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Abstract 
Detailed conductance-based neuron models, consisting of nonlinear branched dendrites and 
thousands of synapses, are essential for understanding the integrative and computational 
properties of single neurons and large neuronal networks, and for interpreting experimental 
results. Simulations of such models are computationally expensive, severely limiting their 
utility. We introduce a novel analytic approach to simplify complex nonlinear neuron models 
while preserving the identity of individual dendrites and synapses. Neuron_Reduce represents 
each stem dendrite by a unique cylindrical cable, keeping its specific membrane and axial 
properties. Neuron_Reduce maps synapses and active membrane ion channels to the respective 
cylinder while preserving their transfer impedance to- and from- the soma as in the detailed 
model. The reduced model accelerates the simulation speed by up to 200-fold while closely 
replicating the sub- and supra- threshold voltage dynamics for a variety of cell types and inputs, 
including the nonlinear “ping pong” interaction between somatic Na+- and dendritic Ca2+-
spikes, found in L5 neocortical pyramidal cells. Neuron_Reduce also replicates dendritic 
computations discriminating spatiotemporal input sequences. The reduced neuron models will 
enable realistic simulations of neural networks at unprecedented scale, including of 
biologically-inspired “deep networks” and facilitate the construction of neuromorphic-based 
systems. Neuron_Reduce is publicly available (https://github.com/orena1/neuron_reduce) and 
is straightforward to implement. 
 
 

Introduction 
Compartmental models (CMs) were first employed to study neurons by Wilfrid Rall 

(Rall, 1964). They enabled him to explore the impact of spatio-temporal activation of 

conductance-based dendritic synapses on the neuron’s output, and the effect of the 

dendritic location of a synapse on the shape (time course) of its excitatory post-synaptic 

potentials at the soma (Rall, 1967). By simulating realistic (electrically-distributed) 

neuron models, Rall demonstrated how the cable properties of dendrites can explain the 

variety of somatic EPSPs shapes that were recorded at the soma of α-motoneurons, 

negating, the dominant explanation at that time, that the different shape of the somatic 

EPSPs in these cells was attributed to differences in the kinetics of the respective 

synapses. This was an impressive example showing that a faithful model of the neuron 

(as a distributed rather than a “point” electrical unit) is essential for the correct 

interpretation of experimental results. Since Rall’s 1964 and 1967 studies using CMs, 

the EPSP “shape indices” has become a standard method for estimating the location of 

dendritic synapses from experimentally measured somatic EPSPs. 

Over the years, compartmental models have provided key insights into hundreds of 

experimental findings, both for the single cell level and the network level. A notable 

example at the single neuron level is the explanation as to why the somatic Na+ action 

potential propagates backward from soma-to-dendrites and (typically) not vice versa 

(Rapp et al., 1996); CMs also pinpointed the conditions for the generation of dendritic 
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Ca2+ spike (Hay et al., 2011; Larkum et al., 2009) and provided the explanation for the 

spatial restriction of active spread of dendritic spikes from distal dendrites to the soma 

(Segev, 1992) and see also (Bahl et al., 2012; Gouwens et al., 2018; Magee and Cook, 

2000; Migliore et al., 1999; Poirazi et al., 2003; Segev and London, 1999; Stuart and 

Spruston, 1998). At the network level, noteworthy examples are the use of detailed 

CMs by (Egger et al., 2014; Markram et al., 2015) for large-scale simulations of a 

densely in silico reconstructed cortical circuits. Another team at the Allen Institute 

recently started a 10-year mission for understanding signal flow/computations in the 

mouse visual system and are using detailed CMs for simulating large parts of the visual 

system of the mouse (Hawrylycz et al., 2016). Indeed, because detailed compartmental 

modeling is increasingly becoming an essential tool for understanding diverse neuronal 

phenomena, major efforts have been invested in developing user-friendly computer 

software that implements detailed CMs for the use of the neuroscientific community, 

most notable are NEURON (Carnevale and Hines, 2006), GENESIS (Bower, 1998), 

NeuroConstruct (Gleeson et al., 2007), Geppetto (Cantarelli et al., 2018) and NTS 

(Kozloski and Wagner, 2011). 

Present-day personal computers enable the simulations of tens of seconds of the activity 

of single neurons each comprising of thousands of nonlinear compartments with 

realistic numbers (many thousands) of synapses. However, computer simulations of 

neural networks consisting of many thousands of such neurons require computational 

power that is beyond what is available today at most laboratories. When the size of the 

network reaches hundreds of thousands of such neurons, very powerful computers are 

required to run the simulation. For example, in the Blue Brain Project, simulation of a 

cortical network consisting of 200,000 neurons (Markram et al., 2015) requires several 

hours using a BlueGene/Q machine for simulating 30 sec of real time.  

To overcome this limitation, two approaches are typically employed. One is to develop 

alternative, cheaper and more efficient computing architectures (e.g., neuromorphic-

based computers (Aamir et al., 2016; Schemmel et al., 2008)). These have not yet 

ripened to simulate large-scale network models with neurons consisting of branched 

nonlinear dendrites. The other approach is to simplify the neuron models while 

preserving, as faithfully as possible, their input/output relationship. Rall (Rall, 1962) 

was the first to provide such a scheme in his “equivalent cylinder” model where he 

showed that, for certain idealized passive dendritic trees, the whole tree could be 
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collapsed to a single cylinder, that is analytically identical to the full tree. The 

“equivalent cylinder” preserves the total dendritic membrane area, the electrotonic 

length of the full dendritic tree and the input resistance at the soma (Rall and Rinzel, 

1973; Rinzel and Rall, 1974). This method is not applicable for dendritic trees with 

large variability in the dendritic cable lengths (e.g., pyramidal neurons with long apical 

tree and short basal tree) or for dendritic trees with nonlinear membrane properties.  

Along the years, several additional reduction schemes have been proposed; e.g., a 

recent work (Rössert et al., 2016) mapped all synapses to a single compartment, taking 

into account the filtering effect of the dendrites. Other methods reduced the full 

morphology to a simplified geometrical model while preserving the total membrane 

area (Destexhe, 2001; Hendrickson et al., 2011; Stratford et al., 1989) or the axial 

resistivity (Bush and Sejnowski, 1993); see also (Bahl et al., 2012; Marasco et al., 

2012). However, these methods are either “hand fit” without a clear analytical 

underpinning or are complicated to implement, and their computational speedup for 

realistic numbers of synapses was not demonstrated. Most of them do not support 

dendrites with active conductances (Brown et al., 2011; Bush and Sejnowski, 1993; 

Marasco et al., 2012, 2013; Stratford et al., 1989). Importantly, none of the previous 

studies supplied an easy-to-use open access implementation for their respective 

methods, and they were not tested on a variety of neuron types. We, therefore, lack a 

simple, publicly-available, reduction method for neuron models to be used by the large 

neuroscience and machine-learning communities.  

