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Abstract

Motivation: Large biomedical datasets, such as
those from genomics and imaging, are increasingly
being stored on commercial and institutional cloud
computing platforms. This is because cloud-scale
computing resources, from robust backup to high-
speed data transfer to scalable compute and storage,
are needed to make these large datasets usable. How-
ever, one challenge for large-scale biomedical data
on the cloud is providing secure access, especially
when datasets are distributed across platforms.
While there are open Web protocols for secure
authentication and authorization, these protocols
are not in wide use in bioinformatics and are difficult
to use for even technologically sophisticated users.
Results: We have developed a generic and exten-
sible approach for securely accessing biomedical
datasets distributed across cloud computing plat-
forms. Our approach combines OpenID Connect
and OAuth2, best-practice Web protocols for
authentication and authorization, together with
Galaxy (https://galaxyproject.org), a web-based
computational workbench used by thousands of
scientists across the world. With our enhanced
version of Galaxy, users can access and analyze
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data distributed across multiple cloud computing
providers without any special knowledge of ac-
cess/authorization protocols. Our approach does
not require users to share permanent credentials
(e.g., username, password, API key), instead relying
on automatically-generated temporary tokens that
refresh as needed. Our approach is generalizable
to most identity providers and cloud computing
platforms. To the best of our knowledge, Galaxy
is the only computational workbench where users
can access biomedical datasets across multiple
cloud computing platforms using best-practice Web
security approaches and thereby minimize risks of
unauthorized data access and credential use.
Availability and Implementation: Freely
available for academic and commercial use
under the open-source Academic Free Li-
cense (https://opensource.org/licenses/AFL-
3.0) from the following Github repositories:
https://github.com/galaxyproject/galaxy and
https://github.com/galaxyproject/cloudauthz
Contact: jalili@ohsu.edu, goecksj@ohsu.edu

1 Introduction

Genomics is expected to be an exabase-scale Big Data
domain by 2025, posing greater data acquisition and
storage challenges than astronomy, YouTube, and
Twitter—the other major generators of Big Data [22].
Big data in genomics has led to substantial advances
in several areas, including developmental biology, hu-
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man evolution, and precision medicine. However, ge-
nomics data has become widely distributed because
DNA sequencers are easily available and inexpensive,
making it simple for laboratories to generate their
own data. Distributed genomics data poses increas-
ing challenges for making effective use of the data, es-
pecially for the increasingly important tasks of data
integration and joint analysis.

The emergence of cloud-based solutions such as
Amazon Web Services (AWS) and Microsoft Azure
have paved the path for online, scalable, cost-
effective, secure, and shareable Big data persistence
and analysis with a growing number of researchers
and laboratories hosting (publicly and privately)
their genomics Big data on cloud-based services [15].
Most computational analyses of genomics data re-
quires complex workflows that include many steps
and analysis tools. Computational workbenches such
as Galaxy [1] and GenomeSpace [19] make it simple to
create and execute analysis workflows. Consequently,
these systems need to seamlessly access cloud-based
genomics data to execute workflows.A prerequisite
is to mutually satisfy principals (users and services)
about each other’s identity and privileges. Given that
genomics data, especially those coming from clinical
samples, are often highly sensitive data, as they may
contain protected health information (PHI) or per-
sonally identifiable information (PII) [8], protocols
are needed to implement secure authentication and
authorization.

The few systems that allow leveraging cloud-based
storages for workflow execution (e.g., GenomeSpace)
and data transfer (e.g., Globus [13]), rely on lo-
cally storing user credentials for a given cloud service
provider. For instance, to transfer data to/from a
cloud service provider, Globus prompts for user cre-
dentials with the provider which are then cached and
used to access the resources. Delegating user’s pri-
vate credentials to a third-party service is a privacy
and security risk for the user and a liability risk for
the application service provider. Additionally, revok-
ing these access credentials requires manual interven-
tion, and initially obtaining credentials requires users
to be familiar with the technical details of the given
cloud provider, hindering adoption. These challenges
highlight the need for a robust solution to securely

delegate access to cloud-based resources.
We have devised an approach for federating iden-

tity and access management and implemented it in
the Galaxy project. The approach enables a secure
and seamless delegation of privileges without shar-
ing principal’s login and/or access credentials. This
approach makes it possible for Galaxy users to se-
curely access genomics data across a wide variety
of cloud computing platforms. The advantages of
our approach are twofold: first, leveraging OpenID
Connect (OIDC), it outsources user authentication
to trusted identity providers—a user can login to
Galaxy using an existing third-party identity (e.g.,
a Google account) without having to explicitly cre-
ate a Galaxy user account. This feature paves the
path for the Galaxy-as-service model [2] where a user
can login to all Galaxy servers using a single iden-
tity. In addition to simplifying the login process, this
model protects users’ identity and credentials should
any Galaxy server suffer a security breach.

