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Abstract

Opioid addiction causes high degree of morbidity and mortality. Preemptive 1

identification of patients at risk of opioid dependence and developing intelligent clinical 2

decisions to deprescribe opioids to the vulnerable patient population may help in 3

reducing the burden. Identifying patients susceptible to mortality due to opioid-induced 4

side effects and understanding the landscape of drug-drug interaction pairs aggravating 5

opioid usage are significant, yet, unexplored research questions. In this study, we 6

present a collection of predictive models to identify patients at risk of opioid abuse, 7

mortality and drug-drug interactions in the context of opioid usage. Using publicly 8

available dataset from MIMIC-III, we developed predictive models (opioid abuse models 9

a=Logistic Regression; b=Extreme Gradient Boosting and mortality model= Extreme 10

Gradient Boosting) and identified potential drug-drug interaction patterns. To enable 11

the translational value of our work, the predictive model and all associated software 12

code is provided. This repository could be used to build clinical decision aids and thus 13

improve the optimization of prescription rates for vulnerable population. 14

Introduction 15

Drug overdose is the leading cause of accidental deaths in the US with 52,404 lethal 16

drug overdoses in 2015. Opioid addiction is driving this epidemic with 20,101 overdose 17

deaths related to prescription pain relievers and 12,990 overdose deaths related to heroin 18

in 2015. The overdose death rate in 2008 was nearly four times that in 1999 and the 19

sales of prescription pain relievers in 2010 were four times those in 1999 ( [1]- [2]). Also, 20

a study done by Jeffery et al., ( [6]) highlights the fact that despite all the increased 21

attention to opioid abuse and awareness of risks, the opioid use and average daily dose 22

have not substantially decreased from the peaks. Drug overdose continues to be an 23

alarming public health problem and thus, it needs immediate attention. However, a part 24

of this problem could be addressed if we can precociously identify those subjects who 25

are the most susceptible to adverse events when given opioids. We provide a solution to 26

this by using simple yet robust machine learning techniques involving classification 27
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algorithms. In addition to this, we’ve explored the interactions between opioids and 28

other drugs that could result in increased incidence of a particular side effect. In order 29

to discover the relation between the interactions and the incidence of side effects we’ve 30

performed K-Means clustering. As aptly described in Khader et al., ( [10]), this study 31

combines the robustness of both statistical analysis and machine learning techniques. It 32

also exemplifies the utility of publicly available biomedical datasets and its application 33

for improving public health as emphasized by Khader et al., ( [9]). 34

35

Even after being acknowledged as one of the major issues, opioid epidemic remains 36

eclipsed from the artificial intelligence communities in healthcare. Che et al., ( [4]) is 37

one of the very few attempts done to classify subjects based on opioid usage. This study 38

categorizes subjects into three groups (short term, long term and opioid dependent 39

users) based on the number of prescriptions given. Here, opioid dependent users refer to 40

those who are diagnosed with ”opioid dependence”. This study describes two 41

classification tasks: a) whether a short term user will turn into a long term user and b) 42

whether a long term user is an opioid dependent user. One issue with such a type of 43

classification is that the study is ignoring the possibility of a short term user developing 44

the symptoms of opioid dependence. When a subject is prescribed opioids only a few 45

times but with high dosages the subject could still be prone to adverse effects. Another 46

point to be noted in this study is that the best performing model for identifying opioid 47

dependent users is a deep learning model that uses Recurrent Neural Network (RNN). 48

As highlighted by Dudley et al., ( [8]), it is a well-established fact that deep learning 49

models need to be trained on large datasets for better performances. However, as the 50

number of subjects who experienced opioid dependence symptoms in Che et al., ( [4]) 51

was only 749, this study has randomly generated 14 datasets by downsampling 52

non-opioid-dependent subjects which formed two-thirds of the dataset and then trained 53

the RNN model. This might not be the most technically robust way to generate data. 54