The present work provides an analytic method for reducing the complexity of detailed 

neuron models while faithfully preserving the essential input/output properties of these 

models. Neuron_Reduce is based on key insights from Rall’s cable theory, and its 

implementation for any neuron type is straightforward without the need for hand fitting. 

Depending on the neuron modeled and the number of synapses, Neuron_Reduce 

accelerates the run-time by a factor of up to 200 while preserving the identity of 

individual synapses and their respective dendrites. It also preserves the specific 

membrane properties and dendritic nonlinearities, thus preserving specific dendritic 

computations. Neuron_Reduce is easy to use, is fully documented and is publicly 

available at GitHub (https://github.com/orena1/neuron_reduce). 
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Results 
Analytic mapping of the full dendritic tree to a reduced multi-cylinder tree 

The thrust of our analytical reduction method (Neuron_Reduce) is described in Figure 

1A-C. This method is based on reducing each of the original dendrites, stemming from 

the soma, to a single cylindrical cable having the same specific membrane resistivity 

(Rm, in Ωcm2), capacitance (Cm, in F/cm2), and axial resistivity (Ri, in Ωcm), as that of 

the full tree (Figure 1A). In addition, the cylindrical cable satisfies two constraints: (i) 

the magnitude of transfer impedance, ห𝑍଴,௅ሺ𝜔ሻห ൌ  |𝑉଴ሺ𝜔ሻ/𝐼௅ሺ𝜔ሻ|, from its distal 

sealed end (X = L) to its origin (X = 0) is identical to the magnitude of the transfer 

impedance from the electrotonically most distal dendritic tip to the soma in the 

respective original dendrite; (ii) at the proximal end of that cylinder (X = 0), the 

magnitude of the input impedance, ห𝑍଴,଴ሺ𝜔ሻห ൌ  |𝑉଴ሺ𝜔ሻ/𝐼଴ሺ𝜔ሻ|, matches that of the 

respective stem dendrite (when decoupled from the soma). These two constraints, while 

preserving the specific membrane and axial properties, ensure a unique cylindrical 

cable (with a specific diameter and length) for each of the original dendrites (see Eqs. 

(1) – (11) in Methods) 

As the transfer impedance in both the original dendrite and in the respective cylindrical 

cable spans from ห𝑍଴,௅ሺ𝜔ሻห to ห 𝑍଴,଴ሺ𝜔ሻห, all dendritic loci with an intermediate transfer 

impedance value can be mapped to a specific locus in the respective cylinder. This 

mapping guarantees (for the passive case) that the magnitude of the somatic voltage 

response, 𝑉଴ሺ𝜔ሻ, to an input current, 𝐼௑ሺ𝜔ሻ, injected at a dendritic location, X, will be 

identical between the full model and the reduced cylinder (see Methods). Although 

Neuron_Reduce is valid for any ω, conveniently, we found a close match between the 

full and the reduced models for ω = 0 (the steady-state case, where the transfer 

resistance is used rather than the transfer impedance, see Figure 1D and Discussion). 

Thus, all figures in this work are based on reduced models with ω = 0. Therefore, all 

the synapses and nonlinear ion channels are mapped to the respective locus in the 

reduced cylinder while preserving the transfer resistance to the soma (see Figure 1 and 

Methods). 

Neuro-reduce implemented on passive layer 5 pyramidal cell model with synapses 

Figure 1 shows the case of implementing Neuron_Reduce on a detailed compartmental 

model of 3D reconstructed layer 5 pyramidal neuron from the rat somatosensory cortex 
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(Hay et al., 2011). This neuron consists of eight basal dendrites and one apical dendrite 

stemming from the soma, each of which is shown by a different color. This detailed 

model has active membrane ion channels at both soma and dendrites (see below). 

However, Neuron_Reduce first treats the modeled tree as passive by abolishing all 

membrane conductance while retaining only the leak conductance. Implementing Eqs. 

(1) - (11) for this cell (see Methods) produced a reduced, passive multi-cylindrical, 

model (Figure 1B, Step A). The detailed model consists of 642 compartments whereas 

the reduced model has only 48 compartments. 

Figure 1C shows an example of four synapses located in different apical branches. 

These synapses all have the same transfer resistance to the soma. Therefore, they are 

all mapped to a single respective locus in the reduced cylinder, such that their transfer 

resistance is identical in the detailed and the reduced models. In the reduced model, 

these synapses are merged into one “NEURON” process (red synapse in Figure 1B) 

yet, they retain their individual activation time (see Methods). Figure 1D compares the 

transfer impedance between a specific point in the apical tree (marked by ‘d’ in Figure 

1A and B) and the soma. By construction, for the passive case, the transfer resistance 

(at 𝜔 = 0) is identical in both models, validating Neuron_Reduce analytic method. 

Noteworthy is that, although constructed based on ω = 0, the similarity between the full 

and reduced model is close also for higher input frequencies; it is somewhat larger in 

the reduced model for 𝜔 around 10 - 100 Hz (compare red to black lines). To test the 

performance of Neuron_Reduce for transient synaptic inputs (composed of mixed input 

frequencies), we activated the four synapses shown in Figure 1C sequentially in both 

the full and the reduced models (see Methods and Table S2). Figure 1E compared the 

composite somatic EPSP in the two models. The close similarity between the two 

EPSPs further validated that mapping the detailed model to the reduced model for ω = 

0 provides satisfactory results (see also Figure S2). 
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Figure 1. An analytic method for reducing neuron model complexity (Neuron_Reduce). A. Detailed 
passive model of 3D reconstructed L5 thick tufted pyramidal cell from rat neocortex; (the nine stem 
dendrites in the example shown are depicted by different colors). B. Each stem dendrite in the full model 
is reduced to a single cylinder that retains the specific passive cable properties (Rm, Cm, and Ri) of the 
original tree. The diameter and length of the respective cylinders are computed analytically using Eqs. 
(1) – (11), such that each cylinder preserves both the transfer resistance from the most distal dendritic tip 
to the soma as well as the input resistance at the soma end of the corresponding stem dendrite. This 
generates a unique cylindrical cable for each of the original stem dendrites. Scale bars in A and B are 
100 µm. C. Synapses with the same transfer resistance to the soma (exemplar synapses are marked as 1- 
4 at top right) are all mapped to the respective locus in the reduced cylinder, such that their transfer 
resistance is identical in the two models. In the reduced model, these synapses are merged into one 
“NEURON” process (red synapse in B), yet they retain their individual activation time (see Methods). 
The same mapping also holds for active membrane conductances (schematic yellow region, denoting 
Ca2+ “hot spot” in the apical tree). D. Transfer impedance (Zd,0 = Z0,d) between point d on the apical 
tree (shown in A and B) and the soma (X = 0) as a function of the input frequency in both the full (black 
trace) and the reduced model (red trace). E. Comparison of the composite somatic EPSP resulting from 
the sequential activation of the four synapses shown in C in the full model (black trace) and in the reduced 
model (red trace). The synapses were activated in temporal order 1, 2, 3, 4 (activation time is shown by 
the vertical lines below the composite EPSP; with respective peak conductances of 0.6, 0.3, 0.4 and 0.4 
nS for AMPA-based synapses. See details in Table S2. In this example, both models have passive 
dendrites, see Figure S1 for the active case. 
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Accuracy and speed-up of Neuron_Reduce for a nonlinear neuron model 