The second advantage of our approach is that
a user can securely grant Galaxy authorization to
access genomic data on the cloud. Previously,
users needed to share their permanent cloud cre-
dentials with Galaxy [3], which is problematic be-
cause those credentials grant Galaxy the same priv-
ileges as the user, Galaxy must store and secure
those credentials, and users must manually obtain
those credentials. We have developed an approach
that leverages CloudAuthz (https://github.com/
galaxyproject/cloudauthz) for on-demand and au-
tomatic generation of temporary access credentials to
assume minimum delegated privileges.

Our approach is implemented in the Galaxy frame-
work, making it possible for Galaxy users to ac-
cess and analyze cloud-based genomics data in their
workspaces. Galaxy users can access cloud data that
they own or have access to by specifying a provider
name (e.g., AWS) and a resource name (e.g., an Ama-
zon Simple Storage Service (S3) bucket), but share
neither login nor access credentials (see section 2).
Being able to perform these steps without requiring
the user to supply their permanent access credentials
has the following advantages:

• Galaxy need not use, store, or protect user ac-
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cess credentials, and users can authenticate using
available Web identity providers such as Google.
Thus our approach is both user-friendly and se-
cure;

• User identity is exposed to Galaxy via security
tokens that cannot be exploited to impersonate
them. This point is guaranteed by contrivances
such as audience claim (claim is “piece of infor-
mation asserted about an entity” [20]) in the ID
token of OIDC protocol [20];

• Authorization to data follows the principle of
least privilege, so Galaxy only has access to given
datasets and not users’ account information;

• Delegated privileges (exposed using short-term
authentication/authorization tokens) issued for
and assumed by Galaxy, are independent from a
user’s credentials, hence their scope can be re-
stricted independently;

• Can leverage the role-based access control
model [21], which enables segregating duties and
provide a principal with the least privileges re-
quired to perform its authorized action;

• The short-term authentication/authorization to-
kens issued for Galaxy are refreshed automati-
cally and can be revoked by the resource owner,
either from the IdP or the resource provider;

• The privileges issued for a principal—a Galaxy
server in this case—cannot be assumed by a dif-
ferent client (e.g., another Galaxy server, or a
different web app). This is guaranteed by OIDC
protocol.

1.1 Motivating Application
Cloud-based services have become a ubiquitous
storage solutions due to their scalability, avail-
ability, and cost efficiency, which makes them an
ideal solution for genomics Big data storage that
are commonly studied in a collaborative setting.
Accordingly, a growing number of datasets are
publicly hosted on cloud service providers. For
instance, Tabula Muris is a single-cell transcriptomic

data comprising more than 100,000 cells of 20
organs and tissues of Mus musculus [7] and it is
publicly hosted on AWS (accessible through the
following Amazon Resource Name: arn:aws:s3:::czb-
tabula-muris). In addition to Tabula Muris, 87
additional datasets exist from various disciplines
that are all publicly available via the AWS registry of
open data (https://registry.opendata.aws).
Among them are The Human Microbiome
Project ( arn:aws:s3:::human-microbiome-project),
The International Cancer Genome Consor-
tium (arn:aws:s3:::oicr.icgc.meta/metadata),
Nanopore Reference Human Genome
(arn:aws:s3:::nanopore-human-wgs), and 1000
Genomes (arn:aws:s3:::1000genomes).

