbiome balance has been linked with obesity, cancer, intestinal disorders, and mental 52 disorders [2, 3], and periodontitis [4]. 53 Periodontitis is a predominant oral infectious disease in which an excessive immune 54 response directed at the microbiome on the tooth surface destroys the periodontal tissue, 55 forming periodontal pockets. The microbiome in this pocket includes pathogenic 56 anaerobic bacteria that can form biofilms, which are inherently a drug-resistant and challenge host immunity [5]. The mature biofilm causes further periodontitis progression 57 58 because of the prolonged inflammation associated with the protracted immune response.

59 Therefore, periodontitis has two main features; it is an infectious disease caused by 60 microbiome imbalance and a chronic inflammatory disease caused by a dysregulated 61 immune response. 62 These two characteristic features of periodontitis are shared by various systematic 63 diseases, including diabetes, arteriosclerosis, cardiovascular diseases, brain diseases, 64 cancer, and non-alcoholic steatohepatitis and with preterm low birth weight [6-11]. We 65 also reported a case where the microbiome with pathogenic periodontal bacteria was 66 implicated as the cause of infective endocarditis [12]. Arteriosclerosis includes 67 atherosclerosis, in which an atherosclerotic plaque is formed on the blood vessel walls through various mechanisms [13]. An association between atherosclerosis and 68 69 periodontitis has been suggested by some epidemiology reports. Moreover, bacterial 70 investigations aimed at detecting periodontal bacteria in the atherosclerotic plaque have 71 been conducted [14-16]. Although observational data support an association between 72 periodontitis and atherosclerotic vascular disease, the data do not yet justify a causative 73 relationship [17]. Multiple common factors, such as diabetes, high blood pressure,

74 dyslipidemia, and smoking, affect disease progression, and there is little data of a direct

75 involvement of periodontal bacteria in the development of atherosclerotic vascular76 disease [18, 19].

77	An association between periodontitis and atherosclerotic vascular disease was
78	demonstrated in vivo using Porphyromonas gingivalis [20]. A clinical analysis sought to
79	detect the DNA of periodontal bacteria in atherosclerotic plaques [21]. The impact of the
80	disruption of the normal microbiome on various diseases is unclear and a comprehensive
81	analysis is necessary, since the microbiome could contribute to the formation of
82	microbiome atheroma.
83	Microbiome analysis has typically involved bacterial culture [22]. However, recent
84	comprehensive bacterial analyses using the gene for 16S ribosomal RNA (rRNA) have
85	been successful in detecting bacteria that are difficult to cultivate [23]. Next-generation
86	sequencing (NGS) has become a popular means of examining a large number and volume
87	of samples [24]. In this study, the association between periodontitis and atherosclerosis
88	in the context of the microbiome in the oral cavity and atherosclerotic plaque was
89	investigated by NGS.

91

92	Materials	and	Methods
----	-----------	-----	---------

93 Ethics statement

- 94 This study was approved by the ethics committee of Okayama University Graduate
- 95 School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University
- 96 Hospital (Authorization Number: 1603-059) and Brain Attack Center Ota Memorial
- 97 Hospital (Authorization Number: 121). All enrolled patients provided written informed

98 consent for the use of their resected tissue and oral samples.

99

100 Participants

101 The study focused on 12 patients who visited Brain Attack Center Ota Memorial

102 Hospital between April 2016 and March 2018, and who were diagnosed with internal

103 carotid artery stenosis. The patients were \geq 40 years of age, underwent carotid

104 endarterectomy, had more than ten teeth, and consented to participate.

105

106 Samples

113	Oral examination
112	
111	Blood was collected from each patient and serum prepared as previously described [25].
110	(ST) were collected using forensic swabs (Sarstedt AG & Co. Nümbrecht, Germany).
109	Manufactures Inc., Johnson City, TN, USA). Bacteria in saliva from the tongue surface
108	the gingival pocket (GP) were collected using absorbent paper points (United Dental
107	Atheromatous plaques (AP) were extracted from an internal carotid artery. Bacteria in

Periodontal examinations were performed to evaluate the average pocket probing depth (PPD) and rate of bleeding on probing (BOP) for each teeth of each patient. The patients were then divided into three groups according to the Japanese Society for Periodontology Clinical Practice Guideline for the Periodontal Treatment: periodontally healthy (control, n = 4; H1-H4), mild periodontitis (n = 4, excluded from further analysis), and severe periodontitis (periodontitis, n = 4; P1-P4).

