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Abstract 23	

Variation in natural selection across heterogeneous landscapes often produces 1) among-24	

population differences in phenotypic traits, 2) trait-by-environment associations, and 3) higher 25	

fitness of local populations. Using a broad literature review of common garden studies published 26	

between 1941 and 2017, we documented the commonness of these three signatures in plants 27	

native to North America’s Great Basin, an area of extensive restoration and revegetation efforts, 28	

and asked which traits and environmental variables were involved. We also asked, independent 29	

of geographic distance, whether populations from more similar environments had more similar 30	

traits. From 327 experiments testing 121 taxa in 170 studies, we found 95.1% of 305 experiments 31	

reported among-population differences, and 81.4% of 161 experiments reported trait-by-32	

environment associations. Locals showed greater survival in 67% of 24 reciprocal experiments 33	

that reported survival, and higher fitness in 90% of 10 reciprocal experiments that reported 34	

reproductive output. A meta-analysis on a subset of studies found that variation in eight 35	

commonly-measured traits was associated with mean annual precipitation and mean annual 36	

temperature at the source location, with notably strong relationships for flowering phenology, 37	

leaf size, and survival, among others. Although the Great Basin is sometimes perceived as a 38	

region of homogeneous ecosystems, our results demonstrate widespread habitat-related 39	

population differentiation and local adaptation. Locally-sourced plants likely harbor adaptations 40	

at rates and magnitudes that are immediately relevant to restoration success, and our results 41	

suggest that certain key traits and environmental variables should be prioritized in future 42	

assessments of plants in this region. 43	

  44	
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3	

Introduction 45	

All plant species have limits to the range of conditions in which they can live, and all but 46	

the narrowest endemics grow across environments that vary in biotic and abiotic conditions. This 47	

natural complexity has significant impacts on individual survival and reproduction, and thus 48	

plant evolution (Loveless and Hamrick, 1984; Linhart and Grant, 1996; Ackerly et al., 2000; 49	

Reich et al., 2003). As plants are subject to different conditions associated with their local 50	

environment, populations of the same species will experience differential selection pressures 51	

(Turesson, 1922; Clausen, Keck and Hiesey, 1948; Antonovics and Bradshaw, 1968; Langlet, 52	

1971), creating habitat-correlated intraspecific variation. When this intraspecific variation results 53	

in populations that are more fit in their home environment than foreign populations, these 54	

populations are considered to be locally adapted (Kawecki and Ebert, 2004; Blanquart et al., 55	

2013). The existence of local adaptation is well-established across different organisms and 56	

ecosystems, although our synthetic knowledge of this important topic rests on surprisingly few 57	

reviews of the subject (e.g. Leimu and Fischer, 2008; Hereford, 2009; Oduor, Leimu and van 58	

Kleunen, 2016). Here, we focus on a particular region and ask if plant species share patterns of 59	

intraspecific variation and local adaptation, and, across taxa, what functional traits and 60	

environmental variables are most important for such patterns in this region. The regional focus 61	

provides a strong test of expectations generated from more heterogeneous samples, facilitates 62	

comparison of the strength of selection among specific traits, and provides an opportunity to link 63	

basic evolutionary patterns with applied concerns. 64	

The detection of local adaptation ideally involves reciprocal transplant experiments 65	

designed to test for a local advantage across environments (Blanquart et al., 2013; Bucharova, 66	

Durka, et al., 2017). However, patterns associated with local adaptation (hereafter, signatures) 67	
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4	

can be detected in non-reciprocal comparisons of different populations of the same species 68	

(Endler, 1986). When populations are locally adapted to environmental variables, we expect to 69	

see three basic signatures from common garden experiments: 1) differences among populations 70	

in fitness-related traits, 2) correlations between these trait values and environmental or other 71	

habitat-related variables, and, if reciprocal transplants have been conducted, 3) higher fitness of 72	

local over nonlocal populations in the local environment. Although population differences 73	

(signature 1) are necessary for local adaptation, they alone are not sufficient evidence due to 74	

factors such as genetic drift, high gene flow, and rapid environmental change, among other 75	

factors (Kawecki and Ebert, 2004; Blows and Hoffmann, 2005). While fitness differences in 76	

reciprocal transplant experiments (signature 3) are the “gold standard” for detecting local 77	

adaptation, there are experimental trade-offs between the number of populations sampled and the 78	

ability to do fully reciprocal transplants (Blanquart et al., 2013). Thus, correlative approaches 79	

(signature 2) are popular alternatives that can sample many more populations to infer local 80	

adaptation (e.g. St Clair, Mandel and Vance-Borland, 2005), though spurious correlations, low 81	

sample sizes, or high variability in trait values could over- or under-predict the degree of local 82	

adaptation in wild populations using this approach. Given these considerations, separately 83	

reporting all three signatures can give an overall picture of the likelihood of within-species 84	

variation and potential local adaptation in a region, and is the first step towards a better 85	

understanding of variation in the strength and consistency of natural selection (Siepielski, 86	

Dibattista and Carlson, 2009). 87	

 The Great Basin Desert of North America is a ~540,000 km2  cold desert landscape 88	

characterized by hundreds of internally-draining basin and range formations, which create high 89	

spatial and environmental heterogeneity and variability (Tisdale and Hironaka, 1981; Comstock 90	
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and Ehleringer, 1992). While these are the kinds of conditions that would be expected to result in 91	

widespread local adaptation, the flora of the Great Basin is poorly represented in the relatively 92	

few reviews on the subject (Leimu and Fischer, 2008; Hereford, 2009; Oduor, Leimu and van 93	

Kleunen, 2016), and this has resulted in uncertainty as to the prevalence, magnitude, and 94	

importance that local adaptation plays in this large and increasingly imperiled region (United 95	

States. House of Representatives. Committee on Appropriations., 2014; Jones, Monaco and 96	

Rigby, 2015; Chivers et al., 2016). Gaining a better understanding of local adaptation in the 97	

Great Basin is important not only because it is a large, relatively intact floristic region in the 98	

Western US, but also because this information has direct impacts on conservation and restoration 99	

efforts. Large-scale, seed-based restoration has been very common in the Great Basin for many 100	

decades (Pilliod, Welty and Toevs, 2017), and trends in large destructive wildfires (Dennison et 101	

al., 2014) and other disturbances (Rowland, Suring and Michael, 2010; Davies et al., 2011) 102	

ensure even higher demand for restoration efforts in the future. Guided by the various national 103	

policies and strategies dating from the 1960s (Richards, Chambers and Ross, 1998) to the present 104	

National Seed Strategy (Plant Conservation Alliance, 2015) and Integrated Rangeland Fire 105	

Management Strategy (USDOI, 2015), a growing majority of these efforts are using native 106	

plants. However, few of the widely-available sources of commercially-produced seeds of native 107	

species originate from populations within the Great Basin (Jones and Larson, 2005) or have been 108	

selected based on their success in restoring Great Basin habitats (Leger and Baughman, 2015). 109	

Further, demand for native seed has always exceeded supply (McArthur and Young, 1999; 110	

Johnson et al., 2010), which has resulted in the prioritization of seed quantity and uniformity 111	

over population suitability and local adaptation (Meyer, 1997; Richards, Chambers and Ross, 112	

1998; Leger and Baughman, 2015). Therefore, it is still uncommon for restorationists in this 113	
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region to prioritize or even have the option to prioritize the use of local populations, despite 114	

growing support of the importance of such practices (Basey, Fant and Kramer, 2015; Espeland et 115	

al., 2017).  116	

Though our understanding of the prevalence and scale of local adaptation in the Great 117	

Basin is far from complete, there is an abundant literature of peer-reviewed studies on the plants 118	

native to this region spanning over 75 years that have directly measured trait variation between 119	

populations via laboratory, greenhouse, or field common gardens and reciprocal transplants. 120	

Many of these studies have also tested for correlations between intraspecific variation and 121	

environmental variables, and some were designed to detect local adaptation. This research 122	

includes studies of germination patterns (e.g. McArthur, Meyer and Weber, 1987; Meyer et al., 123	

1995), large genecology experiments (e.g. Erickson, Mandel and Sorenson, 2004; Johnson, 124	

Leger and Vance-Borland, 2017), and reciprocal transplants (e.g. Evans and Young, 1990; 125	