A common scenario that demonstrates the need
for robust authentication and authorization to cloud-
based genomics data is joint analysis of public and
private datasets. For instance, an active area of re-
search in precision oncology is using omics data to
statistically learn biomarker signatures to guide se-
lection of therapies [16, 23, 6, 24] most likely to be
effective for a particular tumor. In these studies, both
private as well as public datasets such as TCGA re-
quire authorized access. Currently this kind of re-
search requires putting private and public datasets
on the same institutional computing cluster or cloud
computing platform and running analyses on that
cluster/platform. Moving omics data is costly, dif-
ficult, can be insecure depending on how access cre-
dentials are used. Our approach greatly simplifies
joint analyses by providing a secure way for users
to access data on one or more clouds. With our en-
hanced Galaxy, users can securely access and combine
both private and public datasets onto a single Galaxy
server where it can be analyzed together. This server
can live behind an institutional firewall or on a com-
mercial cloud computing platform and hence provide
flexibility about where the final analysis is run.

Large-scale collaboration is another scenario where
secure cloud-based authorization to genomics data is
critical. For instance, collaborating labs across dif-
ferent institutes can host their data on the cloud and
grant each member of those labs read (and write)
access to the data. The challenge, however, is the
ability to readily access that data for analysis. Typi-
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Figure 1: Galaxy adopts and integrates best-practice Web protocols to access secured data stored on
cloud platforms (discussed in details in Section 2). In this approach, a resource owner shares protected
data with collaborators (User) leveraging the role-based access model [21] and OpenID Connect protocol
(OIDC). Accordingly, a resource owner defines a role with (read or write) access to protected data (e.g.,
see Figure 2), and specifies a Galaxy instance (defined using OIDC audience ID) that can assume the role
upon presenting the user’s identity token issued by their specified institute (OIDC IdP) for that Galaxy
instance (e.g., see Figure 3). Upon successfully assuming the role, Galaxy receives cloud-provider-specific
temporary credentials, and uses them to sign API requests to protected data. Note that following the OIDC
requirements, all the discussed communications are TLS-protected (see Section 3.1). Additionally, a resource
owner and user are not required to belong to a same trust group (e.g., institute).

cally, this is accomplished by either downloading the
data onto on-premises resources or “mounting” it on
cloud-based compute platforms. With Galaxy being
widely adopted as a scalable, transparent, and repro-
ducible data analysis platform, it is essential to en-
able Galaxy users to load their cloud-hosted, private
data into their Galaxy history in an attestable and
auditable manner. Accordingly, a resource owner can
share cloud-hosted data with a user who is authen-
ticated using their social or institutional identities.
The user can then login to Galaxy using their spec-
ified identity, and request copying shared data into

their history. Having analyzed the data, the user can
request copying analysis results from the Galaxy his-
tory to the cloud-hosted storage, which enables them
to share the analysis results with their collaborators.
An illustration of this scenario is given in Figure 1,
and a detailed discussion of the method is available in
Section 2. For example, it is now possible to authen-
ticate with Galaxy using a Google identity. Given
a one-time, out-of-band setup where that identity is
associated with an AWS S3 bucket role, the authenti-
cated Galaxy user can seamlessly download and up-
load data to a private S3 bucket. All this is done
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without ever prompting the user for their AWS cre-
dentials.

2 Methods

Linking a cloud-based storage to Galaxy without re-
quiring user credentials is realized by leveraging the
OIDC protocol and the CloudAuthz library; this is
implemented as a two-step authentication and autho-
rization procedure. Authentication allows a user’s
identity to be validated while authorization verifies
the privileges the given user has.

2.1 User authentication

Galaxy leverages the authorization code flow of the
OIDC protocol to authenticate (and authorize) a
user. In this flow, a user’s identity is first veri-
fied by an IdP, then Galaxy receives security tokens
(e.g., ID token and access token) from the IdP, which
contains claims about the authentication and autho-
rization of the user. The tokens are represented in
cryptographically-signed JavaScript Object Notation
(JSON) Web Token, JWTs, which ensures their in-
tegrity and immutability. In general, this flow is a
two-step procedure described as follows.

First, the admin of a Galaxy instance sets up the
instance for the authorization code flow by registering
the instance with the IdP, and obtains security cre-
dentials for the instance (e.g., Client ID and Client
secret as provided by Google). These credentials are
used to ensure the authenticity of communications
between the parties. For instance, an identity to-
ken issued for a user contains an audience claim (the
Client ID of that Galaxy instance), which ensures
that the token is issued for and can be used by the
specified audience only.