To measure the accuracy of Neuron_Reduce for a nonlinear neuron model we ran a 

comprehensive set of simulations using a well-established use-case, a L5 pyramidal cell 

model ((Hay et al., 2011), Figure 2A as in Figure 1). This cell model also included 

several dendritic nonlinear channels including Ca2+ “hot spot” in the apical tuft (as in 

Figure 1C) and Na+ spiking mechanism in the cell body. We randomly distributed 

8,000 excitatory and 2,000 inhibitory synapses on the modeled dendritic tree (synaptic 

parameters are listed in Table S2) and used Neuron_Reduce to generate a reduced 

model for this cell. Next, we simulated the full model by randomly activating the 

excitatory synapses at 5 Hz and the inhibitory synapses at 10 Hz (see Methods). The 

full model responded with an average firing rate of 11.8 Hz (black trace Figure 2B, 

only 2 sec out of 50 sec simulation time are shown). The average firing rate of the 

reduced model due to the same input was 11.1 Hz (red trace, Figure 2B; spike timings 

are shown by small dots on the top). The cross-correlation between the two spike trains 

peaked around zero (Figure 2C), and the inter-spike interval distributions were similar 

in the two models (Figure 2D).  

The full range of responses to a random input for the two models was explored by 

varying the firing rate of the excitatory synapses and measuring the similarity between 

the spiking activity of the two models (Figure 2E). To assess the similarity between 

two spike trains we used the SPIKE-synchronization measure (Kreuz et al., 2015b, 

2015a). We also tested other similarity metrics and found comparable results (not 

shown, see also Kreuz, 2011 and Satuvuori and Kreuz, 2018). The SPIKE-

synchronization value of the two spike trains in Figure 2B is 0.785. The SPIKE-

synchronization measure as a function of the synaptic firing rate is relatively low at 

small values, but for larger input rates it stabilizes around 0.75 (Figure 2F). A 

comparison of our method with two classical reduction methods, that of Rall d3/2 

“equivalent cable” approach (Rall, 1962; Rall and Rinzel, 1973; Rinzel and Rall, 1974) 

and mapping (after cable filtering) all the synapses into a single somatic compartment 

(see Methods) are shown in Figure S3. In the entire range of inputs, Neuron_Reduce 

produced superior results. Furthermore, the model we have used in Figure 2 consists 

of highly nonlinear dendrites (Hay et al., 2011). Decreasing the nonlinearity by using 

only AMPA-mediated synapses (without NMDA-component) further improved the 

similarity between the spike times in the reduced versus the full models (Figure 2G). 
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Figure 2. Neuron_Reduce faithfully replicated the I/O properties of a full nonlinear model of L5 
pyramidal cell. A. Layer 5 pyramidal cell model (Hay et al., 2011) as in Figure 1A, with 8000 excitatory 
(magenta dots) and 2000 inhibitory synapses (cyan dots, see Table S2 for synaptic parameters). 
Excitatory synapses were activated randomly at a rate of 5Hz and the inhibitory synapses at 10 Hz. This 
detailed model consists of dendritic Ca2+ “hot spot” (as in Figure 1C) and Na+ spiking mechanism at the 
cell body. Scale bar 100 µm. B. An example of the spiking activity at the soma of the full model (black 
trace) and of the reduced model (red trace); spike times are represented by the respective dots above the 
spikes. C. Cross-correlation between the spikes in the reduced versus the full models. D. Inter-Spike 
Interval (ISI) distributions for the two models. E. The output firing rate of the reduced (red) versus the 
full (black) models as a function of the firing rate of the excitatory synapses. F. SPIKE-synchronization 
measure (see Methods) between the two models as a function of the firing rate of the excitatory synapses. 
Grey dots in E and F represent the case shown in B. G. SPIKE-synchronization as a function of the 
biophysical and synaptic properties of the full model. The quality of the performance of the reduced 
versus the full model increases with input frequency and decreases with the addition of NMDA synapses. 
 
In Figure 3 we compared the run-time of the full versus the reduced models for the L5 

cell shown in Figure 2A. Simulating the full model with 10,000 synapses for 50 

seconds required 9,800 േ 3,500 seconds whereas in the reduced model it took only 130 

േ 50 seconds, a ~80-fold improvement (see Table S1). The larger the number of 

synapses is in the full model, the longer the run-time is (Figure 3A). In contrast, the 

run-time in the reduced model is only slightly dependent on the number of synapses. 

This is expected when considering the synaptic merging step in our algorithm (see 

Discussion). The run-time in the reduced model does depend on the number of 

compartments per cylinder. However, although decreasing the number of 

compartments per cylinder decreases the faithfulness of the model, there was no 

improvement in the SPIKE-synchronization measure when X per compartment was 

smaller than 0.1 (Figure 3B and see also (Parnas and Segev, 1979)). Therefore, all the 

results presented in Figures 1-5 are based on models with spatial discretization, X, 

that is not larger than 0.1. 
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Figure 3. Neuron_Reduce enhances the simulation speed by up to 200 folds. A. Simulation run-time 
for the full (black) and the reduced models (red) of layer 5 pyramidal cell shown in Figure 2A, and their 
ratio (the speed-up, grey) as a function of the number of modeled synapses. B. Accuracy (blue) of the 
reduced models and their speed-up in simulation time (grey) as a function of the number of electrical 
segments per length constant (see also Table S1). 
 
Neuron_Reduce replicated key dendritic nonlinearities and computations 

To determine the capabilities of the reduced models to support nonlinear dendritic 

phenomena and dendritic computations, we repeated two classical experiments both in 

the full and the reduced model of the L5 pyramidal cell shown in Figure 1. The first 

simulated experiment starts with injecting a brief depolarizing step current to the soma 

of the full model in order to generate a somatic Na+ action potential (AP, black trace in 

Figure 4A). This AP then propagated backward to the apical dendrite (red trace in 

Figure 4A1). Repeating the same current injection in the reduced model leads to a 

similar phenomenon (Figure 4B1). The full model also contains a “hot region” with 

voltage-dependent calcium conductances in its apical dendrite (in its nexus, see Figure 

1). Combining the somatic current injection with synaptic-like transient depolarizing 

current injected to the apical nexus, evoked a prolonged Ca2+ spike in the distal apical 

dendrite (red trace at apical tree) which, in turn, generated a burst of somatic Na+ spikes 

(the BAC firing, Figure 4A2, see (Hay et al., 2011; Larkum et al., 1999, 2009)). 

