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Abstract: Reconstructing ancestral characters and traits along a phylogenetic tree is central 15	

to evolutionary biology. It is the key to understanding morphology changes among species, 

inferring ancestral biochemical properties of life, and recovering migration routes in 

phylogeography. The goal is twofold: to reconstruct the character state at the tree root (e.g. 

the region of origin of some species), and to understand the process of state changes along 

the tree (e.g. species flow between countries). Although each goal can be achieved with high 20	

accuracy individually, we use mathematics and simulations to demonstrate that it is generally 

impossible to accurately estimate both the root state and the rates of state changes along the 

tree branches from the observed data at the tips of the tree. This inherent ‘Darwinian 

uncertainty principle’ concerning the simultaneous estimation of ‘pattern’ and ‘process’ 

governs ancestral reconstructions in biology. Increasing the number of tips improves the 25	

joint estimation accuracy for certain tree shapes that arise in evolutionary models, however, 

for other trees shapes it does not. 
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Reconstruction of the past is central to evolutionary biology (1-3). A first step is often 

phylogenetic reconstruction, which is central to understanding the origin, evolution and 

classification of species, protein families, and pathogens such as HIV, as well as for reconstructing 

the evolution of communities and ecosystems. However, phylogeny is not an end in itself; it is 

generally the support for more complete studies. In particular, one frequently reconstructs the 5	

evolution along a phylogenetic tree of ancestral characters of diverse nature, for example: 

molecular (4–5), phenotypic (6–7), geographical (8–12) or ecological (4–6), and these 

reconstructions involve differing time scales, ranging from a few years for fast evolving viruses 

(e.g. Ebola (12)), to dozens of millions years for higher eukaryotes (e.g. plants (4–7)). The problem 

has two facets (Fig. 1), which are generally combined: one may want to infer the ‘pattern’, that is, 10	

the ancestral states associated with phylogeny root and nodes, for example, the origin and 

migration routes of a species (9, 11) or an epidemic (10, 12); or one may aim to understanding the 

‘process’ driving the character evolution and state changes, such as some adaptive mechanism or 

trace of positive selection (13–14). Many methods have been proposed to reconstruct the pattern. 

Today, one most often uses probabilistic methods based on Markovian evolutionary models with 15	

numerical parameters to be estimated from the data (1–3). These models and their parameters are 

mathematical representations of the evolutionary processes. We show here using information 

theory, mathematics and simulations, that evolutionary patterns and processes cannot generally be 

simultaneously reconstructed with high accuracy from extant data. This result applies even to the 

simplest models, and to characters commonly used in a number of current studies, to describe a 20	

wide range of evolutionary phenomena, from molecular to ecological levels. This inherent 

‘Darwinian uncertainty principle’ governs ancestral reconstructions in biology. 

The Markovian evolutionary models used to reconstruct character evolution can be very 

simple, typically symmetrical with very few states (Fig. 1A), but the current trend is to rely on 

ever more complex models which can be non-symmetrical, with dozens of states (12) (and 25	

therefore hundreds of parameters), latent variables (6) and, for some models, evolution over time 

(7–8, 11–12). The estimation of these models is based on maximum likelihood and Bayesian 

approaches, and the task is complicated by the fact that there is only one realization of the process, 
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Figure 1: Evolutionary process and history: (A) Simple 2-state Markovian evolutionary process, where R swaps 

into Y with rate µY and vice versa. This process has three (non-independent) parameters: the state equilibrium 

frequencies (R	and	Y) and the global rate of evolution (µ). (B) This simple process acts along a phylogenetic tree, 

starting from the tree root with state Y and evolving the character state until the tree leaves, where various state values 5	

are observed. This observation (along with the phylogenetic tree) is all that is known. The goal is to estimate both the 

evolutionary pattern, notably the root state, and the parameters of the process. (C) More complex 4-state process, 

where the rate of change depends on the origin state, and not-only on the destination state. In addition to the four 

equilibrium frequencies attached to the four nucleotides (two purines: A and G, and two pyrimidines: C and T), the 

HKY model includes the parameter	, which is equal to the transition/transversion ratio. A transversion is a change 10	

from one purine to one pyrimidine and vice versa (e.g. A ↔ C). A transition does not change the nucleotide category 

(e.g. A ↔ G). Transitions tend to be faster than transversions (i.e.  > 1). 	= 1 corresponds to the F81 or ‘equal-

input’ model.	
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corresponding to the observed values of the states observed at the leaves of the tree. Estimations 

are much simpler with DNA or protein sequences, where we assume the same model for all the 

characters and thus benefit from multiple information sources. To learn the most complex of these 

(single-character) models, one can rely on user-supplied ‘factors’, such as the degree of 

connectivity between two countries in phylogeography (10, 12). To predict ancestral states, one 5	

generally uses marginal, joint or posterior likelihoods of the tree node states (1–3, 15). These two 

components (model estimation and ancestral reconstruction) are most often simultaneous and 

interdependent because neither the model nor the ancestral states are generally known. Only the 

tree and branch lengths can be considered as known; in practice, they are usually estimated from 

DNA or protein sequences via a probabilistic approach, possibly including a molecular clock 10	

model to date the tree nodes and root age (2). 