Second, Galaxy authenticates a user (who wants to
login to Galaxy using their third-party identity) by
sending a request to an IdP. Among other informa-
tion, the request incorporates:

• Security tokens of the Galaxy instance obtained
when registering the instance (e.g., client ID and
client secret as used with Google);

• Redirect URL; to be called upon successful au-
thentication;

• Anti-forgery claims (e.g., state and nonce to
prevent respectively cross-site request forgery
(XSRF) and replay attacks).

Upon a successful authentication, an IdP sends
an authorization code and the state token to the
Galaxy instance. The Galaxy instance uses state to-
ken to validate the authenticity of the redirect mes-
sage, and associate the authorization code with a user
of the Galaxy instance. Then the Galaxy instance ex-
changes the authorization code for an ID token and a
refresh token (which can be used to refresh an expired
ID token) from the IdP.

2.2 Authorization Grant

In general, cloud-based resource providers leverage
the role-based access control (RBAC) model [21] to
grant authorization. However, each resource provider
implements a proprietary procedure to authorize a
client to assume a role. For instance, while an AWS
role can be assumed using access key and secret key, a
client has to provide subscription ID, client ID, client
secret, and tenant ID to assume a role (service prin-
cipal) on Microsoft Azure. However, the presented
method is generic and can be used on any RBAC
and OIDC-compliant resource provider. The follow-
ing sections explain the method on AWS and Azure
for defining and assuming a role, where a role is de-
fined via the resource provider’s web portal and it is
assumed in Galaxy leveraging CloudAuthz.

2.2.1 AWS Temporary Credentials

An AWS role is an identity that can be assumed by an
OIDC Relying Party (RP)—Galaxy in our scenario—
on behalf of a user who is authenticated by an IdP. A
role has certain permissions to specific resources (e.g.,
read access to a S3 object) that are defined using poli-
cies attached to it (e.g., see Figure 2). Through the
AWS identity and access management web portal, a
resource owner defines a role and a policy, and at-
taches the policy to the role. The resource owner
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{ 

   "Version": "2012-10-17", 

   "Statement": [ 

   { 

      "Sid": "VisualEditor0", 

      "Effect": "Allow", 

      "Action": [ 

         "s3:ListAllMyBuckets", 

         "s3:GetObject" 

      ], 

      "Resource": "*", 

      "Condition": { 

         "IpAddress": { 

            "aws:SourceIp": "1.2.3.4" 

         } 

      } 

   }] 

} 

Figure 2: A sample part of an AWS policy, which can
be attached to a role to enable it to read buckets and
download objects from S3, if the request is made from
a server with 1.2.3.4 IP address. Sid: statement ID.

then defines a trust relation for the role, which de-
fines the principals who are authorized to assume the
role. The trust relation is defined using the audience
ID of an RP, and authorizes the RP to assume the
role on behalf of an IdP-authenticated user (e.g., see
Figure 3). The audience ID is a required claim of an
ID token that AWS security token service (STS) uses
to assert if the token presented for assuming a role is
issued for the RP defined in the trust relation. This
mechanism prevents assuming a role using an ID to-
ken that is issued for a RP other than the one defined
in the role’s trust relation.

A user defines an AWS role for Galaxy using its
Amazon resource name (ARN). Galaxy assumes the
role by submitting a request to Amazon STS, which
contains the role ARN and the user’s ID token. AWS
STS asserts the authenticity of the request by verify-
ing with the IdP if the ID token is not expired and is
issued for the audience specified in the ID token, and
if the audience is trusted to assume the role. After a
successful validation AWS STS responds to Galaxy,
which among other information includes access key
ID, secret access key, and session token. These cre-
dentials can be used to assume delegated privileges
(e.g., read an AWS bucket) as defined in the policy at-
tached to the role (see Figure 4). The temporary cre-
dentials are automatically refreshed by Galaxy, and
can be restricted (update policy) and revoked by the
resource owner.

{ 

   "Version": "2012-10-17", 

   "Statement": [ 

   { 

      "Effect": "Allow", 

      "Principal": { 

         "Federated": "accounts.google.com" 

      }, 

      "Action": "sts:AssumeRoleWithWebIdentity", 

      "Condition": { 

         "StringEquals": { 

            "accounts.google.com:aud": "8936...apps.googleusercontent.com" 

         } 

      } 

   }] 

} 

Figure 3: An example of a trust relation-
ship defined for an AWS role, which al-
lows a Galaxy instance, identified by the
8936...apps.googleusercontent.com (part of
the client ID), to assume the role in exchange of a
user’s ID token issued for that Galaxy instance by
Google.