120

121 **DNA purification**

122	APs were extensively minced using a scalpel and suspended in phosphate buffered
123	saline (PBS). The collected material from paper points and swabs were resuspended using
124	PBS. One milliliter of each resuspended bacterial sample was transferred to 2 ml Lysing
125	Matrix B tubes (MP Biomedicals, Santa Ana, CA, USA) containing 0.1 mm silica beads
126	and 500 μl ATL buffer (Qiagen, Hilden, Germany). The contents of each tube were
127	homogenized using FastPrep 24 (MP Biomedicals) for 45 s at 6.5 m/s. Bacterial DNA
128	was extracted using the QIAamp DNA Microbiome Kit (Qiagen) according to the
129	manufacturer's instructions. The quality and quantity of the DNA were verified using the
130	NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA)
131	and the PicoGreen dsDNA assay kit (Life Technologies, Grand Island, NY, USA).
132	
133	Polymerase chain reaction and NGS analysis
134	The first polymerase chain reaction (PCR) using 16S rRNA primers (forward: 5'-
135	AGAGTTTGATCCTGGCTCAG-3', reverse: 5'-
136	CGGTGTGTACAAGGCCCGGGAACG-3') and KAPA HiFi HotStart ReadyMix (Kapa

137 Biosystems Inc., Wilmington, MA, USA). Thermal cycling conditions were as follows:

138	heating at 98°C for 3 min; 25 cycles of 98°C for 30 s, 55°C for 30 s, and 72°C for 30 s;
139	and a final extension at 72°C for 5 min. A second PCR was performed using the first PCR
140	amplicons and V3-V4 primers (forward: 5'-
141	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
142	3', reverse: 5'-
143	GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA
144	ATCC-3') using the same reaction conditions. The quality and quantity of the DNA were
145	verified using Qubit 4 Fluorometer (Invitrogen, Life Technologies, Grand Island, NY,
146	USA) and the D1000 ScreenTape system (Agilent Technologies, Santa Clara, CA, USA).
147	NGS was conducted using the MiSeq [®] system (Illumina Inc., San Diego, CA, USA).
148	The obtained sequence was compared to the database using the CLC Genomics
149	Workbench (CLC bio, Aarhus, Denmark). Principal component analysis (PCA) and
150	clustering analysis were performed using R statistical software [26]. We also performed
151	co-occurrence analysis for the 13 highly detected operational taxonomic units from
152	control and periodontitis samples using the Quantitative Insights Into Microbial Ecology
153	approach [27].

154

155 Plasma IgG antibody titer test against periodontal bacteria

- 156 Plasma IgG antibody titer against periodontal bacteria was determined as described
- 157 previously [28]. The selected periodontal pathogenic bacteria were Aggregatibacter
- 158 actinomycetemcomitans (Aa) Y4, Aa ATC29523, Aa SUNY67, Eichenerra corrodens
- 159 (Ec) FDC1073, Fusobacterium nucleatum (Fn) ATCC25586, Prevotella intermedia (Pi)
- 160 ATCC25611, Pi ATCC33563, Capnocytophaga ochracea (Co) S3, Porphyromonas
- 161 gingivalis (Pg) FDC381, Pg SU63, Treponema denticola (Td) ATCC35405, and
- 162 Tannerella forsythia (Tf)ATCC43037.

163

164 General condition evaluation

- 165 General conditions of patients were evaluated based on age, disease history, body mass
- 166 index, blood pressure, C-reactive protein, cholesterol, and HbA1c (Table 1).

Characteristic	healty (n = 4)	periodontitis (n = 4)	р
Man — no. (%)	4 (100)	4 (100)	
Age, years	74.8±4.3	75.0±3.2	0.884
Current smoker — no. (%)	0	1 (25)	
Known diabetes — no. (%)	2(50)	2(50)	
Known hypertension— no. (%)	2(50)	2(50)	
Family history of cardiovascular disease — no. (%)	0	1 (25)	
Body-mass index	25.7±3.2	25.4±1.7	0.885
Blood pressure — mm Hg			
Systolic	128.5±24.2	134.5±16.3	0.772
Diastolic	69.3±22.3	72.5±14.2	0.663
CRP-mg/dL	0.32±0.32	0.16±0.17	0.386
Leukocyte count—×10 ^ 4/µL	6535±754	6293±983	0.564
Cholesterol — mg/dL	163.3±31.7	187±40.3	0.309
 High-density lipoprotein 	31.7±5.1	42.1±2.9	0.248
Low-density lipoprotein	79.8±8.7	118.5±33.9	0.248
Triglycerides — mg/dL	234±224.4	164.5±107.3	0.773
HbA1c (NGSP) — %	6.1±0.6	6.8±0.9	0.248

167

168 **Oral condition evaluation**

169 We evaluated the periodontal condition for each patient group from oral examination

170 and plasma IgG antibody titer test (Table 2).