Barnes, 2009), among other types of studies. This rich literature provides an opportunity to 126	

summarize local adaptation and its associated patterns, or signatures (defined above), in this 127	

region, as well as describe which phenotypic traits have the strongest signatures of local 128	

adaptation.  129	

 Here, we present results of a broad literature review and subsequent meta-analysis using 130	

published studies that compared phenotypic traits of multiple populations of native Great Basin 131	

species in one or more common environments. Our first objective was to record published 132	

instances of the three expected signatures of local adaptation (population variation, trait-by-133	

environment association, and greater local fitness) within grasses, forbs, shrubs, and deciduous 134	

trees native to the Great Basin, asking how common these signatures are, as well as which 135	

phenotypic traits and environmental variables were most commonly associated with these 136	
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signatures. We also present results by taxonomic group, lifeform, lifespan, distribution, and 137	

mating system. This first objective encompassed all possible studies, including those that did not 138	

provide sufficient details for formal meta-analysis, which allowed us to incorporate the broadest 139	

range of studies, including older studies that provided minimal quantitative detail. Our second 140	

objective was to examine links between the magnitude of trait and environmental divergence 141	

(mean annual precipitation and mean annual temperature) among populations across multiple 142	

taxa, for the subset of experiments amenable to this approach, asking whether populations from 143	

more similar environments were more similar in phenotypic traits. We also used meta-analysis to 144	

ask which traits and environmental variables showed the strongest patterns of association.  145	

We expected to find widespread evidence of local adaptation and its signatures in the 146	

plants of the Great Basin, and we hypothesize that phenological and size-based traits, which 147	

show phenotypic variation in response to climate variation in both plants and animals (e.g. 148	

Sheridan and Bickford, 2011; Anderson et al., 2012) and have been observed to be under 149	

selection in the Great Basin (Leger and Baughman, 2015), would be important indicators of 150	

adaptation in this region. We discuss our results both as a contribution to our general 151	

understanding of natural selection in plants, and as an example of evolutionary theory applied to 152	

the management and restoration of a large geographic region, where active and ongoing 153	

management can benefit from information on intraspecific variation and local adaptation. 154	

Methods 155	

Literature search  156	

We began by using the search engines Google Scholar and Web of Science to search for 157	

combinations of key terms (see additional methods in Supporting Information Appendix 1). In 158	

order to be included in our review, a study had to meet all these criteria:  159	
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a) Examined a species that is native within the floristic Great Basin 160	

b) Examined and compared more than one population of that species 161	

c) Measured at least one phenotypic, physiological, phenological, or other 162	

potentially fitness-related trait (e.g. survival; hereafter, trait) 163	

d) Measured the trait(s) of the populations in at least one common environment 164	

(including laboratories, growth chambers, greenhouses, or outside gardens; 165	

hereafter, garden).  166	

A plant was determined to be native to the Great Basin if the taxa had at least one 167	

occurrence with native status within the floristic Great Basin according to occurrence 168	

information from the USDA Plants Database (USDA and NRCS, 2018) and/or the U.S Virtual 169	

Herbarium Online (Barkworth et al., 2018). A total of 170 studies published between 1941 and 170	

July 2017 were encountered that met these criteria.  171	

Categorization and scoring of literature 172	

All studies meeting our criteria were categorized and scored for each signature. The 173	

coordinates of all gardens and populations in each study were recorded or, if possible, generated 174	

from localities described in the studies (Supporting Information Appendix 1). For each study, we 175	

then noted these 15 characteristics: the year published, year(s) of plant material collection, 176	

year(s) of experimentation, number of years reported, taxa (genus, species, subspecies), life 177	

history traits (taxonomic status, lifeform, geographic range, life span, breeding system), 178	

experiment type (laboratory, greenhouse, common garden, reciprocal transplant), number of 179	

gardens, number of populations tested, which generation of material was used, and whether or 180	

not experimenters attempted to control for maternal effects prior to testing (Supporting 181	

Information Appendix 1). Life history traits were compiled for each taxon from the USDA Plants 182	
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Database as well as from published literature (Supporting Information Appendix 1). Each taxon 183	

(subspecies level, if given) was entered separately for studies addressing multiple taxa. In studies 184	

where more than one experiment was performed, and the experiments differed in the experiment 185	

type (defined above), the identity of the populations being compared, and/or the generation of 186	

material used, they were entered as separate experiments. In cases where the list of tested 187	

populations was identical among multiple published studies, and these materials came from the 188	

same collections, these experiments were entered separately if the garden type or location(s) 189	

differed among the studies or if authors separately published different traits from the same 190	

gardens, ensuring that no trait was recorded twice for the same set of populations in the same 191	

garden. In cases where the list of tested populations did not completely overlap between studies, 192	

even if some from each study arose from the same collections, they were entered separately. 193	

These methods carefully emphasized the inclusion of the greatest number of relevant 194	

experiments and traits without duplication, but nonetheless resulted in some non-independence 195	

between some experiments. A total 327 taxa-specific entries (hereafter, experiments) were 196	

generated from the 170 published studies (Supporting Information Appendix 2).  197	

 The first two expected signatures of local adaptation were scored using a Yes/No 198	

designation for each experiment which considered all measured phenotypic traits. A score of 199	

“Yes”, or, in the absence of supporting statistical evidence, “Authors claim Yes”, was given 200	

when at least one measured trait significantly demonstrated the signature for at least two 201	

populations, and a score of “No” or “Authors claim No” was given when the signature was not 202	

detected between any pair of populations (Supporting Information Appendix 1). In addition, each 203	

of the measured and reported traits and environmental variables were scored (hereafter, trait 204	

scores) in the same way for each signature. Of the 327 experiments, 305 (93.3%) met the criteria 205	
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to score for among-population variation (signature 1) and 161 (49.5%) met the criteria to score 206	

for trait-by-environment association (signature 2). Pearson’s chi-squared tests were used to 207	

determine if there were differences in signatures 1 and 2 among plants with different life-history 208	

traits, using totals from both “Yes/No” and “Authors Claim Yes/No” results, excluding any life 209	

history groups represented by less than 10 experiments. 210	

To score whether there was higher fitness of a local population in a common garden 211	

(hereafter, signature 3), only experiments in which outdoor reciprocal transplants or common 212	

gardens were performed using a local population in at least one garden were considered 213	

(Supporting Information Appendix 1). Additionally, the experiment had to measure a fitness-214	

relevant response: survival, reproductive output (number of seeds or flowers, or other 215	

reproductive output), a fitness index (a combination of several size and production traits), or total 216	

aboveground biomass. Each experiment was assigned a composite score to fully capture 217	

variation in the performance of each garden’s local population, across multiple gardens as well 218	

as through multiple sampling dates (Supporting Information Appendix 1). The five possible 219	

composite scores were “Yes for all gardens at all times”, “Yes for all gardens at some times”, 220	

“Yes for some gardens at all times”, “Yes for some gardens at some times”, and “No for all 221	

gardens at all times”. These scores refer only to those gardens within each experiment that 222	

included their own local population. Of the 326 experiments, 27 (8.3%) were appropriate for this 223	

scoring. This scoring provides an estimate of the commonness of higher local fitness, but it is not 224	

a measure of the importance of the difference per se. For example, a fitness difference could 225	

occur uncommonly, but have a large impact on population trajectories (i.e. large differences in 226	

survival after a rare drought event). 227	

Our dataset, which had uneven numbers of experiments representing each species, 228	
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contained the possibility of bias associated with highly-studied taxa influencing patterns more 229	

than less-studied taxa. To ask how this affected overall results, we compared tallies of all scores 230	

without correcting for multiple experiments per species to tallies using an average score for each 231	

species for each signature. To generate these average scores for signature 1 and 2, we totaled all 232	

“Yes” and “Authors claim Yes” scores for each species and divided by the total number of scores 233	