2.2.2 Azure Service Principal

Azure resource manager leverages RBAC model [21]
to enforce permissions. The actions an Azure role
is authorized to perform are defined by its permis-
sions and scope. Azure defines several built-in roles
(e.g., the Storage Blob Data Reader role has read ac-
cess to data and containers of Blob storage), and al-
lows defining custom roles using Azure PowerShell or
Azure CLI. An Azure role is assigned to a security
principal, which defines a user, a group of users, or
a service principal. A service principal is an identity
used by applications or services. Accordingly, to au-
thorize a Galaxy instance to access protected Azure
resources, the resource owner defines a service prin-
cipal and assigns an appropriate role to it.

A client can assume a service principal leveraging
the client credentials grant flow of OAuth 2.0 proto-
col. This is a non-interactive flow and it is specifically
designed for application-to-application communica-
tion. In this flow, client authentication (ID and se-
cret of the service principal) is used as the authoriza-
tion grant. Accordingly, neither the resource owner
nor a Galaxy user is asked for a consent when client
attempts to assume a service principal by a client,
hence, this flow should be established between confi-
dential clients only.

To assume an Azure role, a client requests an ac-
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Figure 4: Identity federation and authorization grant in the proposed protocol for AWS.

cess token from Azure’s authorization server using its
client credentials (see Figure 5). Upon a successful
client authentication, the authorization server issues
an access token for the client. The access token is
issued for the application, independent from a user,
and grants the client with privileges as defined by
the role attached to the service principal. Following

the client credentials grant flow, Azure’s authoriza-
tion server does not provide a refresh token; hence,
an expired access token is refreshed by repeating the
authorization process. Additionally, the authoriza-
tion is revocable by removing the service principal,
or changing its secret, or updating the role’s assigned
to it.
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3 Results

Galaxy federates users identity and authentication
using the OIDC protocol, which is the current in-
dustry standard. Accordingly, an identity provider
authenticates a user to a Galaxy instance using tem-
porary identity token that can be refreshed by that
Galaxy instance only using a refresh token. Tokens
represent claims about the authenticated users, and
to verify the integrity of the tokens, they are repre-
sented in cryptographically signed JSON Web Tokens
(JWTs). (A JWTs token is different from a crypto-
graphically encrypted token, JWEs, where the claims
in the token are encrypted and hidden from unautho-
rized parties.) Galaxy uses the authentication tokens
to obtain cloud-native credentials to sign requests to
a cloud-based resource provider’s API and access pro-
tected resources (a detailed discussion is postponed
to Section 3.2.2). To simplify the process, manual
intervention of users is minimized (see figures 1, 4
and 7) and the tokens/secrets are never handed-out
to end users.

In the remainder of this section, we discuss the
advantages of the proposed method, related security
challenges, and compare existing authentication and

authorization protocols with our choices.

3.1 Countermeasures against eaves-
dropping attack

The eavesdropping attack is a type of the man-in-
the-middle attack where the attacker sniffs and re-
lays communication between parties (e.g., between
Galaxy and AWS) and steals sensitive information
such as identity tokens and/or access credentials.
A common practice that we leverage to effectively
thwart eavesdropper revolves around two principles;
first, cryptographically secured communication chan-
nel between the parties. The OAuth2.0 protocol
mandates transmitting tokens using Transport Layer
Security (TLS) protocol (see sections 10.3 and 10.4 at
tools.ietf.org/html/rfc6749). Accordingly, we
recommend employing TLS to secure the communica-
tion between Galaxy and both identity and resource
providers.

Second, OIDC identity and access tokens, and
cloud-native credentials (generated by CloudAuthz)
are short-term tokens with least privileges, which
shortens the time-frame during which an eavesdrop-
per can impersonate a Galaxy user when the TLS
connection is exploited and tokens/credentials are
stolen. The maximum age of tokens and cloud-native
credentials is configurable in Galaxy by instance ad-
mins, and we recommend setting it to their mini-
mum values (the default value is 3600 seconds). The
exp claim of JWTs sets the expiration time of tokens;
and since the tokens are cryptographically signed, the
value of exp claim (among other claims) cannot be
changed without invalidating the token. The expired
tokens can be refreshed only by trusted parties us-
ing their secrets (e.g., audience ID and secret) and
refresh tokens.