Table 2 Periodontal Disease infection of study par	ticipants		
Variable		Patients (n = 4)	р
Total no. of teeth	24.8 ± 2.2	19.8 ± 7.4	0.561
periodontal pocket depth			
• 1~3mm — (%)	97.9 ± 1.8	71.4 ± 4.5	0.021
• 4~6mm — (%)	2.0 ± 1.8	27.2 ± 4.3	0.021
• over 7mm — (%)	0.2 ± 0.3	2.9 ± 2.1	0.026
Sites with gingival bleeding (%)	7.8 ± 8.1	24.0 ± 12.8	0.081
Serume IgG Antibody Titer Test against Periodontal Bacter	ia	-	
Aggregatibacter actinomycetemcomitans (Y4)	-0.06 ± 0.49	1.85 ± 1.33	0.021
Aggregatibacter actinomycetemcomitans (ATCC2952	3 0.02 ± 0.38	1.96 ± 0.83	0.021
Aggregatibacter actinomycetemcomitans (SUNY67)	0.04 ± 0.71	2.35 ± 1.21	0.021
 Capnocytophaga ochracea (S3) 	-2.70 ± 2.53	1.94 ± 3.08	0.043
Eichenerra corrodens (FDC1073)	-0.43 ± 0.91	0.43 ± 1.68	0.564
Fusobacterium nucleatum (ATCC25586)	-0.11 ± 1.52	2.42 ± 3.82	0.248
Prevotella intermedia (ATCC33563)	-0.95 ± 1.44	-0.63 ± 0.63	0.248
Prevotella intermedia (ATCC25611)	-0.22 ± 0.98	0.50 ± 1.37	0.773
 Porphyromonas gingivalis (FDC 381) 	-0.98 ± 0.31	1.83 ± 1.63	0.021
 Porphyromonas gingivalis (SU 63) 	-0.70 ± 0.46	2.58 ± 4.25	0.083
Treponema denticola (ATCC35405)	-0.03 ± 2.14	0.37 ± 1.94	0.564
 Campylobacter rectus (ATCC33238) 	3.44 ± 6.40	17.35 ± 18.47	0.083
 Bacteroides forsythus (ATCC43037) 	-0.90 ± 0.25	-0.41 ± 0.80	0.248

172

173 Statistical analysi	73	Statistical	ana	lysis	S
-------------------------	----	--------------------	-----	-------	---

- 174 The statistical analysis was performed using the Mann-Whitney U Test. A P-value of
- 175 0.05 was considered significant and was determined using SPSS Ver. 23 (SPSS Inc.,
- 176 Chicago, IL, USA) for all the experimental results.

177

178 **Results**

The participants' characteristics are presented in Table 1. There were no significant differences between both groups in terms of age, sex, other disease such as diabetes, and markers of inflammation and cholesterol. The periodontal disease conditions of the participants are presented in Table 2. In the control group, the ratio of PPD was < 3 mm, while the ratio of PPD in the periodontitis group was significantly higher i.e., > 4 mm. Serum IgG antibody titer was significantly higher in those with periodontitis that in control group for Aa Y4, Aa ATCC29523, Aa SUNY67, Co S3, and Pg FDC381.

187 Characterization of microbiome in ST, GP, and AP

188	The microbiome pattern of ST was relatively similar between control samples and
189	periodontitis samples (Fig. 1A). Among them, the ratio of Filifactor sp., which was
190	reported to be virulent [29], was significantly higher in periodontitis patients than in the
191	respective controls (Fig. 1B).
192	
193	Fig. 1. Characterization of microbiome in ST
194	The average ratio of the bacteria in ST from control and periodontitis patient samples
195	is presented. (A) Bacterial genera are indicated. (B) Thirteen bacterial species were highly
196	detected by NGS analysis. * indicates $P < 0.05$; Mann-Whitney U Test.
197	
198	The microbiome pattern of GP was notably different between the control and
199	periodontitis samples (Fig. 2A). The ratio of Rothia sp. and Neisseria sp., which exist in
200	a healthy oral cavity, were lower in periodontitis than in control samples. Conversely, the
201	ratios of Fusobacterium sp. and Filifactor sp., which are present in the periodontitis oral
202	cavity, were higher in periodontitis than in control samples (Fig. 2A, B). The ratio of