(all Ys plus all Ns) for that species. For signature 3, all forms of “Yes” (all but “No for all 234	

gardens at all times”) were totaled into a Y and divided by the total number of scores. Then, we 235	

averaged these per-species scores to re-calculate overall effects in which each species was 236	

represented only once, and compared the results of the different averaging methods for each 237	

signature. 238	

Quantitative comparison of trait-by-environment associations 239	

As a complement to the survey of author-reported results described above, we conducted 240	

a further, quantitative analysis of trait and climate values. Specifically, to examine associations 241	

between the differences in trait values and the differences in environmental and geographic 242	

distance among population origins, we utilized experiments from which population-specific trait 243	

data and geographic coordinates could be extracted or obtained through author contact. Data 244	

from laboratory and greenhouse experiments were not considered for this extraction. First, we 245	

identified the most commonly measured traits across studies, which were then manually 246	

extracted from text, tables, or graphical data (Supporting Information Appendix 1). Next, we 247	

extracted trait data from the latest sampling date for which the most populations at the most 248	

gardens were represented, and if multiple treatments were used, we only extracted data for the 249	

author-defined ‘control’ treatment. However, if no control was defined, we used the treatment 250	

that was the most unaltered or representative of the garden environment (e.g. unweeded, or 251	
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unwatered). For each population/trait combination, we used either author-provided mean values 252	

or calculated a mean trait value from available data. Rather than averaging values across gardens, 253	

data, data from each garden location within each experiment was extracted separately and 254	

considered its own sample. We did this because it is not uncommon for traits to be expressed 255	

differently in different common garden locations (e.g. Johnson, Leger and Vance-Borland, 256	

2017). Finally, we generated 30-year annual precipitation and mean annual temperature values 257	

for each population’s location of origin using the ClimateNA v5.10 software package based on 258	

methodology described by Wang et al. (2016). These 30-year averages are calculated every 10 259	

years (i.e. 1951-1980, 1961-1990, etc.). Because studies took place at many times over the last 260	

75 years, we used the most proximate climate normal for each experiment that did not include or 261	

surpass the years during which the experiment’s populations were collected (Supporting 262	

Information Appendix 2).  263	

To reduce the likelihood of spurious correlations or false negative results, we limited this 264	

dataset to traits measured in at least 5 populations in at least 20 common garden locations (mean 265	

locations per trait: 34.4; range: 21-46), resulting in 81 locations (from 56 experiments) that 266	

measured at least one of eight frequently-measured phenotypic traits (Table 1). Within each 267	

location, we calculated pairwise Euclidean distances for each trait value, climate factor, and 268	

geographic distance for every possible pair of populations. Geographic distances were generated 269	

using the earth.dist function in fossil package (Vavrek, 2011) in the statistical computing 270	

environment R (R Core Team, 2017). Then, partial Mantel tests were used to compare pairwise 271	

trait and climate distances for each experiment while controlling for geographic distances, using 272	

the vegan package (Oksanen et al., 2018) in R (R Core Team, 2017). We used the metacor.DSL 273	

function in the metacor package (Laliberté, 2011) to generate an overall effect size (partial 274	
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correlation) and upper and lower confidence intervals for each combination of trait and 275	

environmental variable. Lastly, to better understand effect sizes for a subset of species, we ran 276	

simple linear regression analyses for each location, comparing average trait values and 277	

environmental values to generate a slope that estimated trait change per unit change in climate 278	

factors. Experiments with R2 values of 0.2 or less were excluded from this particular analysis, 279	

and the median slope across experiments was retained as an estimate of the trait-by-environment 280	

relationship. The arbitrary cutoff (R2 = 0.2) for this step was used simply as a way to focus on 281	

and report effect sizes from some of the stronger biological relationships that could be of 282	

particular interest to managers, restoration practitioners and evolutionary ecologists. Due to 283	

limited sample sizes for factors such as lifeform, mating system, geographic distribution, etc., we 284	

did not include these factors in any of the quantitative analyses, but present lifeform (shrub, 285	

grass, or forb) information for each trait response as additional results in the Supporting 286	

Information Appendix 3. 287	

Results 288	

Summary of reviewed literature 289	

Our literature search revealed 170 published studies that measured trait responses from 290	

more than one population in at least one common environment, resulting in 327 separate 291	

experiments involving 121 taxa of 104 species of grasses, shrubs, forbs, and deciduous trees 292	

(Fig. 1). These experiments represent approximately 3,234 unique populations tested in 293	

approximately 208 outdoor garden locations (Fig. 2) and 154 indoor lab or greenhouse 294	

experiments. Grasses accounted for 21.0% of the taxa and 40.2% of the experiments, forbs 295	

composed 50.8% of the taxa and 30.7% of experiments, shrubs 26.6% of the taxa and 28.5% of 296	

experiments, and deciduous trees accounted for only 1.6% of taxa and 0.6% of experiments (Fig. 297	
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1A). Experiments were most commonly conducted in non-reciprocal outdoor common gardens 298	

(47.5%) or in the laboratory (31.9%), with fewer conducted in greenhouses (15.3%) or in 299	

reciprocal outdoor gardens (5.2%, Fig. 1B). For experiments in outdoor gardens, the median 300	

number of gardens per experiment across lifeform ranged from 1 (grasses, shrubs, and trees) to 2 301	

(forbs) for non-reciprocal gardens, and from 2 (grasses and forbs) to 4 (shrubs) for reciprocal 302	

gardens . Overall, the median number of populations tested in each experiment was 5 (range= 2 - 303	

193, IQR =  3 – 11.5, Fig. 1C), and was slightly lower for shrubs (median = 4, range = 2 – 111, 304	

IQR = 2 - 8) than grasses (median = 6, range = 2 – 193, IQR = 3 - 12.25), forbs (median = 6, 305	

range = 2 – 67, IQR = 3 – 10.25), and trees (median = 7, range = 5 – 9, IQR = 6 – 8).  306	

Experiments took place between 1940 and 2015, with collections from native stands 307	

occurring between 1938 and 2013 (Fig. 3A). One quarter of the experiments (24.5%) reported 308	

only early germination and seedling stages of plants (generally less than 0.5 years), while the 309	

remaining experiments (75.5%) reported study periods ranging from 0.5 to 17 years, with an 310	

average of 2.1 years (Fig. 3B, C). Average pairwise geographic distance among populations per 311	

experiment for the 91% of experiments for which coordinates were available was 351 km±20 312	

SE, with a range from 610 m to 2,551 km.  Most experiments were conducted on taxa with 313	

regional distributions, perennial species, grasses, and outcrossing species; very few annuals, 314	

endemic species, or selfing species were represented (Fig. 4). Over half of experiments (58.6%) 315	

tested plants grown directly from wild-collected seeds (or the seed of wild collected adults), 316	

16.9% tested wild-collected adults, 13% tested materials with mixed generations since collection, 317	

6.7% tested 1st or 2nd generation descendants of wild collected seeds, 0.3% tested only cultivars, 318	

and 4.3% did not provide enough information to determine. 319	

Among-population variation  320	
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Of the 305 experiments appropriate for addressing among-population trait variation 321	

(signature 1), 290 (95.1%) experiments reported finding variation among populations in at least 322	

one phenotypic trait, with 230 (75.4%) of these 290 reporting significant variation, and 60 323	

(19.6%) claiming such variation in the absence of any supporting statistics (Fig. 4A). Only 12 324	

(3.9%) experiments reported no such differentiation in any trait after statistically testing for it, 325	

and 3 (1%) claimed no such variation without presenting statistical evidence. When categorized 326	

by basic life history traits, several differences appeared among groups. Eudicots exceeded 327	

monocots (the majority of which were grasses) in the degree of population differentiation(X1
2 = 328	

7, P = 0.0081), and, similarly, forbs and shrubs had more population differentiation than grasses 329	

(X2
2 = 8.05, P = 0.0143). There were no significant differences in signature 1 among plants with 330	

different geographic distributions, life span, or breeding systems.  331	

A total of 1,465 trait scores were recorded from the 305 experiments appropriate for 332	

addressing signature 1. Frequently-measured traits (20 or more experiments) that had differences 333	

between populations in over 75% of experiments (with or without supporting statistics) were 334	

floral structure, vigor, emergence, plant size, number of leaves, plant structure, shoot biomass, 335	

leaf structure, and number of inflorescences (Fig. 5).  336	

Trait-by-environment associations  337	

Of the 161 experiments appropriate for testing trait-by-environment associations 338	