3.2 State-of-the-art of Fine-grained
Medical Data Access Control in
Cloud Computing

As the interest in data-driven healthcare continues
to intensify, data security and privacy become im-
perative, which demands more robust and transpar-

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 26, 2018. ; https://doi.org/10.1101/506238doi: bioRxiv preprint 

tools.ietf.org/html/rfc6749
https://doi.org/10.1101/506238
http://creativecommons.org/licenses/by-nc-nd/4.0/


ent data governance. Additionally, with the prolif-
eration of biobanks and comparative data analysis
methods, data sharing across institutes is becoming
essential, which escalates data governance challenges.
This scattering of datasets across organizations im-
pedes data usage because accessing each requires a re-
searcher to separately apply for access through a data
access committee. The challenges are twofold, first,
there has been a great deal of controversy evolving
around consent. The Global Alliance for Genomics
and Health (GA4GH) is fostering “consent codes” to
facilitate data sharing, which divides data access con-
ditions into nineteen empirical “categories” and “re-
quirements” for consistent interpretation of data ac-
cess and consent [11]. However, lack of consensus
to the legal and ethical appropriateness of existing
strategies hinders their adoption [5].

Second, determination and automatic enforce-
ment of data usage restrictions and user autho-
rizations. The Data Use Oversight System (duos.
broadinstitute.org) is an attempt to define and
enforce an ontology of data access restrictions. The
GA4GH has launched a pilot study, named “library
card” [4], to standardize a role-based authentication
and authorization of researchers by augmenting the
widely-adopted protocols such as OIDC; it is envi-
sioned to encode “bona fides” of researchers as a set
of standardized claims. Additionally, GA4GH has
defined “registered access”, an empirical data access
model that leverages “consent codes” and “library
card” for authentication, attestation, and authoriza-
tion of researchers access to protected data [9, 10].
The different protocols for authentication and autho-
rization are discussed in the following sections.

3.2.1 User Authentication Protocols

A principle component to data sharing and their
access control is user identification and authentica-
tion across institutes and resource/service providers.
There has been a number of protocols developed for
this purpose, such as Lightweight Directory Access
Protocol (LDAP), Security Assertion Markup Lan-
guage (SAML), OASIS WS-* (Security, Trust, and
Federation), OAuth, and OpenID Connect (OIDC).
These protocols are used in widely adopted services

such as Shibboleth, which leverages SAML protocol
to enable single sign-on across organizations. For in-
stance, using Shibboleth, a university X (Shibboleth
Identity Provider) with subscription to a publisher
Y (Shibboleth Service Provider) can enable its stu-
dents to login to Y and access subscription-required
articles.

OIDC is the state-of-the-art authentication and au-
thorization protocol supported by major social iden-
tity providers and cloud-based resource providers
such as Amazon, Google, and Microsoft. Accord-
ingly, we use the OIDC protocol for Galaxy’s iden-
tity and access management (see Figure 6), and the
remainder of this section is scoped to OIDC-based
approaches. Leveraging OIDC-certified libraries (see
openid.net/developers/certified/ for their list)
any platform can act as an OIDC identity provider;
however, to allow users to login to Galaxy using their
institutional or social identities, and security chal-
lenges of implementing and maintaining an OIDC
IdP for developers and Galaxy instance admins (e.g.,
counterfeits weaknesses covered in tools.ietf.org/
html/rfc6819), we are akin to rely on external iden-
tities.

There exists two architectural approaches for user
authentication using their external identities: direct
and brokered [18, 14]. In the direct authentication
pattern, a Galaxy instance (client) directly estab-
lishes a trust relation (i.e., communicate following a
standard protocol such as OIDC) with an IdP, acting
as an RP, where the IdP issues identity tokens with
aud claim being the audience ID of that Galaxy in-
stance. The direct authentication is a decentralized
pattern, where users are authenticated to different
Galaxy instances independently. Using a decentral-
ized pattern, a breached trust relation is isolated and
cannot affect other trust relations. Additionally, ad-
mins of Galaxy instances can independently choose
IdPs following their institutional policies. However,
to interface with multiple IdPs following this pattern,
Galaxy needs to implement every IdP-specific trust
relation.