Even with such a random generation the accuracy of the model is found to be 76.07% 55

with a recall of only 52.05%. That means, the chances of identifying a long term subject 56

who could be prone to opioid dependence using this model is better than tossing a fair 57

coin by a mere margin of 2%. 58

59

Also, as Dudley et al., ( [8]) pointed out, deep learning models are often regarded as 60

models lacking interpretability in healthcare. To overcome all these issues, our study 61

advocates the use of traditional machine learning models to achieve better classification 62

accuracies by extracting data in a more robust way. 63

Materials and Methods 64

Dataset: 65

The MIMIC-III dataset consists of details of 46,520 subjects at the Beth Israel 66

Deaconess Medical Center, Boston, Massachusetts. Among these, 29,959 subjects were 67

identified with prescriptions of opioids such as Morphine, Meperidine, Codeine, 68

Buprenorphine, Hydromorphone, Methadone, Fentanyl, Oxycodone, Oxymorphone and 69

Hydrocodone. Further, 1,405 subjects out of these were prescribed Naloxone, which is 70

an anti-narcotic medication known for its usage as opioid overdose reversal drug. In a 71

few cases, Buprenorphine could also be prescribed in combination with Naloxone to 72

minimize the possibility of opioid dependence. 73
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Cohort Selection: 74

All the subjects with opioid prescriptions were divided into 8 age groups. Age of the 75

subjects was calculated based on their date of birth and the date of prescription issued. 76

In case of multiple prescriptions issued for a subject, the latest prescription was 77

considered for determining his/her age. The statistics of each of these age groups is 78

presented in Table 1. 79

Table 1. Statistics of subjects in different age groups.

Age Group Age Range (Years) Total No. Of Subjects No. Of Subjects With Side Effects

1 <13 269 0
2 13 - 19 253 7
3 20 - 40 2949 254
4 41 - 50 3273 203
5 51 - 65 8507 251
6 66 - 75 5974 26
7 76 - 85 5906 7
8 >85 2861 1

In order to identify subjects with side effects, we’ve checked the diagnoses reports of 80

every subject prescribed with opioids for symptoms related to overdose and/or 81

dependence using the International Classification of Diseases, Ninth Revision (ICD 9) 82

codes. A few of the ICD 9 codes and categories are listed in Table 2. A total of only 749 83

subjects were identified to have side effects. 84

Table 2. List of ICD 9 codes used for identifying subjects with adverse events.

Broad Category ICD 9 Codes

Opioid type or combination of opioid type with other
drug dependence

30400 30401 30402 30403 30470 30471 30472 30473
30550 30551 30552 30553 96500 96501 96502 96509

Psychological effects 30410 30411 30412 30413 30540 30541 30542 30543
Psychostimulant dependence 30440 30441 30442 30443
Poisoning 96502 96509 9701 E8500 E8501 E8502
Hallucinogen dependence 30450 30451 30452 30453
Miscellaneous dependence 30420 30421 30422 30423 30430 30431 30432 30433

Data Extraction Methodologies 85

Feature Selection: 86

A total of 26 features were chosen to represent the selected cohort. The target variable, 87

SIDE EFFECTS FLAG, is set to 1 if the subject is diagnosed with any of the adverse 88

events listed in Table 2 and 0 otherwise. The gender of a subject is represented by a 89

binary variable - 0 for female and 1 for male. For subjects with one or more Naloxone 90

prescriptions, the ANTI NARCOTIC flag is set to 1 and for those with prescriptions of 91

all other opioids under study, the NARCOTIC flag is set to 1. Every opioid is allocated 92

a discrete variable to represent the total number of prescriptions of that particular 93

opioid given to each subject. In addition, the total number of anti-narcotic (Naloxone) 94

and narcotic (opioids excluding Naloxone) prescriptions are also represented by two 95

discrete variables. If a subject has stayed in Intensive Care unit (ICU) then the binary 96

flag, ICU, is set to 1 and 0 otherwise. The mortality status of the subject is indicated by 97