(signature 2), 131 (81.4%) reported associations for at least one comparison, with 81 (50.3%) 339	

supported by statistical tests and 50 (31.1%) supported by claims in the absence of statistics (Fig. 340	

4B). Conversely, 13 (8.1%) of experiments reported no such correlations after having 341	

statistically tested for it, and 17 (10.6%) reported no such correlations but lacked any supporting 342	

statistics. There were no significant differences in the commonness of trait-by-environment 343	
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associations for taxonomic status, lifeform, geographic distribution, or breeding system, but 344	

perennials (both long-lived and short-lived) had more frequent correlations between traits and 345	

environment than did annuals or short-lived perennials (X3
2 = 8.08, P = 0.0444).  346	

A total of 592 trait scores were recorded from the 161 experiments appropriate for 347	

addressing signature 2 (Fig. 6A). Frequently-measured traits (20 or more experiments) that were 348	

correlated with environmental variables in over 75% of experiments (with or without supporting 349	

statistics) were multivariate trait axes, floral structure, and germination date. Every remaining 350	

trait that was measured in >15 experiments was correlated with environmental characteristics in 351	

over 50% of experiments, and many, including leaf length, survival, flowering date, and leaf 352	

structure, were correlated with environmental variables in ≥70% of experiments. 353	

A total of 426 environmental variable scores were recorded from the 161 experiments 354	

appropriate for addressing signature 2 (Fig. 6B). Of the variables most frequently reported as 355	

correlated with plant traits, many categorical variables or composite metrics made this list, with 356	

seed zones, ecoregions, multivariate environmental axes, and habitat classifications topping the 357	

list of important environmental variables (important in > 84% of experiments that reported 358	

them). Additionally, derived climate metrics (such as climate continentality, heat/moisture index, 359	

potential evapotranspiration, etc.), climate seasonality, and history of invasive species presence 360	

were correlated with plant traits in over 75% of studies that reported them.  361	

Higher local performance in a local common garden 362	

The 27 experiments that were suitable for detecting higher fitness of a local population in 363	

a local garden (signature 3) generated 39 scores (some experiments measured multiple fitness 364	

traits), with 27 scores (69.2%) reporting signature 3 for at least one fitness trait in at least one of 365	

the tested gardens during at least one sampling date, and the remaining 12 scores (30.8%) not 366	
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reporting signature 3 at any point (Fig. 4C). Thirty-two of the 39 scores (82%) were generated 367	

from experiments with more than one garden. Survival was the most frequently measured fitness 368	

trait in these experiments, reported in 24 of the 27 experiments, followed by reproduction (10), 369	

biomass (3), and fitness indices (2). Incidence of the local-does-best pattern was highest in 370	

experiments that directly measured reproductive output, with 90% reporting higher values for 371	

locals at some point in an experiment, followed by survival (67%), fitness indices that 372	

incorporated biomass (50%), and biomass measures (33%). For experiments in which only 373	

“some” gardens showed local-does-best patterns (Fig. 4C, hashed bars), the percentage of 374	

gardens showing this trend was 40%, 50%, and 40% for reproduction, survival, and biomass 375	

traits, respectively (not shown). For experiments in which only “some” sampling dates showed 376	

local-does-best patterns (gray bars), the percentage of sampling dates showing this trend was 377	

56%, 47%, and 25% for reproduction, survival, and biomass traits, respectively (not shown).   378	

Considering possible biases: highly-studied species and maternal effects 379	

The number of experiments per species in our dataset ranged from 1 (52 species) to 25 380	

(Artemisia tridentata), with a median of 1 (IQR = 1 – 4). The most highly-represented species 381	

were Artemisia tridentata (25 experiments), Elymus elymoides (24), Ericameria nauseosa (17), 382	

Achnatherum hymenoides (17), Krascheninnikovia lanata (13), Pascopyrum smithii (11), 383	

Atriplex canescens (9), Leymus cinereus (9), and Poa secunda, (8). Results in which scores were 384	

averaged for each species (see methods) were similar to uncorrected results: signature 1 was 4% 385	

higher when corrected (98% vs. 94%), signature 2 was 1% lower when corrected (79% vs. 80%), 386	

and signature 3 was 8% higher when corrected (78% vs. 70%). Thus, uncorrected calculations 387	

were used throughout our study.  388	

  Only 19 experiments (5.8%) used an experimental design that could control for maternal 389	
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effects (e.g. growing all populations for a generation in a common environment before initiating 390	

an experiment). An additional 30 experiments (9.2%) were unclear on this point, and the 391	

remaining 278 (85%) experimented directly on populations differing in maternal environment. 392	

The incidence of population differences (signature 1) was 100% in the 16 experiments that 393	

moderated maternal effects, 95% for the 259 that did not make an attempt, and 97% for the 30 394	

which were unclear. Too few of the experiments that attempted to control for maternal effects 395	

were appropriate for measuring signature 2 (4 experiments) and signature 3 (1 experiment) to 396	

compare incidences of these signatures.  397	

Quantitative comparison of trait-by-environment associations 398	

Overall, we found positive relationships between the magnitude of differences among 399	

populations in all eight phenotypic traits and the magnitude of differences between MAT and 400	

MAP at the collection locations (Fig. 7). The strongest relationship was observed between 401	

differences in flowering time and differences in MAT, and leaf size also showed a strong 402	

relationship with MAT. Multiple strong relationships were observed between trait/environment 403	

divergence for MAP, with leaf size, survival, shoot mass, inflorescence number, and flowering 404	

time all showing strongly positive relationships for grasses, forbs, and shrubs. (Fig. 7, Supporting 405	

Information Appendix 3). Regression analyses demonstrated that, for the 15 common garden 406	

locations in which strong flowering time and MAT relationships were observed, each degree 407	

change in MAT was associated with a median change of 3.5 days (IQR = 1.2 - 5.3) in flowering 408	

time. Small sample sizes (few experiments that could be included in the analyses) and challenges 409	

with interpreting changes in physical traits across species of various shapes and sizes precluded 410	

the presentation of estimates of this nature for the other trait-by-environment relationships. 411	

Discussion 412	
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Our results represent the most extensive review of intraspecific variation and local 413	

adaptation for plants native to the floristic Great Basin, a region comprised of largely continuous 414	

but increasingly imperiled arid and semi-arid plant communities (Davies et al., 2011; Finch et 415	

al., 2016). Additionally, they represent a significant addition to the noteworthy though relatively 416	

small number of reviews investigating this topic in a manner that identifies individual traits and 417	

environmental factors involved. We found that Great Basin plant species contain large amounts 418	

of intraspecific diversity in a wide range of phenotypic traits, that differences in these phenotypic 419	

traits are often associated with the heterogeneous environments of origin, and that differences 420	

among populations are commonly relevant to outplanting fitness. The cascading importance of 421	

intraspecific variation for the structure, functioning, and biodiversity of communities and 422	

ecosystems can be considerable (Bolnick et al., 2011; Bucharova et al., 2016), and may equal or 423	

exceed the importance of species diversity (Des Roches et al., 2018). Our quantification of local 424	

adaptation and trait-environment associations should serve as encouragement to seriously 425	

consider intraspecific diversity in native plant materials used in restoration and conservation in 426	

this region throughout the selection, evaluation, and development process (Basey, Fant and 427	

Kramer, 2015). The results reported here should also serve as a cautionary note to restoration 428	

approaches that focus on only a few specific traits or search for general-purpose genotypes. Our 429	

results suggest that, in the absence of species-specific information to the contrary, it is reasonable 430	

to assume that local adaptation is present in this region, and that locally-sourced populations 431	

would outperform non-local populations a majority of the time. 432	

Our investigation encompassed 170 studies published between 1941 and 2017 in which 433	

over 3,230 unique populations of 104 native Great Basin plant species were compared in 327 434	

experiments, ranging from laboratory germination trials to multiple-year common gardens and 435	
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reciprocal transplants. The great majority (95%) found differences between populations 436	

(signature 1) in the majority of traits measured in a common environment, which indicates that 437	

different traits are variable among populations, at both small and large geographic scales. 438	