203	Desulfobulbus sp., which was detected in the periodontal pocket in a recent report [30],
204	was significantly higher in periodontitis samples than in controls (Fig. 2B).
205	
206	Fig. 2. Characterization of microbiome in GP
207	The average ratios of the bacteria in GP from control and periodontitis samples are shown.
208	(A) Bacterial genera are indicated. (B) Thirteen bacteria that were highly detected from
209	the NGS analysis. * indicates $P < 0.05$; Mann-Whitney U Test.
210	
211	The majority of the bacteria found in the AP microbiome belonged to the soil bacterial
211 212	The majority of the bacteria found in the AP microbiome belonged to the soil bacterial families <i>Burkholderiales, Bacillale</i> , and <i>Rhizobiales</i> . Their ratios were similar between
212	families Burkholderiales, Bacillale, and Rhizobiales. Their ratios were similar between
212 213	families <i>Burkholderiales</i> , <i>Bacillale</i> , and <i>Rhizobiales</i> . Their ratios were similar between periodontitis and control patients (Fig. 3). The ratio of <i>Sphingomonadales</i> , which is a

217 Fig. 3. Characterization of microbiome in AP

The average ratio of the bacteria in GP from our patients (control and periodontitis samples) is depicted and the order of the bacteria is shown. Thirteen bacteria were every evident from the NGS analyses.

221 Comparison of PCA results between controls and periodontitis

222 samples

223 Seventy five percent of the GP bacteria from periodontitis and control samples were 224 positioned in the center right side of the PCA graph (separated by a red solid circle) and 225 center of the plot (separated by a blue solid circle), respectively (Fig. 4). The two circular 226 locations were sufficiently separated. ST bacteria from periodontitis samples were located 227 in the center left side of the panel (separated by a red dotted circle). This position was 228 slightly more toward to the right side than that of control samples (separated by a blue 229 dotted circle). These two circular locations were comparatively closer. The bacteria in AP 230 were located towards the lower middle region of the plot (separated by a green solid 231 circle), and the control and periodontitis samples could not be clearly distinguished. The 232 AP bacteria were located far from the oral samples (ST and GP).

241	Comparison of clustering analysis results between control and
240	
239	controls, green solid circle; AP samples from both groups.
238	red dotted circle; ST bacteria from periodontitis, blue dotted circle; ST bacteria from
237	controls, blue solid circle; three GP bacteria from controls and one GP from periodontitis,
236	color; periodontitis: red color; three GP bacteria from periodontitis and one GP from
235	tongue surface, \circ : GP; Gingival pocket, Δ : AP; Atheromatous plaques; controls: blue
234	The PCA results from each sample are identified tagged as follows: □: ST; Saliva from

242 periodontitis samples

Similar to the PCA results, bacteria from oral samples (ST and GP) and AP were completely different (Fig. 5). However, 75% of AP bacteria from periodontitis were located at the lower part in the cluster and 75% of AP bacteria from controls were located at the upper part of the periodontitis samples.

247

Fig. 5. Comparison of clustering analysis results between control and periodontitis
samples

250	The clustering analysis results from each sample were tagged as follows: ST; Saliva from
251	tongue surface, GP; Gingival pocket, AP; Atheromatous plaques. Blue text represents
252	control samples and red text specifies periodontitis samples.
253	

254 Co-occurrence analysis of microbiome in AP

We evaluated the correlation of the microbiome in AP between the control and periodontitis group. In both groups, the major bacteria of the network were *Agrobacterium* sp., *Delftia* sp., and *Rhizobium* sp. This echoed a previous report [26]. However, the network around *Cutibacterium acnes* was different between control and

259 periodontitis samples (Fig. 6).

260 **Discussion**

The human body is a complex habitat for about 1,000 species and 100-1000 trillion bacteria, wherein approximately 100 million bacteria specifically reside exclusively in the oral cavity [31]. Periodontitis is an infection caused by the members of the microbiome in the oral cavity, and is related to a number of systematic diseases. However, the detailed mechanism underlying this infection is still not completely understood [17].