3/12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/506451doi: bioRxiv preprint 

https://doi.org/10.1101/506451
http://creativecommons.org/licenses/by-nc-nd/4.0/


another binary variable, EXPIRE FLAG. It is triggered if the subject is no more. Also, 98

the age group of every subject is represented using one-hot encoding. Finally, feature 99

normalization was done by performing an affine transformation on each feature so that 100

all the values in the dataset are in the range of [0,1]. Figure 1 shows the correlation of 101

features. It can be observed that the target variable, SIDE EFFECTS FLAG, has the 102

highest positive correlation with TOTAL ANTI NARCOTIC PRESCRIPTIONS and 103

ANTI NARCOTIC flag. Intuitively, this makes sense because a subject would be 104

treated with anti-narcotics when adverse events start to show up. Also, among opioids, 105

the number of prescriptions associated with BUPRENORPHINE and METHADONE 106

have a relatively higher positive correlation with the target variable. Similarly, the 107

EXPIRE FLAG is observed to have the highest positive correlation with MORPHINE. 108

Figure 1. Correlation of features.

Dealing with class imbalance: 109

It can be observed from Table 1 that there is a huge imbalance between subjects with 110

side effects and those with no side effects. Running a classification algorithm on such a 111

data would result in overfitting the model and hence it will learn to predict the majority 112

class. As a result, the classification accuracy might be high even when the number of 113

true positives for subjects with triggered SIDE EFFECTS FLAG is terribly low. We’ve 114

taken two steps to address this problem. 115
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a) Downsampling majority class: 116

Among 749 subjects identified with side effects, only 15 belonged to age groups 1, 2, 7 117

and 8. On the other hand, these age groups accounted for, approximately, 10,000 118

samples of majority class. Although excluding these age groups has resulted in a much 119

better ratio of subjects with side effects to those with no side effects (734:19969 vs 120

749:29959), the data is still highly imbalanced. 121

b) SMOTE - Oversampling minority class: 122

In order to deal with the high class imbalance in the data, Synthetic Minority 123

Oversampling Technique (SMOTE) developed by Chawla et al., ( [3]) was used. This 124

algorithm works by choosing the nearest neighbors of data with minority class label and 125

upsamples them. This method was used after performing Linear Discriminant Analysis 126

(LDA) on the data which provided evidence that both the classes were quite separable 127

from each other. Implementing this algorithm not only led to the expansion of the 128

dataset in a statistically robust way but also minimized the imbalance in the dataset. 129

Addressing the issue of sparse features: 130

As described earlier, quite a number of features were based on the opioids given to the 131

subjects. A few opioids like Morphine were prescribed very often while the other opioids 132

such as Oxymorphone were rarely prescribed. As every subject had features related to 133

every opioid, the less frequently prescribed opioids led to sparse features. In order to 134

have a better subset of features we’ve performed Principal Component Analysis (PCA). 135

From Figure 2, it can be observed that the maximum variance is retained from 136

component 6 onwards. But, the regression resulted in maximum accuracy with 11 137

components. Hence, the number of features have been reduced to 11. 138

Figure 2. Cumulative explained variance across different principle components.

Modelling 139

The entire dataset was split into 80% training set and 20% test set for running the 140

classification models. We’ve chosen Logistic Regression with L2 regularization as a 141
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baseline and Extreme Gradient Boosting (XGBoost) developed by Chen et al., ( [5]) as 142

an enhanced model. For both the models, we have performed 10-fold cross validation on 143

the dataset. 144

Baseline model - Logistic Regression: 145

Logistic Regression model with L2 penalty of 0.001 was run on the dataset before and 146

after performing SMOTE and PCA. The mean AUC of 10 fold cross validation can be 147

observed in Figure 3. 148

Figure 3. Baseline: ROC curve before after performing SMOTE and PCA.