Additionally, a clear majority (81.4%) of experiments found trait-by-collection environment 439	

associations (signature 2), suggesting that intraspecific variation is frequently an adaptive 440	

outcome of natural selection in heterogeneous environments (Linhart and Grant, 1996; Reich et 441	

al., 2003). In experiments suitable for detecting local performance advantages (signature 3), local 442	

populations had higher performance (measured by differences in reproductive output, survival, 443	

and biomass) than nonlocal populations more often than not (69.2%), and this was particularly 444	

true when researchers reported traits related to reproductive output (90%). We used a vote-445	

counting method to summarize results for our broadest pool of studies, allowing us to 446	

incorporate a wealth of older studies for which quantitative details were not available. Results 447	

from a vote-counting approach can sometimes differ from results of meta-analysis, as vote-448	

counting does not incorporate the same level of detail about factors such as study size or effect 449	

size (Combs et al., 2011). However, in our study, the overall incidence of “local does best” in the 450	

Great Basin is similar to other reviews that have found local adaptation to be commonplace, but 451	

not ubiquitous. In a review of local adaptation in plants that compared survival, reproduction, 452	

biomass and germination traits in reciprocal transplants, Leimu and Fischer (2008) found that 453	

local plants outperformed non-local ones in 71% of 35 published experiments. Similarly, 454	

Hereford (2009) quantified local adaptation in 70 published studies (50 of them plants), reporting 455	

only survival or reproductive traits, and found evidence of local adaptation in 65-71% of 456	

experiments. Our results indicated that the strongest indication of local adaptation came from 457	

experiments that directly measured reproductive output, and that using biomass as a fitness proxy 458	
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may not be an effective way to compare relative performance in the Great Basin. This is 459	

consistent with a previous study that demonstrated selection for smaller, rather than larger, 460	

individuals in disturbed arid systems (Kulpa and Leger, 2013). Literature reviews conducted 461	

across biomes may occlude regionally-important trait differentiation and mask patterns of local 462	

adaptation, as we might expect, for example, biomass to be more strongly linked to fitness in 463	

regions where light is a contested resource (Espeland, Johnson and Horning, 2017). 464	

There are many processes that can reduce or prevent the development of local adaptation, 465	

such as the lack of divergent selection between sites, high gene flow, rapid or extreme 466	

environmental change, high phenotypic plasticity, and/or low genetic diversity (Sultan and 467	

Spencer, 2002; Kawecki and Ebert, 2004; Blows and Hoffmann, 2005). The high incidence of 468	

intraspecific variation, much of it habitat-correlated, that we found in the literature confirms that 469	

divergent selection by heterogeneous environments is the norm for species native to the Great 470	

Basin, presumably outweighing the balancing effects of gene flow and genetic drift. Key 471	

environmental factors in the Great Basin such as fire frequency, grazing regimes, resource 472	

availability, and climate are certainly being altered to varying degrees by invasive species 473	

introductions, changing land uses, and climate change, and it can be argued that such changes 474	

could outpace the ability of local populations to remain adapted to their surroundings (Jones and 475	

Monaco, 2009; Breed et al., 2013; Havens et al., 2015; Kilkenny, 2015). However, our analysis 476	

also demonstrated relatively high instances of trait correlations with relatively recent 477	

disturbances such as invasive species introductions. Rapid evolution in response to invasive 478	

species (Oduor, 2013) and other anthropogenic changes (Hoffmann and Sgrò, 2011; Franks, 479	

Weber and Aitken, 2014) has been documented for many species, indicating that local adaptation 480	

can evolve rapidly in some circumstances.  481	
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Some traits and environmental characteristics stood out as particularly important 482	

indicators of local adaptation and its signatures across the studied taxa. For example, in our 483	

quantitative comparison of divergence in traits and environments, flowering phenology was 484	

strongly affected by MAT, with a median change of 3.5 days in flowering time per degree 485	

change in MAT of collection origin. Flowering phenology, along with germination phenology, 486	

were also in the top tier of frequently measured traits that showed significant correlations with 487	

environmental variables, consistent with other studies that have shown reproductive (Bucharova, 488	

Michalski, et al., 2017) and germination (Donohue et al., 2010) phenology to be an important 489	

response to environmental variation. Leaf size is also an important adaptive response to 490	

differences in temperature globally (Wright et al., 2017), and in concert with this, we saw overall 491	

positive responses to MAP and MAT for leaf size in our analyses as well as frequent trait-by-492	

environment associations in the literature. Floral structure, which has important adaptive 493	

significance for angiosperms (Harder and Barrett, 2007; Armbruster, 2014), was among the most 494	

frequent traits scored for among-population variation and trait-by-environment interactions. 495	

Seasonality of precipitation, which varies in this region depending on summer rainfall 496	

(Comstock and Ehleringer, 1992), was more predictive of trait variation overall than was mean 497	

annual precipitation (signature 2). In our quantitative comparisons, differences in MAP values 498	

were important for multiple phenotypic traits, including leaf size, shoot mass, reproductive 499	

output, and flowering phenology, in addition to being important for overall plant survival. Larger 500	

scale environmental descriptors, such as ecoregions and seed transfer zones, universally 501	

demonstrated signature 2, likely because they were developed based on climate/soil/vegetation 502	

associations or, in the case of seed transfer zones, developed based on trait-by-environment 503	

correlations. As found in other reviews (Geber and Griffen, 2003), physiological traits, 504	
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phytochemical traits, and root traits were not measured as frequently as other traits, and though 505	

these did not show as frequent associations with environmental characteristics as other traits, 506	

they are known to vary across environments in some systems (Reich et al., 2003). Additional 507	

studies of these traits in the Great Basin would be informative and could reveal different patterns 508	

than those observed here.  509	

As in any review and analysis of published papers, there are elements of our design that 510	

were difficult to control. For example, consistent with other reviews (Gibson et al., 2016), the 511	

vast majority of studies involved wild-collected plants or seeds, and thus maternal environment 512	

effects almost certainly affected some results (e.g. Bischoff and Müller-Schärer, 2010; Espeland 513	

et al., 2016). Additionally, though the majority of populations tested in the literature were from 514	

western states, some of the populations compared in the literature were collected from well 515	

outside of the Great Basin, which increased the likelihood of observing local adaptation in these 516	

species. However, understanding patterns of intraspecific variation across the full range of the 517	

species native to the Great Basin is pertinent because it has been common (and for some species, 518	

ubiquitous) to utilize sources of native species originating from outside the Great Basin to use for 519	

restoration within the Great Basin (Jones and Larson, 2005). Finally, the scores and percentages 520	

for each of the signatures used throughout this study are uncorrected for phylogeny, as is our 521	

pairwise trait/environment analysis, and calculated such that each experiment is weighed equally. 522	

This introduces the possibility for phylogenetic biases, in which closely related taxa represented 523	

by many experiments affect the results more than less frequently studied taxa or groups of taxa. 524	

Though we did not conduct phylogenetic corrections for relatedness among taxa (Harvey and 525	

Pagel, 1991; de Bello et al., 2015), our results were essentially identical for signatures 1-3 when 526	

we averaged results across species (scores differed by +3%, -1%, and +8%, respectively), 527	
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suggesting that our lack of phylogenetic corrections are not unduly affecting our results. We 528	

present all species-specific information in Supporting Information Appendix 2 and available 529	

datasets section of the electronic supplementary material for further review.  530	

Current approaches to seed sourcing in restoration and conservation include genetic (e.g. 531	

Williams, Nevill and Krauss, 2014), genecological (e.g. Johnson, Leger and Vance-Borland, 532	

2017), local-only (e.g. Erickson et al., 2017), predictive (e.g. Prober et al., 2015), and agronomic  533	

(e.g. United States. House of Representatives. Committee on Appropriations., 2014)) strategies, 534	

as well as strategies mixing several of these viewpoints (i.e. Rice and Emery, 2003; Rogers and 535	