Neuron_Reduce maps this nonlinear dendritic “hot” Ca2+ region to its respective 

location in the reduced model (see Figure 1 and Methods). Figure 4B1-B2 shows that 

similar combination of somatic and dendritic currents produced the BAC firing 

phenomenon also in the reduced model. However, the reduced model is somewhat more 

excitable than the detailed model; this results in a burst of three spikes with higher 

frequency in the reduced model (compare Figure 4A2 to B2). 
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Figure 4. Dendritic Ca2+-spike and BAC-firing are faithfully replicated in the reduced model. A1-
A2 Left, the detailed L5 pyramidal cell model with nonlinear Ca2+ “hot spot” (same model as in Figure 
2 and 3). A1. Injecting depolarizing step current to the soma (1.1 nA for duration of 11.9 ms) of the full 
model evoked a somatic action potential, AP (black trace) that propagated, semi-actively, backward into 
the apical tree (red trace). A2. Combining the somatic input with a transient synaptic-like current 
injection to the “hot region” in the apical dendrite evoked a prolonged local Ca2+ spike which, in turn, 
triggered a burst of two extra somatic Na+ spikes (the BAC firing phenomenon, Larkum et al., 1999). 
B1-B2. Back propagation and BAC firing in the reduced model with identical stimulations as in the full 
model. Synaptic current injections to the dendrite was of 0.95 nA peak value with 0.5 ms and 5 ms rise-
time and decay-time respectively. Scale bar for the morphologies is 100 µm. 
 
A second simulation attempted to replicate the original theoretical results of Rall (Rall, 

1964) and (Anderson et al., 1999) and the experimental results of (Branco et al., 2010). 

In these studies, several excitatory synapses were distributed over a stretch of a basal 

dendrite and were activated sequentially in time, either in the soma-to-dendrites (IN) 

direction or vice versa (the OUT direction). Rall showed that the shape and size of the 

resultant composite somatic EPSP depends strongly on the spatio-temporal order of 

synaptic activation; it is always larger and more delayed for the centrifugal (soma-to-

dendrites) than for the centripetal (dendrites-to-soma) sequence of synaptic activation 

(this difference could serve to compute the direction of motion; see (Anderson et al., 

1999)). It was shown that the difference in the somatic voltage peak between these two 

spatio-temporal sequences of synaptic activation is enhanced when nonlinear NMDA-

dependent synapses are involved (Anderson et al., 1999; Branco et al., 2010) and that 

it enables the discrimination between complex patterns of dendritic activation along the 

dendritic. 
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To simulate these phenomena, twelve excitatory synapses were placed along one basal 

branch in the full model (red dots on the green basal tree, Figure 5A1). At first, the 

synapses had only an AMPA component. The synapses were activated in temporal 

order from the tip to the soma (IN, cyan traces) or from the soma to the tip (OUT, blue 

traces), see Methods for details. As predicted by Rall, the IN direction resulted with 

larger and delayed somatic EPSP (Figure 5A2). Neuron_Reduce merged these twelve 

synapses into five point processes along the respective cylinder (Figure 5B1). We 

repeated the same experiment in the reduced model and found that also in this model 

the resulted EPSP was larger and delayed for the IN direction, although the EPSPs 

waveform was not identical between the reduced and the full models (see Figure S2 

and Discussion). Next, an NMDA component was added to the 12 simulated synapses; 

this resulted in larger somatic EPSP amplitude in both directions (and both models) and 

a smaller difference in the peak timing between the different directions in both the full 

and the reduced model (compare Figure 5A3 to B3). 

To generalize the impact of the spatio-temporal order of synaptic activation a 

directionality index was suggested by (Branco et al., 2010). This measure estimates 

how different a given synaptic sequence is from the IN sequence by calculating the 

number of synaptic swaps needed in order to convert this given pattern into the IN 

pattern (using the bubble-sort algorithm, see Methods). We tested the EPSPs that 

resulted from different temporal combinations of synaptic activation that have a 

different directionality index, both without (Figure 5C1) and with NMDA component 

(Figure 5D1). The peak somatic EPSP in the reduced model (red dots) was larger than 

in the respective full model (black dots), both for the AMPA-only case (by 1.71 ± 0.43 

mV), and for the AMPA + NMDA case (by 4.80 ± 0.74 mV); see Figure S1. Yet, when 

the somatic voltage was normalized by the peak voltage for the OUT direction, the 

behavior of the two models was similar (Figures 5C2 and 5D2). Now, the difference 

between the reduce and the full was only 0.11 ± 0.43 mV for the AMPA-only case and 

0.35 ± 0.43 mV for the AMPA + NMDA. We conclude that, although the full and the 

reduced models differ, to a certain degree (mainly due to differences in the dendritic 

input resistances, see Discussion), the capability of the reduced model to discriminate 

between spatio-temporal patterns of synaptic activation is similar to that of the full 

model. 
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Figure 5. Sensitivity of a basal dendrite to spatio-temporal sequence of synaptic activation in the 
detailed versus the reduced models. A1. A model of L5PC (full model, Figure 1) with twelve 
excitatory synapses spatially distributed on one of its basal dendrites (red dots on green basal dendrite). 
A2. Somatic responses to sequential activations of its basal synapses in the IN (cyan) and the OUT (blue) 
directions. In this case the synaptic models consist of only AMPA component. A3. As is A2 but the 
synaptic models consist of both AMPA and NMDA components. B1. Reduced model for the full model 
shown in A1. Neuron_Reduce mapped the twelve synapses in the full model into five synapses in the 
reduced model. B2 and B3. As in A2 and A3 but for the reduced model. C1. Pattern separability (see 
Methods) of the full (black) and the reduced (red) models. C2. As in C1 after substation of the peak 
voltage, obtained in the OUT direction, from each of the voltage responses. D1 and D2. As in C1 and 
C2 but when the synaptic models consist of both AMPA and NMDA conductances. Note the similarity 
between the full and the reduced model in terms of pattern separability. 
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Neuron-Reduce was implemented successfully on a variety of neuron models 

Next, we tested the utility of Neuron_Reduce for eight different neuron models (Figure 

6). These neuron models were extracted from three different databases; each model is 

for a different cell type. Four models were taken from the Blue Brain database 

(Markram et al., 2015) - L6 tufted pyramidal cell, L4 double bouquet cell, L4 spiny 

stellate cell and L5 Martinotti cell from the rat somatosensory cortex. Two additional 

models were taken from the Allen Institute cell type database (Gouwens et al., 2018) – 

an L4 spiny cell and L1 aspiny cell from the mouse visual cortex. Two additional 

neuron models are coming from our lab, a model of a rat L2/3 large basket cell 

(Amsalem et al., 2016) and a model of a human L2/3 PC (Eyal et al., 2016). All these 

models were constrained by experimental recordings and 3D reconstructions. See 

Table S2 for details about the various neuron models and input parameters. 