Enhanced model - XGBoost: 149

For XGBoost, 20% of the training set was set aside as the validation set. Grid search 150

was done over this validation set to get the best parameters for the model. The obtained 151

parameters are listed in Table 3. The Receiver Operating Characteristic (ROC) curve 152

before and after performing SMOTE & PCA for XGBoost are shown in the Figure 4. 153

Figure 4. Enhanced model: ROC curve before after performing SMOTE and PCA.
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Table 3. Summary of best parameters for XGBoost.

Parameter Value

Learning rate 0.1
Maximum depth 8
N estimators 200
Objective binary:logistic

Modeling without mortality flag: 154

As it is practical and obvious that we would like to use this model to assess patients 155

who are alive, it makes more sense to drop the EXPIRE FLAG feature and look at the 156

performance of the model. By keeping all the data extraction and processing 157

methodologies same, the mean AUC with XGBoost has been found to be the same as 158

that of the XGBoost model with the EXPIRE FLAG. This can be observed from Figure 159

5. 160

Figure 5. XGBoost: ROC curve before after performing SMOTE and PCA.

Mortality as the target variable: 161

Until now we’ve tried predicting if a subject will show side effects when prescribed 162

opioids. But a far more fatal consequence associated with opioids is death. Being able 163

to segregate subjects with high risk of mortality could be a huge problem in itself. 164

Hence, to facilitate such a precocious identification we’ve run a classification algorithm 165

on the cohort that has experienced side effects. XGBoost model was trained on 80% of 166

these subjects (n=587) and tested on the remaining 20% (n=147). The accuracy of the 167

model is given in the Table 4. 168

Interactions between opioids and other drugs: 169

This part of the study aims at discovering the interactions between opioids and other 170

drugs that could lead to potential side effects in subjects. In order to carry out this 171

study, we’ve considered the cohort of 749 subjects who were diagnosed with side effects 172

in the previous study (including all age groups). These subjects were given at least one 173

of the 11 opioids under consideration and 3710 other drugs put together. We’ve 174
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categorized the side effects into 7 groups and the summary is provided in Supplementary 175

Table 1. All the opioids were assigned an index between 1 to 11 and similarly the other 176

drugs were also indexed. For every opioid and other drug combination, the number of 177

subjects who were diagnosed with side effects in each of the above 7 groups has been 178

kept track of. These numbers were normalized before performing K-means clustering. 179

From the elbow plot shown in Figure 6, the number of optimal clusters were found to be 180

4. Apart from the variants of regular salts like potassium chloride and sodium chloride, 181

insulin is one important drug that has been classified into the predominant cluster.

Figure 6. Elbow plot for K-means clustering.

182

Results 183

The results of this study can be summarized in three sections: (a) Predictive modeling 184

for classifying subjects susceptible to opioid abuse, (b) Predictive modeling for 185

classifying subjects susceptible to death and (c) Interactions between opioids and other 186

drugs.

Table 4. Summary of performance.

Model Target Variable Accuracy Precision Recall

Logistic Regression Side effects 76.31% 77.24% 76.43%
XGBoost Side effects 93.26% 92.26% 95.47%
XGBoost Mortality 68.71% 19.23% 71.42%

187

Predictive modeling for classifying subjects susceptible to 188

opioid abuse: 189

As discussed earlier, we’ve implemented two models for classifying subjects who could, 190

possibly, be prone to adverse events upon opioid consumption. Table 4 shows that 191

XGBoost has outperformed the Logic Regression model. This could be due to the fact 192

every subject is associated with only a few opioids and hence only a subset of features 193

which are related to those particular opioids are more important than the others. And 194

since XGBoost works by sub-sampling the features, the classification accuracy of 195

enhanced model is much higher than that of the baseline. From Figure 7, it can be 196
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observed that XGBoost has classified the number of prescriptions associated with 197

MEPERIDINE as the most important feature in deciding the subject’s susceptibility to 198

adverse events and it’s followed by TOTAL NARCOTIC PRESCRIPTIONS and 199

GENDER. A more obvious result, that follows our analysis of feature correlation, is that 200

NALOXONE and MORPHINE are also among the important contributing features.