Montalvo, 2004; Breed et al., 2013; Havens et al., 2015; Bucharova et al., 2018). These 536	

approaches vary in the degree to which they meet the needs of seed producers and land managers 537	

while balancing population differences that stem from adaptive evolution in different 538	

environments. The prevalence of local adaptation and its signatures found in our study justify 539	

and support incorporating existing best-practices (e.g. Basey, Fant and Kramer, 2015; Espeland 540	

et al., 2017) for capturing and preserving important intraspecific variation into seed sourcing and 541	

plant production systems. For example, our results demonstrated a strong relationship between 542	

flowering time and MAT, so it would be wise to collect materials for research, evaluation, and 543	

testing from populations that vary in MAT, to collect seeds at multiple times to fully capture 544	

population variation in flowering time, and ensure that seeds are not transferred during 545	

restoration among sites that differ strongly in these characteristics. On the production side, best 546	

practices for seed harvesting should include methods that avoid inadvertent selection on 547	

flowering time, either for reduced variation or for a directional shift away from the wild 548	

condition. Similarly, emergence date was correlated with environmental variation in many 549	

plants, so testing in common gardens should involve seeding trials in place of or in addition to 550	
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using transplants, and evaluation trials should guard against inadvertent selection on emergence 551	

timing by randomly, rather than systematically, selecting individuals to use in transplant 552	

experiments. These examples are not exhaustive, but demonstrate how evidence revealed by this 553	

study regarding which traits and environmental factors are generally involved in adaptation in 554	

this region can be used to improve approaches to seed sourcing and restoration. Finally, we 555	

acknowledge that ours is not the first review and meta-analysis to affirm an abundance of 556	

intraspecific variation and local adaptation in plants. However, our focus on the Great Basin is 557	

important, because the large and frequent yet commonly unsuccessful restoration efforts 558	

occurring in this region have lagged behind those of other regions with respect to recognizing the 559	

importance of intraspecific variation and local adaptation on outplanting success.  560	

Conclusions 561	

Reestablishing and maintaining native plant communities in arid regions has proven 562	

challenging (Svejcar et al., 2017), and the lack of practical knowledge guiding more appropriate 563	

selection of seed sources is a major barrier (Friggens et al., 2012; Gibson et al., 2016). The 564	

forestry industry has long adopted the principles of local adaptation in their reforesting 565	

guidelines with great success (Matyas, 1996; Johnson et al., 2004; Aitken and Bemmels, 2016), 566	

and similar approaches to restoration in the rangelands of the Great Basin may also increase 567	

success as our data support similarly high levels of population differentiation within grass, forb 568	

and shrub life history groups. Our results, including both a qualitative literature survey and a 569	

quantitative meta-analysis, could benefit from future work using additional techniques to explore 570	

spatial structure (e.g. Griffith and Peres-Neto, 2006) and the relative importance of geographic 571	

distance and environmental variation, especially as additional studies become available in the 572	

literature. Nevertheless, our results as they currently stand are in agreement with observations of 573	
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abundant local adaptation in plant populations world-wide, and further, we identified particular 574	

phenotypic traits (flowering and germination phenology, floral structures, leaf size, biomass, 575	

survival, and reproductive output), environmental characteristics (MAT, MAP, climate metrics, 576	

seasonality), and habitat classifications and site history (seed zones, ecoregions, history of 577	

invasive species) that were important predictors of local adaptation in plants native to the Great 578	

Basin floristic region. Given the speed and severity with which natural communities are being 579	

altered by anthropogenic factors, the application of an evolutionary perspective to restoration 580	

ecology is more important than ever. Adjusting seed-selection priorities to account for the 581	

existence of locally adapted, intraspecific variation in the Great Basin will promote the 582	

maintenance and recovery of resilient, self-sustaining vegetation communities in this region 583	

(Meyer, 1997; Lesica and Allendorf, 1999; Rogers and Montalvo, 2004; Broadhurst et al., 2008; 584	

Vander Mijnsbrugge, Bischoff and Smith, 2010).  585	
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Table 1. Traits measured in outdoor common gardens or reciprocal transplants for at least 5 894	

populations in at least 20 common garden locations, with data available from text, tables, author 895	

contact, or extraction from figures. Note that in some cases, multiple highly similar measures 896	

were grouped, as indicated in footnotes. 897	

 898	

Trait Units Locations 

date – flowering1 # days 34 
size – floral2 cm 22 
height - plant cm 46 
size – leaf3 cm 30 
mass – shoots4 g 43 
number - inflorescence5  # 36 
number – seeds6 # 21 
survival % 43 
¹Flowering date or any other floral phenology  
²Any size measurement of a floral structure 
³Most frequently, leaf length; occasionally leaf width 
⁴ Any measure of aboveground biomass 
⁵ Counts of flowers or flowering structures  
⁶ Most frequently seed number, but also seed yield in 
mass and/or seed yield rating/rank 

 899	

  900	
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Figure captions 901	

Figure 1. Summary of reviewed literature that compared traits among at least two populations in 902	

at least one common environment, by lifeform. Total counts of published studies, species, taxa, 903	

and taxa-specific experiments (A); types of experiments (B); means and standard errors of 904	

duration of the experiments that measured more than germination traits (C); total counts of 905	

experiments that measured only germination traits, (D); means and standard errors of number of 906	

populations tested in each experiment (E), and garden sites per experiment for outdoor reciprocal 907	

transplant and common garden experiments (F).  908	

 909	

Figure 2. Map of 129 different outdoor common garden locations (A) and 2953 unique 910	

population collection sites (B) for the 80% of outdoor gardens and 91% of experiments for which 911	

coordinates could be obtained or generated, from 170 studies reviewed. The size of the marker in 912	

panel A represents the number of experiments in which each specific garden location was used, 913	

with larger symbols indicating garden locations used in more experiments. Although all species 914	

represented are native to the floristic Great Basin (white outline), many populations were 915	

collected and tested outside this region. 916	

 917	

Figure 3. Summary of the years in which the collections of each experiment were made (A, left), 918	

the year each experiment was performed (A, right), and the average geographic distance among 919	

population collections sites in each experiment. The percent of 327 experiments that reported this 920	

information were 99% and 88% (respectively) for panel A, and 80% for panel B. Collection year 921	

and experiment year represent the average for each experiment, as it was common for materials 922	

to be collected and tested over multiple years for each experiment. Geographic distance is the 923	
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mean pairwise distance among populations in each experiment; note the noncontinuous vertical 924	

axis. 925	

 926	

Figure 4. Summary of among-population variation (A, signature 1) and trait-by-environment 927	

associations (B, signature 2) for any measured trait, grouped by five life history traits. Summary 928	

of local advantage (C, signature 3) for reproductive traits, survival traits, fitness indices, or 929	

biomass. Data compiled from 327 experiments from 170 published studies on Great Basin plants 930	

(see Supporting Information Appendix 2 and available datasets in electronic supplementary 931	

material). For signatures 1 and 2, “Yes” and “No” represent statistical comparisons, while 932	

“Authors claim “Yes”” and “Authors claim “No”” represent textual, claim-based results where 933	

supporting statistics were not reported (common in older studies). For signature 3, most 934	

experiments had multiple gardens, and many evaluated performance at multiple sampling dates, 935	

leading to 5 different scores. These scores, from “All gardens, all times” to “No gardens at any 936	

time” represent a gradient of incidence and frequency of this signature (see methods). For all 937	

panels, numbers in parentheses, (x), indicate the number of experiments scored in a given 938	

category, and the dashed gray lines indicate 50%. 939	

 940	

Figure 5. Summary of 1,465 trait scores from the 305 experiments appropriate for detecting 941	

signature 1 (differences between populations). Scores of “Yes” and “No” were supported by 942	

statistical comparisons, while the “Authors claim…” scores represent textual, claim-based results 943	

where supporting statistics were not reported (common in older studies). Numbers in 944	

parentheses, (x), indicate the total experiments that measured each trait or reported each factor, 945	

and dashed gray line indicates 50%. 946	
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 947	

Figure 6. Summary of scores for associations between 592 traits (A) and 426 environmental 948	

factors (B) from the 161 experiments appropriate for detecting signature 2 (trait-by-environment 949	

association), expressed by trait/factors, and an example from the literature (C, redrawn with 950	

permission from (Meyer and Monsen, 1991)) in which date of germination for mountain big 951	

sagebrush is correlated with a measure of monthly temperature (treatment: 2-week chill). Scores 952	

of “Yes” and “No” were supported by statistical comparisons, while the “Authors claim…” 953	

scores represent textual, claim-based results where supporting statistics were not reported 954	

(common in older studies). For panels A and B, numbers in parentheses, (x), indicate the total 955	

experiments that measured each trait or reported each factor, and the dashed gray lines indicate 956	