266	As pathogenic factors for periodontitis, Red complex species (P. gingivalis, T. denticola,
267	and <i>T. forsythia</i>) have been the focus of functional investigations [32]. Although there is
268	no doubt regarding their relationship to periodontitis development, the microbiome is
269	likely not comprised just of the pathogenic bacteria, but includes a mixture of various and
270	diverse species of bacteria, with the total population ultimately affecting the development
271	of this disease [33]. It has been suggested that 17 novel bacteria including Filifactor alosis
272	probably induce periodontitis, even though these bacteria were not previously thought to
273	be periodontitis-specific pathogenic bacteria [34].
274	The normal bacterial flora in the oral cavity, which was previously disregarded as
275	insignificant, is actually very crucial for periodontitis development or progression. In
276	general, pathogenic bacteria, such as P. gingivalis, configure the microbiome with the
277	normal bacteria flora [29]. If the balance of pathogenic and normal bacteria in the
278	microbiome is lost for some reason, the microbiome increases its pathogenicity and
279	induces the disease. Therefore, a comprehensive microbiome analysis is necessary to
280	investigate normal as well as pathogenic bacteria composition.

281	In this study, we performed a comprehensive microbiome analysis of the internal
282	carotid artery stenosis in patients affected with and without periodontitis. We harvested
283	bacteria samples from TS, GP, and AP from each patient and performed NGS analysis.
284	This analysis showed that the microbiome in the oral cavity was more numerous for
285	Fusobacterium sp. and Filifactor sp., which are periodontal bacterial pathogens, in the
286	periodontitis group compared to the control group. In particular, the ratio of <i>Filifactor</i> sp.
287	in TS was significantly higher in the periodontitis group in comparison to the control
288	group. Conversely, the ratio of Rothia sp and Neisseria sp in GP, which are constituents
289	of the normal bacterial flora in a healthy oral cavity, was lower in the periodontitis group
290	than in the control group [35, 36]. Thus, remarkably, the ratio of normal bacteria in GP
291	and TS decreased while that of pathogenic bacteria increased.
292	To investigate the possibility that periodontal bacteria might contribute to
293	atheromatous plaque formation directly on the vascular wall by hematogenous spread,
294	NGS analysis was done using the atheromatous plaque samples. Previous reports
295	established that <i>P. gingivalis</i> induces the expression of vascular cell adhesion molecule 1
296	from vascular endothelial cells, and promotes thrombus formation by macrophage

297	invasion into blood vessels, resulting in platelet aggregation [37, 38]. Another report
298	demonstrated that <i>P. gingivalis</i> infection accelerates the progression of atherosclerosis in
299	a heterozygous apolipoprotein E-deficient murine model [20]. Presently, oral bacteria
300	were barely detectable in AP, regardless of the presence or absence of periodontitis. The
301	patterns of the microbiome in AP were entirely different in TS and GP. A prior study
302	reported detection of some oral bacteria in the atheromatous plaque [39]. However, other
303	authors reported that <i>P. gingivalis</i> infection in an animal model induced atheromatous
304	plaque formation, although it was actually not detected in the atheromatous plaque [40].
305	Our data enables us to conclude that it is unlikely that the oral bacteria spread
306	hematogenously and directly induce the formation of atheromatous plaque on the aortic
307	wall.
308	The co-occurrence analysis of the microbiome in AP revealed the most significant
309	bacteria were Agrobacterium sp., Delftia sp., and Rhizobium sp., which constituted the
310	network in both groups. Although these are soil bacteria, they were also previously
311	detected in AP [26]. Another significant bacterium, C. acnes, configured the network in
312	the control group. The relationship with C. acnes was different among the control and

313	periodontitis groups. This bacterium is categorized as a normal bacterium present on the
314	skin and in the gut, although it was also detected in AP [41]. C. acnes reportedly can
315	cause sarcoidosis, sepsis, and infective endocarditis, and heat-killed C. acnes render mice
316	very susceptible to lipopolysaccharide (LPS) toxicity. C. acnes also promote the
317	production of cytokines, such as interleukin-12, interferon-gamma, and Toll-like receptor
318	4 [42]. Presently, it is conceivable that LPS produced by periodontal bacteria activated
319	<i>C. acnes</i> in the blood vessels, which then formed the atheromatous plaque. In this scenario,
320	the difference of the network in AP between the control and periodontitis samples might
321	be caused by LPS that is spread hematogenously, as well as by the chronic inflammatory
322	effect. Recently, it was reported that the production of trimethylamine-N-oxide, which
323	promotes atherosclerosis, depends upon the metabolism of the intestinal microbiome [43].
324	The prior and present data indicate that the loss of microbiome balance in the human body
325	affects the development of atherosclerosis. Periodontitis has a great effect on the
326	microbiome configuration in the oral cavity and promotes the formation of various
327	metabolic products. However, this detailed mechanism of atherosclerosis development

328 remains largely unknown. In a further study, we intend to investigate the relationship

329 between periodontitis and atherosclerosis.