Although the models are for different neuronal types, have different morphologies, and 

different electrical properties. Neuron_Reduced managed to successfully generate a 

respective reduced model with highly faithful response properties for each of them 

(Figure 6). Three examples with the morphologies of the full and the reduced models 

are shown in Figure 6A-C. For a given input we measured the spiking activity of the 

full and the reduced models (Figure 6D-F) and calculated the corresponding SPIKE-

synchronization values. For the L6 tufted PC model (Figures 6A,D), the L2/3 large 

basket cell model (Figures 6B,E), and the L6 double bouquet model (Figures 6C,F) 

the SPIKE-synchronization values were 0.74, 0.85, and 0.91 respectively, for a trace of 

50 seconds (only 2 seconds are shown in Figure 6). The spike train similarities (in 

SPIKE-synchronization) for other inputs and for the other five neuron models (and their 

corresponding reduced models) are shown in Figure 6G. 
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Figure 6. Neuron_Reduce working successfully on a variety of neuron models. A-C. Detailed models 
of three somatosensory neurons (left, L6 tufted pyramidal cell in green, middle, L2/3 large basket cell in 
red, and right, L4 double bouquet cell in blue) and their respective reduced models. Scale bars 100 µm. 
D-F. Voltage responses to an excitatory synaptic input activated at 1.2, 1.2, 2.7 Hz respectively of both 
the full (black) and the reduced models (corresponding colors). The inhibitory input activation rate was 
10 Hz for all models. SPIKE-synchronization index for the full versus the reduced for eight neuron 
models. See Table S2 for cell models and input parameters.  
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Discussion 

In this work, we presented Neuron_Reduce, a new tool for simplifying complex neuron 

models and for enhancing their simulation run-time. This tool maps the full tree 

analytically into a reduced multi-cylindrical tree, based on Rall’s cable theory and linear 

circuit theory (Figure 1). The underpinning of the reduction algorithm is that it 

preserves (analytically) the magnitude of the transfer impedance ห𝑍଴,௝ห from each 

dendritic location, j, to soma (the dendro-somatic direction, Eqs. 1-11). Because in 

linear systems ห𝑍଴,௝ห ൌ  ห𝑍௝,଴ห, it also preserves, for passive dendritic trees, the transfer 

resistance in the somato-dendritic direction (e.g., current injection in or near the soma 

will result in the same voltage response at the respective sites in the full and reduced 

models; see also Koch et al., 1982). Neuron_Reduce is straightforward to use; it is fast, 

accurate and general so that it could be implemented on any neuron’s morphology with 

a realistic number (tens of thousands) of synapses per neuron. One key advantage of 

Neuron_Reduce is that retains the identity of individual dendrites and synapses and it 

maps dendritic nonlinearities to their respective loci in the reduced model, thus 

preserving local excitable dendritic phenomena, thus maintaining certain dendritic 

computations. It also preserves the passive cable properties (Rm, Ra, and Cm) of the full 

model, thus preserving synaptic integration and other temporal aspects. 

Neuron_Reduce enhances the computational speed by a factor of up to 200, depending 

on the simulated morphology and the number of simulated synapses (Figures 3 and 

Table S1). These mixtures of capabilities, together with its user-friendly documentation 

and its public availability makes Neuron_Reduce a favorable method for the community 

of neuronal modelers and computational neuroscientists, and for the growing 

community interested in “biophysical deep learning”. 

Several other reduction methods for single neurons have been proposed along the years 

(Bahl et al., 2012; Bush and Sejnowski, 1993; Destexhe, 2001; Hendrickson et al., 

2011; Marasco et al., 2012; Rössert et al., 2016; Stratford et al., 1989). Most of them 

are not based on analytic underpinning and, thus, require hand-tuning of the respective 

biophysical and morphological parameters. Most of these methods were not examined 

using realistic numbers of dendritic synapses and are incapable of incorporating 

systematically dendritic nonlinearities and, in most cases, their accuracy was not 

assessed for a variety of neuron types (but see Marasco et al., 2013). Many of these 

methods are not well-documented and, therefore, it is hard to directly compare them 
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with our method. Nevertheless, we did compare the performance of Neuron_Reduce to 

that of two other reduction methods and showed the advantage of Neuron_Reduce over 

these methods (Figure S3). 

The reduced model for nonlinear layer 5 pyramidal cells reproduced local dendritic 

spikes (Figure 4) and certain dendritic computations (Figure 5). However, it is 

important to emphasize that, although the transfer impedance from a given dendritic 

loci to the soma is preserved, the input impedance at that loci is not preserved in the 

reduced model. Consequently, the conditions for evoking local dendritic events, and 

the fine details of these events, are not necessarily identical in the full and the reduced 

models (e.g., compare Figure 4A1 and A2 to Figure 4B1 and B2). Similarly, because 

the local voltage response to a current injection in the dendrite depends on the dendritic 

impedance, the local synaptic responses is somewhat different in the two cases, 

especially when voltage-gated ion channels (such as NMDA-dependent synaptic 

channels) are involved. Indeed, when large NMDA signals are involved the resultant 

somatic EPSP are expected to be different between the full and the reduced model as is 

the case in Figures 4 and 5. Albeit these local differences, the models generated by 

Neuron_Reduce were capable of generating local dendritic Ca2+ spike in the cylinder 

representing the apical dendrite as well as performing input classification task 

(enhanced by NMDA-conductance) as in the full tree (Figures 4 and 5). We note that, 

when embedded in large circuits, individual neurons are likely to receive semi-random 

dendritic input rather than a clustered input on specific dendrites. For such inputs, the 

reduced models generated by Neuron_Reduce captures most of the statistics of the 

membrane voltage dynamics as in the full model (Figures 2 and 6). 

For a large number of synapses and complex morphologies, the run-time of 

Neuron_Reduce models could be accelerated by up to 200 folds (Figure 3 and Table 

S1). This is achieved by two steps that are linked together. First, the algorithm reduces 

the number of compartments per neuron model; e.g., for the reconstructed tree in 

Figure 1, it reduced the number of compartments from 642 to 48 . Then synapses (and 

ion channel) that are mapped to the same electrical compartment in the reduced tree 

(because they have similar transfer resistance to the soma) are merged to one point 

process in NEURON. Each one of these steps on its own has a relatively small effect 

on the run-time. However, when combining the two, a large (supra-linear) improvement 

in the computational speed is achieved (Table S1). This is because, in each time step, 
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NEURON computes both the voltage in each electrical compartment as well as the 

currents and states of each point process and membrane mechanism (synapses and 

conductances). Reducing the number of compartments in a model both decreases the 

number of equations to be solved and the number of synapses to be simulated (due to 

the reduced number of compartments larger number of synapses are merged together). 