50%.  957	

 958	

Figure 7. Results of comparisons of pairwise trait and environmental distances for eight 959	

frequently measured phenotypic traits and (A) the mean annual precipitation (MAP) or (B) mean 960	

annual temperature (MAT) at the original collection location. Values are effect sizes and 95% 961	

confidence intervals for each trait, averaged across all experiments for which data were available 962	

(number of experiments in parentheses). Examples of the two strongest relationships are shown 963	

for leaf size and MAP (C), where each line shows the correlation coefficient and confidence 964	

intervals for an individual experiment, for which we calculated the relationship between 965	

differences in percent survival and difference MAP at location of origin. Color indicates 966	

functional groups: Green = grasses, blue = shrubs, orange = forbs. Examples are shown for the 967	

two highest effect sizes: D), experiment 297A, (Kramer, Larkin and Fant, 2015), Penstemon 968	

deustus and E), experiment 297A, (Kramer, Larkin and Fant, 2015), Eriogonum microthecum. 969	
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Similarly, flowering time and MAT (F) is shown, with examples of G) experiment 271A, 970	

(Larsen, 1947), Schizachyrium scoparium, and H) experiment 245A, (Ward, 1969), Deschampsia 971	

caespitosa. Full results for each trait/environment relationship are shown as additional results in 972	

Supporting Information Appendix 3. 973	

 974	

  975	
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Figure 2.  980	
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Figure 3.  983	
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Figure 4. 986	
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Figure 5.  991	
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Figure 6. 993	
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Figure 7.	998	
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Appendix 1. Additional Methods 1000	

 1001	

Literature search  1002	

Terms used to search the literature included ‘plant’, ‘Great Basin’, ‘Intermountain West’, 1003	

‘western United States’, ‘local adaptation’, ‘ecotypic variation’, ‘phenotypic variation’, ‘genetic 1004	

variation’, ‘habitat-correlated variation’, ‘genecology’, ‘intraspecific variation’, ‘ecotype’, ‘seed zones’, 1005	

‘common garden’, ‘reciprocal garden’, and ‘transplant garden’, as well as combinations of these terms. 1006	

Literature was obtained primarily using the World Wide Web as well as databases such as Google 1007	

Scholar, Web of Science, Academic Search Premier, JSTOR, Science Direct, and Wiley Online Library. 1008	

When digital copies were not available, they were obtained from academic libraries. The citations within 1009	

the resulting literature were also mined for additional literature that our first search had missed.  1010	

 1011	

Geographic range categorization 1012	

Four categories of geographic range were assigned from distributions in the USDA Plants 1013	

Database (https://plants.sc.egov.usda.gov), as follows. Widespread: found in majority of United States 1014	

(e.g. Elymus elymoides (Raf.) Swezey); Regional: common in the floristic Great Basin but not found 1015	

throughout the United States (e.g. Atriplex confertifolia (Torr. & Frém.) S. Watson); Narrow: limited to 1016	

specific, well-defined habitats within the Great Basin (e.g. Penstemon confusus M.E. Jones); Endemic: 1017	

restricted to several counties (e.g. Allium passeyi N.H. Holmgren & A.H. Holmgren).  1018	

 1019	

Geographic coordinate generation 1020	

Geographic coordinates and elevations for gardens and populations were recorded verbatim from 1021	

studies that contained precise coordinates, or were generated manually using Google Earth Pro (Google 1022	

Inc., 2018) with assistance from the Geographic Names Information System (US Geological Survey, 1023	

2018) when vague coordinates or textual localities were given. All coordinates were converted to decimal 1024	

degrees (WGS 84) and elevations were recorded in meters. Uncertainties in manually generated 1025	
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coordinates were recorded in a measure of accuracy, either ‘high’ (confident to within a ~2 mile radius), 1026	

‘fair’ (confident to within a ~5 mile radius), or ‘low’ (confident to within a ~15 mile radius). Numeric 1027	

coordinates given in the studies were assumed to be accurate to within one mile. If elevations were given 1028	

for populations or gardens with vague localities, we utilized this information to increase the confidence of 1029	

our generated location. Coordinates were not generated for localities that were exceptionally vague or 1030	

studies which did not include localities. If a study utilized a named release or cultivar, the location of 1031	

origin was determined by locating the original published release notice, if available. Cultivars bred using 1032	

populations from multiple locations were not assigned origin coordinates. 1033	

 1034	

Scoring experiments for each signature of local adaptation 1035	

For among-population variation (signature 1), a score of ‘Yes’ was given when at least one 1036	

measured trait was reported to differ significantly between at least two populations, and a score of ‘No’ 1037	

was given when differences in any phenotypic trait were not detected between any pair of populations. 1038	

For trait-by-environment association (signature 2), a score of ‘Yes’ was given when authors reported a 1039	

significant association between at least one trait and one measure of the environment of origin, and a 1040	

score of ‘No’ was given when the author tested for but found no such relationship. In addition to a score 1041	

for each experiment, each of the measured and reported traits and environmental variables were scored 1042	

(hereafter, trait scores) in a manner that indicated which traits did or did not vary between populations, as 1043	

well as which traits and environmental variables were or were not correlated with each other (see 1044	

available datasets in electronic supplementary material). Some experiments met the criteria for both 1045	

signatures while others met only one or the other. In several studies, especially older studies or studies 1046	

whose analyses did not include among-population comparisons, the significance of variation and/or 1047	

correlation needed for scoring signatures 1 and 2 could not be determined because the authors provided 1048	

results without statistical analyses. In these cases, results were scored as ‘Authors Claim Yes’ or ‘Authors 1049	

Claim No’, and the scoring was done as described above, taking authors at their word in the absence of 1050	

published statistical evidence. 1051	
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To score whether there was higher fitness of a local population in a common garden (signature 3), 1052	

only experiments in which outdoor reciprocal transplants or common gardens were performed using a 1053	

local population (identified as such by the author, or clearly collected from the common garden site) in at 1054	

least one garden were considered. Additionally, the experiment had to measure survival, reproductive 1055	

output (number of seeds or flowers, or other reproductive output), a fitness index (a combination of 1056	

several size and production traits), or total aboveground biomass. Each experiment was given a composite 1057	

score to fully capture variation in the performance of the local population across gardens (spatial), as well 1058	

as through different sampling dates (temporal). For the spatial component, ‘Yes for all gardens’ indicates 1059	

the highest values in each garden belonged to that garden’s local population, ‘Yes for some gardens’ 1060	

indicates the highest value in at least one but not all of the gardens belonged to each garden’s local 1061	

population, and ‘No for all gardens’ if the highest value never belonged to a garden’s local population. 1062	

For the temporal component, the experiment was scored as ‘Always’ if the local population had the 1063	

highest value at all sampling dates, or ‘Sometimes’ if the local population had the highest value at one but 1064	

not all of the sampling dates. For “some” and “sometimes” scores, we calculated the number of 1065	

observations of higher fitness of local populations per garden and per time measured to understand what 1066	

proportion of gardens and sampling dates showed higher local fitness. This provides an estimate of the 1067	

frequency of higher local fitness, but it is not a measure of the importance of the difference per se. For 1068	

example, a fitness difference could occur at a low frequency, but have a large impact on population 1069	

trajectories (i.e. large differences in survival after a rare drought event). 1070	

 1071	

Determining whether maternal effects were controlled 1072	

Experiments which tested populations that had all shared one or more generations in the same 1073	

location prior to testing were considered to have attempted to control for maternal effects. We determined 1074	

the number of generation in common by carefully reading the methods for mentions of the populations’ 1075	

lineages prior to testing. Some experiments supplied the original location of material collection but 1076	

indicated that all materials were collected from areas such as ‘evaluation plots’, ‘seed fields’, ‘uniform 1077	
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gardens’, or ‘increase fields’, indicating that at least one generation was shared among all populations, 1078	

and therefore and attempt had been made to control maternal effects (intentional or not). Some complex 1079	

studied had to be split into multiple experiments because they used different generations of the same 1080	

populations in different tests. For example, a study which collected wild adults from their native habitats 1081	

and grew them in a common garden for the duration of the experiment before measuring traits of the 1082	

plants as well as traits of the seeds they produced were split into two experiments, one containing the 1083	

traits of the adult plants (which did not attempt to control for maternal effects, because the progenitors of 1084	

the measured material did not share a common location), and one for the seed traits (which did attempt to 1085	

control for maternal effects, because the progenitors of the measured material did share a common 1086	

location).  1087	

 1088	

Extraction for quantitative comparison of trait-by-environment association  1089	

To examine links between the variation in trait values and the variation in environmental and 1090	

geographic distance among the population’s origins, we utilized experiments from which population-1091	

specific trait data as well as geographic coordinates for at least one garden and at least two populations 1092	

could be extracted or obtained through author contact. Data from laboratory and greenhouse experiments 1093	

were not considered for this extraction, because the great majority of these experiments were not designed 1094	

to completely simulate natural growing conditions. Excluding these experiments reduced our pool from 1095	