330 Conclusion

- 331 The ratio of oral bacteria in AP was remarkably low, and the microbiome pattern was332 entirely different from that found in the oral microbiome. In other words, oral bacteria
- 333 did not directly induce the atheromatous plaque configuration. However, the microbiome

334 pattern and the correlation of the microbiome in AP were different between the controls

- and periodontitis samples. Thus, metabolic products of the microbiome, or the host's
- inflammatory response, might indirectly affect the atheromatous plaque configuration.

337

338 Acknowledgments

We thank all the staff in the Department of Biobank, Okayama University Hospital for
helping our research. We wish to acknowledge Dr. Masaru Kuriyama, Dr. Yutaka Shimoe,
Dr. Sinzo Ota, Dr. Sinichi Takeshima from the Brain Attack Center Ota Memorial
Hospital for collecting clinical samples, and Dr. Zulema Arias from Okayama University

343 Graduate School of Medicine, Dentistry and Pharmaceutical Sciences for supporting this

344 study.

345

346 **References**

- 1. Grogan D. The microbes within. Nature. 2015;518(7540): S2. doi: 10.1038/518S2a.
- 2. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An
- 349 obesity-associated gut microbiome with increased capacity for energy harvest.

350 Nature. 2006;444(7122): 1027-1031. doi: 10.1038/nature05414.

- 351 3. Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK.
- 352 Specialized metabolites from the microbiome in health and disease. Cell Metab.

353 2014;20(5): 719-730. Epub 2014/11/04. doi: 10.1016/j.cmet.2014.10.016.

- 4. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al.
- 355 Distinct and complex bacterial profiles in human periodontitis and health revealed
- 356 by 16S pyrosequencing. ISME J. 2012;6(6): 1176-1185. Epub 2011/12/15. doi:
- 357 10.1038/ismej.2011.191.
- 358 5. Maddi A, Scannapieco FA. Oral biofilms, oral and periodontal infections, and

359		systemic disease. Am J Dent. 2013;26(5): 249-254. PubMed PMID: 24479275.
360	6.	Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common
361		interrelated diseases. Nat Rev Endocrinol. 2011;7(12): 738-748. Epub 2011/06/28.
362		doi: 10.1038/nrendo.2011.106.
363	7.	Senba T, Kobayashi Y, Inoue K, Kaneto C, Inoue M, Toyokawa S, et al. The
364		association between self-reported periodontitis and coronary heart diseasefrom
365		MY Health Up Study J Occup Health. 2008;50(3): 283-287. Epub 2008/04/15.
366	8.	Lafon A, Pereira B, Dufour T, Rigouby V, Giroud M, Béjot Y, et al. Periodontal
367		disease and stroke: a meta-analysis of cohort studies. Eur J Neurol. 2014;21(9):
368		1155-1161, e66-7. Epub 2014/04/08. doi: 10.1111/ene.12415.
369	9.	Zeng XT, Deng AP, Li C, Xia LY, Niu YM, Leng WD. Periodontal disease and risk
370		of head and neck cancer: a meta-analysis of observational studies. PLoS One.
371		2013;8(10): e79017. Epub 2013/10/23. doi: 10.1371/journal.pone.0079017.
372	10.	Yoneda M, Naka S, Nakano K, Wada K, Endo H, Mawatari H, et al. Involvement of
373		a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-
374		alcoholic fatty liver disease. BMC Gastroenterol. 2012;12: 16. Epub 2012/02/16.