The brokered pattern leverages an authentication
broker; an intermediary service of a single sign-on
architecture that establishes a trust relation between
multiple IdPs and service providers, and it is trusted
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by both parties independently. (In other words,
a broker can use different authentication and au-
thorization protocols to communicate with IdP and
Galaxy.) A broker may decouple parties using an
internal user identity, and vouches for the user by
issuing its own identity tokens to the clients (see Fig-
ure 7) [18]. An advantage of this design is the ability
to impersonate a user by masking their login user-
name by the internal identity of the broker to Galaxy.
Additionally, an authentication broker can negotiate
trust between Galaxy and IdPs, which removes the
need for direct relation with IdPs. However, the bro-
kered pattern is a centralized approach, where users
are authenticated to various Galaxy instances using
shared identities. Accordingly, a brokered pattern es-
tablishes a single point of failure and a central breach
point; a security and liability concern [12]. If com-
promised, it can jeopardize the security of users on
all connected Galaxy instances. If it fails, none of the
parties can communicate; however, with the cost of
increased design complexity, this problem can be mit-
igated by significant number of redundant and mir-
rored brokers. Additionally, some Galaxy instances
may not be commissioned to interface brokers or use
shared identities due to institutional policies and con-
sent concerns.

In spite of the plain core premise of direct and
brokered patterns (as described in [18]), the spec-
ification has a myriad of options and variations,
which makes it difficult to draw clear boundaries
between the available implementations. Some
IdPs provide libraries for direct user authentica-
tion, for instance Google (developers.google.
com/identity/protocols/OAuth2) and Microsoft
(docs.microsoft.com/en-us/azure/active-
directory/develop/reference-v2-libraries).
Python Social Auth (github.com/python-social-
auth/social-core) implements IdP-specific trust
relations for common social identity providers
and exposes them via a common interface, which
simplifies using the direct authentication pattern
with multiple IdPs. A decent number of services
are available for the brokered pattern authenti-
cation, spanning from commercial products such
as Amazon Cognito (aws.amazon.com/cognito/)
and Okta (www.okta.com), to free and open-source

services such as Keycloak (www.keycloak.org),
CILogon (www.cilogon.org/oidc), and Fence
(github.com/uc-cdis/fence).

Galaxy needs to authenticate users in a heteroge-
neous environment of authentication and authoriza-
tion approaches. An authentication broker can ne-
gotiate trust between Galaxy and IdPs (and service
providers), which removes the need for direct relation
with IdPs. Meanwhile, using libraries such as Python
Social Auth, Galaxy can establish a trust with multi-
ple IdPs through a common interface, without the
need for an IdP-specific implementation. Accord-
ingly, we leverage the direct authentication pattern,
and use Python Social Auth to establish a trust rela-
tion with IdPs.

3.2.2 Protocols for User Authorization to
Cloud-Based Resources

Cloud-based resource providers commonly implement
two methods to authorize access rights to secured
resources: signed URLs, and cloud-native creden-
tials. Signed URLs grant a party in possession of
the URL with particular access to specific resources
determined at the URL generation by the resource
owner. Signed URLs allow resource owners to grant
temporary access to users who are not required to be
authenticated by the resource provider. While signed
URLs simplify data sharing, it is challenging to au-
dit the access to the data shared using signed URLs.
Additionally, the enforcement of a fine-grained access
control on a large scale would be challenging since the
URLs are generated on a per-resource basis.
Cloud-native credentials, as the name implies, are

provider-specific secrets to sign programmatic re-
quests to the provider (e.g., Application Program-
ming Interface (API) requests). Providers com-
monly offer long and short-term credentials. A re-
source owner can obtain long-term secrets from the
provider’s portal, and use them to authorize a client’s
(e.g., a web or native app) access to secured resources.
However, such credentials are commonly obtained via
a manual intervention that demands a degree of fa-
miliarity with the resource provider’s portal. Addi-
tionally, long-term nature of such credentials com-
monly persuades scenarios where the tokens are em-
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bedded or distributed in applications, which increase
the risk of tokens being hijacked.