Importantly, merging synapses preserves the activation time of each synapse. We note, 

however, that at its present state, Neuron_Reduce cannot merge synapses with different 

kinetics. 

The next straightforward step is to use Neuron_Reduce for simplifying all the neurons 

composing a large neural network model (as in the Blue Brain Project (Markram et al., 

2015)), and in the in silico model of (Egger et al., 2014). By keeping the connectivity, 

and reducing the complexity of the neuronal models, the reduced models will allow 

running longer simulations and/or larger neuronal networks, while faithfully preserving 

the I/O of each neuron. Such long simulations are critical for reproducing long-term 

processes such as circuit evolution and structural and functional plasticity.  

 

Methods 
Neuron_Reduce algorithm and its implementation in NEURON 
Neuron_Reduce transforms each stem dendrite in the full model to a unique single 

cylinder with both ends sealed. This cylinder preserves the specific passive cable 

properties (Rm, Cm, and Ri) of the original tree and both the transfer resistance obtained 

from the electrotonically most distal dendritic tip to the soma and the input resistance 

at the soma end of the corresponding stem dendrite (when disconnected from the soma). 

For a sinusoidal angular frequency ω > 0, the transfer impedance Zi,j(ω) is the ratio 

between the Fourier transform of the voltage in the measured point (i) and the sinusoidal 

current injected in the injection point (j) (note that, in a passive system, Zi,j(ω) = Zj,i(ω)). 

This ratio is a complex number; its magnitude (|Zi,j(ω)| ) is the ratio (in Ω) between the 

peak voltage response and the amplitude of the injected current where 𝜙 is the phase 

difference between the sinusoidal input current and the sinusoidal voltage response. In 

a short cylindrical cable with sealed ends and electrotonic length L, the transfer 

impedance, Z0,X(ω), between the somatic end of the cylinder (X = 0) and any location 

X is (Rall and Segev, 1985; Koch, 1999): 
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𝑍଴,௑ሺ𝜔ሻ ൌ ோಮ

௤

௖௢௦௛ ሺ௤ሺ௅ି௑ሻሻ

௦௜௡௛ሺ௤௅ሻ
                                            (1) 

 
where  

𝑅ஶ ൌ  ଶ

గ

ඥோ೘ோ೔

ௗయ/మ       (2) 

and 
 

𝑞 ൌ  √1 ൅ 𝑖𝜔𝜏                                                         (3) 
 

and 𝜏 is the membrane time constant 𝑅௠𝐶௠. 
 
From Eq. (1), the input impedance at X = 0 is,  
 

𝑍଴,଴ሺ𝜔ሻ ൌ ோಮ

௤
coth ሺ𝑞𝐿ሻ                                                    (4) 

     
We seek for a cable of length L in which both |Z0,L(ω)| and |Z0,0(ω)| are identical to 
those measured in the respective stem dendrite in the full model (Figure 1). Towards 
this end we first search for an L value in which the ratio |Z0,L(ω)|/ |Z0,0(ω)| is preserved. 
Dividing Eq. (1) by Eq. (4): 
 

௓బ,೉ሺఠሻ

௓బ,బሺఠሻ
ൌ ୡ୭ୱ୦ሺ௤ሺ௅ି௑ሻሻ

ୡ୭ୱ୦ሺ௤௅ሻ
               (5) 

 
which could be expressed as, 
 

௓బ,೉ሺఠሻ

௓బ,బሺఠሻ
ൌ ୡ୭ୱ୦ ሺ௔ሺ௅ି௑ሻା௜௕ሺ௅ି௑ሻሻ

ୡ୭ୱ୦ ሺ௔௅ା௜௕௅ሻ
ൌ  M𝑒𝑥𝑝ሺ𝑖𝜙ሻ              (6) 

 
where a and b are the real and the imaginary parts of q, respectively, and M and 𝜙 are 
the modulus and phase angle of this complex ratio.  
 
From (Rall and Segev, 1985) it follows that,  
 

M ൌ
ห௓బ,೉ሺఠሻห

ห௓బ,బሺఠሻห
ൌ ቂ 

ୡ୭ୱ୦൫ଶ௔ሺ௅ି௑ሻ൯ାୡ୭ୱ൫ଶ௕ሺ௅ି௑ሻ൯

ୡ୭ୱ୦ሺଶ௔௅ሻାୡ୭ୱሺଶ௕௅ሻ
ቃ

଴.ହ
                        (7) 

and 
 
 

𝜙 ൌ arctanൣtanh൫𝑎ሺ𝐿 െ 𝑋ሻ൯ tan൫𝑏ሺ𝐿 െ 𝑋ሻ൯൧ െ arctanሾtanhሺ𝑎𝐿ሻ tanሺ𝑏𝐿ሻሿ      (8) 
 

Importantly, for a fixed M (and a given 𝜔ሻ there is a unique value for L that satisfies 

Eq. (7) (see Figure 4 in (Rall and Segev, 1985) and note the-one-to-one mapping 

between M and L for a given 𝜔 value). However, there are infinite number of cylindrical 

cables (with different diameter and length) with identical L values that preserve a given 

M value in Eq. (7).  
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We, next seek for a unique cable, with diameter d, that also preserves |Z0,0(ω)| (and 
therefore also |Z0,L(ω)| see Eq. (7)). 
 
From Eqs. (2) and (4) we get, 
 

𝑍଴,଴ሺ𝜔ሻ ൌ ଶ

గ௤

ඥோ೘ோ೔

ௗయ/మ coth ሺ𝑞𝐿ሻ                                                (9) 

 
And thus, 
 

ห𝑍଴,଴ሺ𝜔ሻห ൌ ฬ
ଶ

గ௤

ඥோ೘ோ೔

ௗయ మ⁄ coth ሺ𝑞𝐿ሻฬ     (10) 

 
From which we compute the diameter, d, for that cylinder, 
 

|𝑑| ൌ ቤ൬ଶ

గ

ඥ ோ೘ோ೔

௤௓బ,బሺఠሻ
cothሺ𝑞𝐿ሻ൰

ଶ ଷ⁄

ቤ                                          (11) 

     
 
Eqs. (1) – (11) provides the unique cylindrical cable (with a given d, L, and specific 

membrane and axial properties) that preserves the values of ห𝑍଴,௅ሺ𝜔ሻห and ห𝑍଴,଴ሺ𝜔ሻห 

that were measured in the respective stem dendrite.  