325 to 161. Next, a list of priority fitness traits were developed (Table S1-1) based on traits that were 1096	

most commonly measured and potentially associated with plant fitness in the Great Basin (Bower, Clair, 1097	

and Erickson, 2014; Leger and Baughman, 2015). Any experiment that did not measure at least one 1098	

priority trait was omitted from next steps, and this further reduced our pool from 161 to 153.   1099	
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Table S1-1. Priority traits targeted in the extraction for the dataset used in the quantitative comparison, 1100	

and the preferred units. Note that for several traits, several highly similar measures were included, as 1101	

indicated in footnotes. 1102	

Trait units  Trait units 

survival %  number  - inflorescence4   # 
emergence  %  number – seeds5 #  
germination  %  number – leaves  # 
height - plant  cm  date – germination  # days 
length – root  cm  date – regrowth/greenup  # days 
length – leaf1 cm  date – emergence  # days 
dimensions – floral2 cm  date – flowering6 # days 
mass – roots  g  date – seed shatter  # days 
mass – shoots3  g  date – senescence  # days 
mass – seed  g/seed    
1If unmeasured, then leaf width was recorded, if available 

2Any measure of a floral structure 

3Any measure of aboveground biomass 

4Any kind of count of flowers or flowering structures was recorded 

5If no direct count was available, any measure of seed yield was recorded, 
including total seed yield in weight and/or seed yield rating/rank 
6If unmeasured, any other floral phenology was considered 
 

The remaining studies were then examined for textual, tabular, or visual data that could be 1103	

extracted as mean values of priority traits for each population in each garden. Extracted values for were 1104	

recorded verbatim from tables and throughout the text where possible, and from figures using 1105	

WebPlotDigitizer (Rohatgi, 2017) when needed. Means for at least two populations in at least one garden 1106	

were required for extraction. If exact matches to certain priority traits were not reported in the studies, 1107	

similar measures that were likely to be strongly correlated to the given trait could be recorded as 1108	

surrogates if available, and a note was made (footnotes, Table S1-1). We extracted the latest date for 1109	

which the most populations at the most gardens were represented if studies presented data for multiple 1110	

dates throughout the experiment. In some cases, experiments were conducted with multiple treatments in 1111	

which growing conditions were altered to address study questions. In these cases, we only extracted data 1112	

for the author-defined ‘control’ treatment. However, if no control was defined, we used the treatment that 1113	

was the most unaltered or representative of the garden environment (e.g. unweeded, or unwatered). 1114	
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Appendix 2. Summary of literature and available datasets 1115	

The data collected and generated by this study (Baughman et al., 2019), as well as the list of 1116	

publications that were involved in each part of this study, are provided so that additional questions may be 1117	

addressed and for other applications. We encourage such additional analyses.  1118	

Summary of literature 1119	

 Appendix 2 Table 1. Summary, by species, of the literature included in this study, including 1120	

lifeform (F = forb, G = grass, S = shrub, T = tree), counts of studies, experiments, unique populations, and 1121	

experiments by type (LAB = laboratory, GH = greenhouse, CG = outdoor common garden, RT = outdoor 1122	

reciprocal transplant), the incidence of each signature of local adaptation (1 = differences among 1123	

populations, 2 = trait/environment correlations, 3 = higher performance of local than nonlocal population 1124	

in local’s environment), counts of experiments used in the quantitative comparison of trait-by-1125	

environment associations (QC), and a list of traits used in the QC. See footnotes for additional 1126	

information. 1127	
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 1130	

Available datasets 1131	

Data have been uploaded to Dryad at DOI: TBD (Baughman et al., In Review). Several datasets 1132	

are available. The “Summary and signature scores” dataset includes all of the studies and experiments and 1133	

summarizes literature categorization as well as scores and associated information for each of the 1134	

signatures of local adaptation. The “Trait scores” dataset includes basic study categorization as well as 1135	

information that indicated which phenotypic traits (for signatures 1 and 2) and environmental variables 1136	

(for signature 2) were involved in each of the signatures of local adaptation. The “Quantitative 1137	

comparison” dataset includes all of the data used to conduct the quantitative comparison of trait-by-1138	

environment associations, and lists population-specific mean values for our priority traits for all studies 1139	

for which such data were available, the latitude and longitude of each population origin, and extensive 1140	

climate information for each origin generated with the ClimateNA v5.10 software package based on 1141	

methodology described by Wang et al. (2016). The “Location data” dataset lists all outdoor gardens and 1142	

population origin coordinates and elevations for which authors gave this information, as well as those for 1143	
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which we could confidently generate it. For descriptions of each column in each of these datasets, refer to 1144	

the “Data Dictionary” file.  1145	

 1146	

Bibliography of reviewed literature 1147	

A list of all the literature used in any of the datasets is provided below. Following each citation is 1148	

a set of codes in brackets indicating which parts of our study the publication was used in. Codes S1, S2, 1149	

and S3 indicate that at least one of the “experiments” in the given publication was used to generate a 1150	

score for signatures 1, 2, and 3, and code QC indicates the publication (or the data summarized in it, even 1151	

if not available from the publication itself) was used in analyses for the quantitative comparison of trait-1152	

by-environment associations. Note that some published studies were scored as multiple experiments for 1153	

multiple species.  1154	
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Appendix 3. Additional Results 1650	

Additional results of literature summary  1651	

Dicots accounted for 23.6% of the taxa and 42.8% of the experiments in the final pool of 1652	

reviewed literature. Regional taxa accounted for 47.2% of the taxa and 48.9% of experiments, 1653	

widespread taxa accounted for 26.0% of taxa and 36.7% of experiments, narrow taxa accounted 1654	

for 24.4% of taxa and 13.5% of experiments, and endemic taxa accounted for 2.4% of taxa and 1655	

0.9% of experiments. Perennials accounted for 46.3% of taxa and 32.1% of experiments, long-1656	

lived perennials accounted for 32.5% of taxa and 39.4% of experiments, short-lived perennials 1657	

accounted for 14.6% of taxa and 25.1% of experiments, annuals accounted for 5.7% of taxa and 1658	

3.1% of experiments, and biennials accounted for 0.8% of taxa and 0.3% of experiments. 1659	

Primarily outcrossing plants accounted for 71.4% of taxa and 72.2% of experiments, primarily 1660	

selfing plants accounted for 11.1% of taxa and 14.1% of experiments, and plants with mixed 1661	

mating accounted for 17.5% of taxa and 13.8% of experiments.    1662	

 1663	

Additional results for quantitative comparison of trait-by-environment associations 1664	

Appendix 3 Figures 1-16. For each trait/environment correlation (16 combinations), the 1665	

results of correlation coefficients (with 95% confidence intervals) for the pairwise comparisons, 1666	

for each population in each experiment, between the difference in phenotypic trait and 1667	

environmental characteristic at the collection location, while controlling for geographic distance 1668	

among populations (see methods). MAT = Mean Annual Temperature, MAP = Mean Annual 1669	

Precipitation. Study number identifies the particular experiment in the quantitative comparison 1670	

dataset in the electronic supplementary material, “# pops.” is the number of populations included 1671	

in each study, and “dist.” is the average pairwise distance between populations (in km). Grasses 1672	
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are shown in green, shrubs in blue, and forbs in orange. The overall effect size and confidence 1673	

intervals, across all studies, is shown in gray at the bottom of each figure. See main text, Table 1, 1674	

for descriptions of phenotypic traits.  1675	
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