Figure 7. Importance of features.

201

Also, as desired, the XGBoost model was more sensitive in classifying subjects with 202

adverse events than those with no adverse events. Hence, the number of true positives 203

for label 1 are more than those for label 0 (Figure 8). In other words, the model gave a 204

better recall score.

Figure 8. Confusion matrix.

205

Predictive modeling for classifying subjects susceptible to death: 206

Just like the previous model, it can be seen from Table 4 that the model used for 207

classifying subjects with high risk of mortality also has a higher recall score. This 208

implies that the model is able to classify subjects of concern with higher sensitivity. 209
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Interactions between opioids and other drugs: 210

As stated earlier, insulin has been found to be in the predominant cluster associated 211

with all categories of side effects. Not only that insulin has been used widely in subjects 212

prescribed with opioids but also the incidence of side effects has been comparatively 213

huge in the case of opioid and insulin combination. This observation backs up the 214

results from two earlier studies conducted by Li et al., ( [7]) and Sharma et al., ( [11]) 215

The first study states that morphine could lead to desensitization of insulin receptor 216

signaling. This could’ve been one reason of increased usage of insulin in subjects 217

prescribed with opioids. From the second study it can be learnt that islet cells, which 218

are responsible for the production of insulin, do not respond in an appropriate manner 219

to the glucose signals in subjects with opioid addiction. 220

Discussion 221

Though the total number of subjects experiencing opioid dependence and/or adverse 222

effects in this study is same as that in Che et al., ( [4]) results show that the current 223

models classify the subjects with a better accuracy and recall by just using traditional 224

machine learning models. Also, our enhanced model (93.26%) has outperformed the 225

RNN model (76.07%) in Che et al., ( [4]) and can classify all subjects irrespective of the 226

number of prescriptions given to them. 227

Limitations of the current study: 228

Having said all the above, like with any other study, there are a few drawbacks 229

associated with this study as well. The model for predicting the mortality, unlike those 230

for predicting the side effects, might not be robust. This is due to the fact that the 231

reason for death of the subject remains undisclosed. Though the subject has 232

experienced side effects, his/her death might not, necessarily, be related to opioids. This 233

analysis of mortality prediction should be considered as a preliminary one. Further, the 234

study of interactions between opioids and other drugs is based solely on the frequency of 235

prescription and the frequency of incidence of side effects. As we wanted to study the 236

correlation between the incidence of side effects and the prescription opioids/drugs, 237

irrespective of a subject’s characteristics, we didn’t include other interactions such as 238

protein-protein, drug-target protein etc. like that in the study done by Marnik et al., 239

( [12]). 240

Conclusion 241

Opioids are a class of drugs that are known for their use as pain relievers. They bind 242

themselves to opioid receptors on nerve cells in the brain and the nervous system to 243

mitigate pain. Addiction is one of the chronic and primary adverse events of prolonged 244

usage of opioids. They may also cause psychological disorders, muscle pain, depression, 245

anxiety attacks, etc. This study is intended to assist and double check the decisions 246

taken regarding the prescription of opioids. It aims at building a predictive model to 247

classify the subjects of interest into two categories based on their susceptibility to opioid 248

abuse. We’ve trained two classification models, Logistic Regression with L2 249

regularization (baseline) and Extreme Gradient Boosting (enhanced model), to achieve 250

this task. Results suggest that the enhanced model provides a promising approach to 251

identify subjects who are most vulnerable to adverse events when given opioids. If 252

employed as a reassurance technique, this study could be of tremendous help to medical 253
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practitioners in designing an appropriate action plan for their subjects before 254

prescribing them opioids and will help combat the opioid epidemic. 255

Supplementary Material 256

The code supporting this study is present in a private repository on Github. Please 257

contact the corresponding authors for access. Also, the supplementary material can be 258

referred from the same repository. 259
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