 

Note that this unique cable does not necessarily preserve the phase ratio (𝜙 in Eq. (8)) 

as in the original tree. 

 
Practically, in order to transform each original stem dendrite (with fixed Rm, Ri, and 

Cm) to a corresponding unique cylindrical cable, we proceeded as follows: First, we 

searched, for each modeled stem dendrite (when isolated from the soma), the distal 

location X with the minimal transfer impedance ห𝑍଴,௑ห from X to the soma. Therefore, 

this location provides the smallest M value for this particular stem dendrite. This distal 

dendritic locus is mapped to the distal end, X = L, of the corresponding cylinder. We 

then used Eqs. (1) – (11) to calculate the unique cylinder for that stem dendrite. Next, 

for any intermediate location, x, in the stem dendrite, we find the respective location in 

the cylinder that preserves ห𝑍଴,௫ሺ𝜔ሻห. Note that ห𝑍଴,଴ሺ𝜔ሻห, ห𝑍଴,௅ሺ𝜔ሻห, could be computed 

analytically for the original stem dendrite using NEURON impedance tool (Carnevale 

et al., 1995) and Eq. (7), and Eq. (11) above.  

 
Merging the synapses was achieved using the Point Process object in NEURON. All 

synapses with the same ห𝑍଴,௫ሺ𝜔ሻห value were mapped to the respective location in the 
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reduced model and were merged to a one point process (Figure 1, step B). These 

synapses retain their original activation time and biophysical properties by connecting 

this point process to the original NetCon objects for the respective synapses. As shown 

in Table S1 this step dramatically reduces the running time of the model. All the results 

in this study use 𝜔 ൌ 0 in Eqs. (1-11), as running the same simulations with other 

values of 𝜔 did not improve the match between the full and the reduced models (not 

shown). However, 𝜔 is a parameter in the algorithm code and can be modified by the 

user.  

Neuron models used in the present study 
To estimate the accuracy of the reduction method we ran simulations for 50 seconds in 

both the reduced and the full models. Models of 12 neurons were used in this study, 

and their details are available in Table S2. For each of the models, we distributed 1,250 

- 10,000 synapses on their dendritic trees. Eighty percent of the synapses were 

excitatory, and the rest were inhibitory. The synaptic conductances were modeled using 

two-state kinetic synaptic models, based on the synaptic models in (Markram et al., 

2015). For simplicity, we did not include synaptic facilitation or depression. All models 

had one type of inhibitory synapses (GABAA), and one or two types of excitatory 

synapses (AMPA and NMDA). The synaptic rise and decay time constants were taken 

from various works cited in Table S2. When no data was available, we used the default 

parameters of the BBP project synaptic models. Inhibitory synapses were activated at 

10 Hz, whereas the activation rate of the excitatory synapses was varied to generate 

different output firing rates, in the range of 1 to 20 Hz (Figures 2 and 6); the values 

used for each model is available in Table S2.  

Estimating the accuracy of the reduced models 
Cross-correlation was measured between the spike trains of the full and the reduced 

models. The window size was 500 ms, and the bin size was 1 ms. The resulted cross-

correlation was normalized by the number of spikes in the full model (Figure 2C). 

Interspike intervals (ISI) were binned in windows of 21 ms to create the ISI distribution 

in Figure 2D.  

SPIKE-synchronization measure (Figures, 2F, G, Figure 3B, Figure 6 and Figure S3) 

is a parameter- and scale-free method that quantifies the degree of synchrony between 

two spike trains (Kreuz et al., 2015b). SPIKE-synchronization uses the relative number 
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of quasi-simultaneous appearances of spikes in the spike trains. In this study, we used 

the Python implementation of this method (Mulansky and Kreuz, 2016). 

Comparison with other reduction algorithms 
We compared Neuron_Reduce to two classical reduction algorithms (Figure S3): 

1. Equivalent cable with d3/2 rule, Rall and Rinzel (Rall and Rinzel, 1973; Rinzel and 

Rall, 1974) showed that, for idealized passive dendritic trees it is possible to collapse 

the entire dendritic tree to a single cylinder (Rall’s “equivalent cylinder”), that is 

analytically identical to the full tree. However, neurons do not have idealized dendritic 

trees, mostly because dendritic terminations typically occur at different electrical 

distances from the soma for different subtrees. Still it is possible to collapse any 

dendritic tree using similar mapping (“d3/2 rule”) as in the idealized tree; this will 

provide an “equivalent cable” (rather than “equivalent cylinder”) with a varying 

diameter for the whole dendritic tree (see details in Rall et al., 1992). The electrotonic 

distance between synapses and non-linear dendritic mechanisms were computed for the 

original model and then mapped to the corresponding segment in the “equivalent cable” 

having the same electrotonic distance to the soma as in the original tree.  

 

2. Mapping all synapses to the soma. Another common reduction scheme is to map all 

dendritic synapses to a single “somatic” compartment (Rössert et al., 2016). Here we 

used a modified version of this method. We used Neuron_Reduce to generate a multi-

cylindrical model of this cell as in Figure 1B. Then all synapses in the original tree 

were mapped to the soma of that model. To account for the dendritic filtering, we 

multiplied the original synaptic conductance, 𝑔௦௬௡, by the steady-state voltage 

attenuation factor from the original dendritic location, j, of that synapse to the soma. 

Namely, 

   𝑔௦௬௡
∗ ൌ 𝑔௦௬௡ ∗

ห௓బ,ೕห

ห௓బ,బห
ൌ  𝑔௦௬௡ ∗

௏బ,ೕ

௏బ,బ
           (13) 

 

where 𝑔௦௬௡
∗  is the new synaptic weight for synapse j when placed at the soma of the 

reduced model.  

Discriminating between spatio-temporal patterns of synaptic activation.  
In Figure 5 twelve synapses, 25 µm apart from each other, were distributed on a stretch 

of one basal dendrite. The peak AMPA conductance per synapse was 5 nS. In cases 

where the synapses also had an NMDA component, its conductance was 3.55 nS. The 
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synapses were activated in specific temporal order with a time delay of 3.66 ms between 

them, such that all the synapses were activated within 40.3 ms. This resulted in input 

velocity of 7 µm/s for the sequential patterns IN and OUT in Figure 5. In addition, the 

temporal order of synaptic activation was randomized and scored according to the 

directionality index (Branco et al., 2010), which sums how many swaps are being used 

by the bubble sort algorithm in order to sort specific pattern into the IN pattern. An IN 

pattern gets the value of 0 (no swaps) whereas the OUT pattern gets the value of 67 (67 

swaps in bubble sort as in Branco et al., 2010) 

 
Simulations were performed using the NEURON 7.4 (Carnevale and Hines 2006) 

running on a local cluster of 40 Intel(R) Xeon(R) CPU E5-2670 with 16 cores per node 

(640 cores in total) 

 

Neuron_Reduce algorithm is publicly available in GitHub 

(http://github.com/orena1/neuron_reduce). 
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Supplementary Information  
 

 
 
Figure S1. Voltage response for synaptic activation for passive and active models of L5 pyramidal 
cells. A. Sequential activation of the four synapses shown in Figure 1C in a passive model of L5 
pyramidal cell (black) and its reduced model (red), as in Figure 1E. B. Activation of the same synapses 
but on the full active models of this cell (similar colors). Note that, in the active model, the resting 
potential in the reduced model is more depolarized than in the full model. C. same as in B, but when 
super positioning the resting potential in the two models.  
 