375		doi: 10.1186/1471-230X-12-16. PubMed PMID: 22340817; PubMed Central
376	11.	Sanz M, Kornman K; working group 3 of the joint EFP/AAP workshop.
377		Periodontitis and adverse pregnancy outcomes: consensus report of the Joint
378		EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Periodontol.
379		2013;84(4 Suppl): S164-169. doi: 10.1902/jop.2013.1340016.
380	12.	Isoshima D, Yamashiro K, Matsunaga K, Shinobe M, Nakanishi N, Nakanishi I, et
381		al. Assessment of pathogenesis of infective endocarditis by plasma IgG antibody
382		titer test against periodontal bacteria. Clin Case Rep. 2017;5(10): 1580-1586. Epub
383		2017/08/17. doi: 10.1002/ccr3.1066.
384	13.	Ross R. Atherosclerosisan inflammatory disease. N Engl J Med. 1999;340(2): 115-
385		126. doi: 10.1056/NEJM199901143400207.
386	14.	Bahekar AA, Singh S, Saha S, Molnar J, Arora R. The prevalence and incidence of
387		coronary heart disease is significantly increased in periodontitis: a meta-analysis.
388		Am Heart J. 2007;154(5): 830-837. Epub 2007/08/20. doi:
389		10.1016/j.ahj.2007.06.037.

390 15. Ishihara K, Nabuchi A, Ito R, Miyachi K, Kuramitsu HK, Okuda K. Correlation

391		between detection rates of periodontopathic bacterial DNA in coronary stenotic
392		artery plaque [corrected] and in dental plaque samples. J Clin Microbiol. 2004;42(3):
393		1313-1315.
394	16.	Okuda K, Ishihara K, Nakagawa T, Hirayama A, Inayama Y. Detection of
395		Treponema denticola in atherosclerotic lesions. J Clin Microbiol. 2001;39(3): 1114-
396		1117. doi: 10.1128/JCM.39.3.1114-1117.2001.
397	17.	Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME,
398		et al. Periodontal disease and atherosclerotic vascular disease: does the evidence
399		support an independent association?: a scientific statement from the American Heart
400		Association. Circulation. 2012;125(20): 2520-2544. Epub 2012/04/18. doi:
401		10.1161/CIR.0b013e31825719f3.
402	18.	Hujoel PP, Drangsholt M, Spiekerman C, DeRouen TA. Periodontal disease and
403		coronary heart disease risk. JAMA. 2000;284(11): 1406-1410.
404	19.	Peacock ME, Carson RE. Frequency of self-reported medical conditions in
405		periodontal patients. J Periodontol. 1995;66(11): 1004-1007. doi:
406		10.1902/jop.1995.66.11.1004.

407	20.	Li L, Messas E, Batista EL, Levine RA, Amar S. Porphyromonas gingivalis infection
408		accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-
409		deficient murine model. Circulation. 2002;105(7): 861-867.
410	21.	Kurihara N, Inoue Y, Iwai T, Umeda M, Huang Y, Ishikawa I. Detection and
411		localization of periodontopathic bacteria in abdominal aortic aneurysms. Eur J Vasc
412		Endovasc Surg. 2004;28(5): 553-558. doi: 10.1016/j.ejvs.2004.08.010.
413	22.	Papapanou PN, Sellén A, Wennstr JL, Dahlén G. An analysis of the subgingival
414		microflora in randomly selected subjects. Oral Microbiol Immunol. 1993;8(1): 24-
415		29.
416	23.	Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human
417		genetics shape the gut microbiome. Cell. 2014;159(4): 789-799. doi:
418		10.1016/j.cell.2014.09.053.
419	24.	Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision
420		microbiome reconstitution restores bile acid mediated resistance to Clostridium
421		difficile. Nature. 2015;517(7533): 205-208. Epub 2014/10/22. doi:
422		10.1038/nature13828.

423	25.	Kudo C, Naruishi K, Maeda H, Abiko Y, Hino T, Iwata M, et al. Assessment of the
424		plasma/serum IgG test to screen for periodontitis. J Dent Res. 2012;91(12): 1190-
425		1195. Epub 2012/09/26. doi: 10.1177/0022034512461796.
426	26.	Ziganshina EE, Sharifullina DM, Lozhkin AP, Khayrullin RN, Ignatyev IM,
427		Ziganshin AM. Bacterial Communities Associated with Atherosclerotic Plaques
428		from Russian Individuals with Atherosclerosis. PLoS One. 2016;11(10): e0164836.
429		Epub 2016/10/13. doi: 10.1371/journal.pone.0164836.
430	27.	Shi W, Qin M, Chen F, Xia B. Supragingival microbial profiles of permanent and
431		deciduous teeth in children with mixed dentition. PLoS One. 2016;11(1): e0146938.
432		Epub 2016/01/11. doi: 10.1371/journal.pone.0146938.
433	28.	Murayama Y, Nagai A, Okamura K, Kurihara H, Nomura Y, Kokeguchi S, et al.
434		Serum immunoglobulin G antibody to periodontal bacteria. Adv Dent Res.
435		1988;2(2): 339-345. doi: 10.1177/08959374880020022401.
436	29.	Pérez-Chaparro PJ, Gonçalves C, Figueiredo LC, Faveri M, Lobão E, Tamashiro N,
437		et al. Newly identified pathogens associated with periodontitis: a systematic review.
438		J Dent Res. 2014;93(9): 846-858. Epub 2014/07/29. doi:

439 10.1177/0022034514542468.