Accordingly, some cloud-based resource providers
(e.g., Amazon and Microsoft) implement security
token service (STS), specifications of which is de-
fined as part of OASIS WS-Trust and WS-Federation
protocols [17]. The STS that commonly maps to
(OAuth2.0) authorization server and is intended to
be used by native and web apps, issues short-term
security credentials upon a successful assertion of
user authentication (see Figure 1). Since such tokens
are emitted on-the-fly as per API requests, obtaining
them does not require a manual intervention of the
resource owner. Additionally, the short-term creden-
tials are not valid after their limited lifetime, whose
advantages are twofold, first it does not necessitate
revoking them when they are no longer needed. Sec-
ond, if (e.g., as a result of a design flaw) short-term
credentials are distributed or embed with applica-
tions, they cannot impose security risks after their
limited lifetime.

However, both long and short-term secrets grant
a client with the same level of privileges as the re-
source owner. Accordingly, resource providers lever-
age RBAC [21] and allow resource owners to define
roles. A role (or a service principal in Azure termi-
nology) is an identity that can be assumed by clients
using specified users authentication, whose privileges
are defined independent from the resource owner.
Coupling STS with RBAC, resource providers emit
short-term credentials per successful assertion of user
authentication.

Some resource providers (e.g., Amazon) use fed-
erated identities and enable assuming a role using
authentications issued for specified clients by deter-
mined IdPs (see Figure 3). Leveraging this model,
a client can obtain short-term credentials on behalf
of users who are not necessarily part of the resource
owner’s cloud subscription account, which is advanta-
geous for sharing data without adding collaborators
to a cloud subscription account.

Therefore, Galaxy obtains user authorization to
protected cloud-based resources, leveraging RBAC
model, from resource provider’s STS. Since resource
providers expose STS and RBAC differently, Galaxy
uses CloudAuthz that provides a common interface
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Figure 6: Illustrates a subset of available methods
and implementations for user authentication and au-
thorization grant to cloud-based resource providers,
and the back-ends each method supports. The figure
is scoped to only OIDC-based authentication and au-
thorization grant using cloud-native credentials. The
method and implementations we use in Galaxy are
highlighted in purple, which are Python Social Auth
for user authentication, and CloudAuthz for granting
cloud authorization.

to various resource providers, it supports AWS and
Azure, and Google is under development (see Fig-
ure 6). Amazon Cognito provides AWS STS and
RBAC functionality for native and web apps, and
Fence implements an interface to Google and AWS
STS.

4 Discussion

In this paper, we have described a robust, gener-
alized, and secure approach for accessing biomed-
ical data across multiple cloud computing plat-
forms. We use best-practice Web approaches so
that user credentials are never requested, transmit-
ted, or stored by principles other than resource or
identity providers. In general, leveraging the RBAC
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Figure 7: Illustrates three patterns of user authen-
tication and cloud authorization. The Option 1 is
based on direct authentication protocol, which we
currently implement. The Option 2 is based on bro-
kered authentication pattern, and since methods im-
plementing this protocol can map an authenticated
user to a local identity (see steps 4 and 5 of Option
2: the broker emits its own authentication instead
of relaying the IdP’s proof), this protocol cannot be
used for authorization grant to cloud-based resource
providers. The Option 3 also follows brokered authen-
tication pattern, but since it also provides authoriza-
tion grant service (Amazon Cognito is such a broker),
it can be used as an alternative to Option 1.

model and the OIDC protocol, the proposed method
securely grants clients with authorization to pro-
tected cloud-based resources by mutually satisfying
the principals about each other’s authentication and
authorization. Additionally, the proposed method

follows the principle of least privilege, and allows the
resource owner to revoke and restrict a client’s au-
thorization at any time, and independent from other
granted authorizations. The proposed method is im-
plemented in the Galaxy platform, which is used
across the world for large-scale biomedical analyses.
The result of this integration is that Galaxy users can
securely and seamlessly access their protected cloud-
hosted (and potentially sensitive) genomic data and
use that data in Galaxy to run complex, integrated
analyses.

Our work enabling Galaxy to leverage RBAC
model and use OIDC protocols to securely access
biomedical datasets across cloud computing plat-
forms is a first step toward developing a user-friendly
yet functional platform for analysis of distributed
biomedical data [2]. Galaxy is currently implemented
as a monolithic application, which we are changing
toward a collection of micro-services; in this regard,
our next step is to implement a common identity
across Galaxy servers and services. A common iden-
tity paves the path toward a coherent user experi-
ence across different Galaxy instances, where their
data, workflows and analysis histories are unified. A
common identity can be realized by out-sourcing user
authentication and authorization as an independent
and “globally-accessible” AuthNZ service.
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