 

 
 
Figure S2. Somatic voltage response in full versus reduced model of layer 5 pyramidal cell. A. Left 
and right, the full and reduced models as in Figure 1. Middle, EPSP’s measured at the soma of the full 
(black trances) and reduced (red trances) for the four simulated synapses. Location of synapses is shown 
by respective colored symbols on the tree and their EPSP by the respective colored synapses. Note that, 
as expected from Figure 1D, at high frequencies (e.g., at the EPSP peak) the reduced model 
overestimated the peak value at the soma, but the time-integral of the EPSP is more similar between the 
two models (they are identical, in the passive case, as the time-integral behave as does the steady-state 
case, see Rinzel and Rall, 1974). Synapse rise and decay time were 0.3 and 1.8 ms, recpectivly and the 
peak synaptic conductance was 0.8 nS. Scale bar at left is 100 m in both full and reduced models.  
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Figure S3: The accuracy of Neuron_Reduce compared to two other simplification methods. The 
accuracy is measured with SPIKE-synchronization as a function of the firing rate of the full model. Three 
reduction methods are compared: Neuron_Reduce (red), d3/2 reduction method of Rall (“equivalent 
cable” approach, blue), and mapping all the synapses to the soma (green), see Methods for details about 
the various reduction methods. Note that the accuracy of Neuron_Reduce is larger than in the other two 
methods over the entire range of model responses. 
 
 
 

Reduction steps Run time (s) Run time speed-up factor 

Full model 9,578 ± 3,500 1 

Morphological reduction 6,917 ± 2,415 1.48 ± 0.46 

Synaptic merging 2,173 ± 1150 5.00 ± 2.32 

Neuron_Reduce 129 ± 50 79.47 ± 27.75 

 
Table S1. Enhanced simulation speed in the reduced models versus the full models of L5 pyramidal 
cell. The modelled cell is shown in Figure 1; simulations were performed with 10,000 synapses for 50 
seconds simulation time, excitatory and inhibitory synapses firing rate were 5 and 10 Hz, respectively 
(see Figures 2 and 3). Run time for the full model is shown in the first row. In the second row, the 
dendritic morphology was mapped to the respective multipolar cylindrical representation (as in Figure 
1B) but the total number of synaptic point processes was kept as in the full model (1.48 folds reduction 
in run-time). In the third row, the full morphology remained untouched but synapses located on the same 
compartment were merged into a single point process (5 folds reduction in run-time). In the bottom row, 
the full Neuron_Reduce algorithm was used, whereby both the morphology reduction and the synaptic 
merging algorithms were implemented, resulting with ~80-folds reduction in simulation run-time (see 
also Figure 3A).  
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model Number of 
synapses 

AMPA 
strength 

(nS) 

NMDA 
strength 

(nS) 

Inhibitory 
strength 

(nS) 

AMPA 
decay time 
constant 

(ms)* 

NMDA 
decay time 

constant 
(ms)** 

GABA decay 
time constant 

(ms)*** 

Excitatory 
activation 
rates (Hz) 

Temp 
(℃) 

Used in 
Figures 

Citations and links 

L5PC model 10000 0.4 0.28 1 1.7 43 8 3 - 8 37 2-5 (Hay et al., 2011) modelDB accession number 139653 

L5PC no 
NMDA 

10000 0.4 - 1 1.7 - 8 8 - 20 37 2 (Hay et al., 2011) modelDB accession number 139653 

L5PC passive 
dends 

10000 0.4 0.28 1 1.7 43 8 3 - 8 37 2 (Hay et al., 2011) modelDB accession number 139653 

L5PC passive 
dends no 
NMDA 

10000 0.4 - 1 1.7 - 8 8 - 20 37 1,2 (Hay et al., 2011) modelDB accession number 139653 

Tufted PC 
(L6) 

10000 0.79 0.56 0.88 1.74 43 7.65 1 - 3  34 6 (Markram et al., 2015) https://bbp.epfl.ch/nmc-
portal/documents/10184/1921826/L6_TPC_L1_cADpyr231_5.zip 

Large Basket 
Cell (L2/3) 

1250 0.69 0.49 0.125 2 - 8 1 - 4 34 6 (Amsalem et al., 2016) 

Double 
Bouquet Cell 

(L4) 

2000 0.41 0.29 0.84 1.73 43 8.32 2 - 4 34 6 (Markram et al., 2015) https://bbp.epfl.ch/nmc-
portal/documents/10184/52145/L4_DBC_cNAC187_1.zip 

Spiny Stellate 
Cell (L4) 

5000 0.76 0.54 0.84 1.74 43 7.82 1 - 4 34 6 (Markram et al., 2015) https://bbp.epfl.ch/nmc-
portal/documents/10184/1921834/L4_SS_cADpyr230_1.zip 

Martinotti 
Cell (L5) 

5000 0.12 0.085 0.84 1.74 43 8.34 7 - 19 34 6 (Markram et al., 2015) https://bbp.epfl.ch/nmc-
portal/documents/10184/52298/L5_MC_bAC217_2.zip 

Spiny Rbp4-
Negative (L4) 

5000 0.4 0.28 1 1.7 43 8 3 - 5 34 6 (Gouwens et al., 2018) http://celltypes.brain-
map.org/neuronal_model/download/483108201 

Aspiny - 
Htr3a-

Positive (L1) 

5000 0.4 - 1 1.7 - 8 6 - 10 34 6 (Gouwens et al., 2018) http://celltypes.brain-
map.org/neuronal_model/download/478045081 

Human 
Pyramidal 
Cell (L2/3) 

10000 0.7 - 0.7 1.8 - 8 2 - 3 37 6 (Eyal et al., 2016) 
https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=195667 

Table S2. Neuron models and synaptic parameters used in this paper 
* the rise time constant for the AMPA synapses was 0.2 ms in all models besides the Large Basket Cell - 0.3 ms and the Human pyramidal cell - 0.3 ms 
** the rise time constant for the NMDA synapses was 0.29 ms in all models with NMDA synapses 
**** the rise time constant for the GABA synapses was 0.2 ms in all models besides the Large Basket Cell - 1 ms 
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