- 440 30. Oliveira RR, Fermiano D, Feres M, Figueiredo LC, Teles FR, Soares GM, et al.
- 441 Levels of candidate periodontal pathogens in subgingival biofilm. J Dent Res.
- 442 2016;95(6): 711-718. Epub 2016/03/02. doi: 10.1177/0022034516634619.
- 443 31. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria
- 444 cells in the body. PLoS Biol. 2016;14(8): e1002533. Epub 2016/08/19. doi:
- 445 10.1371/journal.pbio.1002533.
- 446 32. Socransky SS, Smith C, Haffajee AD. Subgingival microbial profiles in refractory
- 447 periodontal disease. J Clin Periodontol. 2002;29(3): 260-268.
- 448 33. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction.
- 449 Periodontol 2000. 1997;14: 9-11.
- 450 34. Takeshita T, Nakano Y, Kumagai T, Yasui M, Kamio N, Shibata Y, et al. The
- 451 ecological proportion of indigenous bacterial populations in saliva is correlated with
- 452 oral health status. ISME J. 2009;3(1): 65-78. Epub 2008/10/02. doi:
 453 10.1038/ismej.2008.91.
- 454 35. Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, et al. Metagenomic sequencing reveals

455		microbiota and its functional potential associated with periodontal disease. Sci Rep.
456		2013;3: 1843. doi: 10.1038/srep01843.
457	36.	Takeshita T, Matsuo K, Furuta M, Shibata Y, Fukami K, Shimazaki Y, et al. Distinct
458		composition of the oral indigenous microbiota in South Korean and Japanese adults.
459		Sci Rep. 2014;4: 6990. Epub 2014/11/11. doi: 10.1038/srep06990.
460	37.	Khlgatian M, Nassar H, Chou HH, Gibson FC, Genco CA. Fimbria-dependent
461		activation of cell adhesion molecule expression in Porphyromonas gingivalis-
462		infected endothelial cells. Infect Immun. 2002;70(1): 257-267.
463	38.	Imamura T, Travis J, Potempa J. The biphasic virulence activities of gingipains:
464		activation and inactivation of host proteins. Curr Protein Pept Sci. 2003;4(6): 443-
465		450.
466	39.	Toyofuku T, Inoue Y, Kurihara N, Kudo T, Jibiki M, Sugano N, et al. Differential
467		detection rate of periodontopathic bacteria in atherosclerosis. Surg Today.
468		2011;41(10): 1395-1400. Epub 2011/09/16. doi: 10.1007/s00595-010-4496-5.
469	40.	Jain A, Batista EL, Serhan C, Stahl GL, Van Dyke TE. Role for periodontitis in the
470		progression of lipid deposition in an animal model. Infect Immun. 2003;71(10):

471		6012-6018. PubMed PMID: 14500522; PubMed Central PMCID: PMCPMC201045.
472	41.	Koren O, Spor A, Felin J, Fåk, F, Stombaugh J, Tremaroli V, et al. Human oral, gut,
473		and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A.
474		2011;108 Suppl 1: 4592-4598. Epub 2010/10/11. doi: 10.1073/pnas.1011383107.
475	42.	Tsutsui H, Imamura M, Fujimoto J, Nakanishi K. The TLR4/TRIF-mediated
476		activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in
477		mice. Gastroenterol Res Pract. 2010;2010: 641865. Epub 2010/06/16. doi:
478		10.1155/2010/641865.
479		43. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal
480		microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl
481		J Med. 2013;368(17): 1575-1584. doi: 10.1056/NEJMoa1109400.

PC1

OUT_1:o__RhizobialeST.g_Agrobacterium OTU_2:o__ActinomycetaleST.g_GProGPionibacterium OUT_3:o__BurkholderialeST.g_Delftia OUT_4:o__RhizobialeST.g_Rhizobium

Figure 6