Theoretical work has shown the difficulty of reconstructing ancestral states even when the 

evolutionary model describing the state changes is fully known (16–18). If the rate of changes is 

too fast, the information provided by tree leaves is low and it is impossible to reconstruct the root 

state accurately, regardless of the estimation method. To our knowledge, there is no theoretical 15	

work on the joint estimation of evolutionary model parameters and the ancestral states. Moreover, 

very few simulations have been performed to verify that the complex models used in recent studies 

(see above) could be estimated with high reliability. We show here that it is usually not possible 

to accurately reconstruct both the root character state and estimate the parameters of the 

evolutionary model. Intuitively, if the global rate of change is low, the reconstruction of the root 20	

is easy because the root state is largely preserved along the tree branches all the way to the leaves, 

but then they are too few state changes to accurately estimate the relative rates of changes from 

one state to another; conversely, with a rapid evolution, estimating the relative rates is easier, but 

one cannot reconstruct the tree root.  

Mathematical Results 25	

We first establish this finding by using mathematical results based on standard Markovian 

evolutionary models. For our first theorem, we consider a Markov process such as the Felsenstein 
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1981 model (2) for DNA (F81, also known as the Tajima—Nei model) or any other ‘equal input 

model’ (19) on any number of states (Fig. 1A and 1C, assuming  = 1). In this model the rate of 

changes from state i to state j is proportional to the model equilibrium frequency of j, and does not 

depend on i. This model is very simple but includes the state equilibrium frequencies (to be 

estimated from the data), like most if not all evolutionary models used nowadays. Let XL be the 5	

observed states at the leaves (‘the data’) of a given phylogenetic tree T (with known branch 

lengths), and let n be the number of tree leaves. Information theory provides a precise way to 

formalize our first result. Let I denote the mutual information between XL and the ancestral state 

at the root of tree T, and let I denote the mutual information between XL and the state equilibrium 

frequency vector () of the model. The root state is sampled from , as commonly assumed in 10	

phylogenetics. Both Iand I are functions of the global evolutionary rate  of character evolution.  

Our first theorem (described in Methods) demonstrates that the information provided by 

the data obtained at the tips of an evolutionary tree concerning the ancestral root state and 

concerning the relative rates behave in opposite ways as a function of the global evolutionary rate 

. More precisely, Theorem 1 says that for any tree, as  increases, I and I always have consistent 15	

but opposite trends. In particular, the optimal substitution rate for estimating the ancestral root 

state is the worst for estimating , whereas the optimal substitution rate for estimatingis the 

worst for estimating the ancestral root state. This immediately implies a fundamental uncertainty 

limit on the accuracy of simultaneous estimation of both these variables.  

Our second theorem (described in Methods) positively moderates this phylogenetic 20	

uncertainty principle with Yule trees (20–23), which roughly describe the shape of speciation trees. 

Theorem 2 shows that for Yule trees, increasing the number of tips reduces the uncertainty of 

simultaneous estimation. This result holds for a wide variety of evolutionary models (we can allow 

any stationary, reversible, continuous-time Markov process involving any number of states for 

which the rate matrix R has strictly positive off-diagonal entries). However, for some other tree 25	

shapes (e.g. coalescent trees (24), commonly used in population genetics, and star trees, 

corresponding to extreme radiations), uncertainty remains even if the number of tips tends to 

infinity. 
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Simulation Results 

To explore the behavior of evolutionary models that are more complex and realistic than 

F81 and equal input models of Theorem 1, we use computer simulations. The goals are to: quantify 

the uncertainty with both Yule and coalescent trees; measure the gain brought by a large number 

n of tree leaves and observed states; and study the accuracy of estimations with model parameters 5	

that are different from the simple equilibrium frequencies defining F81 and related models. We 

use the HKY model (2, 25) of DNA evolution (Fig. 1C). In addition to the four equilibrium 

frequencies attached to the four nucleotides, this model includes the parameter , which is equal 

to the transition/transversion ratio. A transversion is a change from one purine to one pyrimidine 

and vice versa; a transition does not change the nucleotide category. Transversions from state i to 10	

state j occur at a rate proportional to µj, whereas transitions occur at a rate proportional to µj. 

Thus, the rate of changes does not only depend on the destination state, but also on the origin state, 

unless  = 1, which corresponds to F81. HKY represents a larger and more realistic class of models, 

and is commonly considered as a good model of DNA evolution. While the state equilibrium 

frequencies can be approximated by counting the number of state occurrences on the tree leaves, 15	

 is not directly observable and its estimation is expected to be more difficult than the estimation 

of . In our simulations, a unique character was evolved using an HKY model along Yule and 

coalescent trees of 100 and 1,000 tips, with various values of µ rate, from 1/16 (very slow) to 16 

(very fast). All estimations were performed using the maximum likelihood (ML) principle, which 

is known to be optimal (26). Additional details are given in Methods.  20	

 Though the HKY model is more general than equal input models, the results (Fig. 2) are in 

accordance with the uncertainty principle of Theorem 1, for both Yule and coalescent trees. With 

a low µ rate, the root state is easy to predict but estimation of the model parameters is very poor. 

With a high µ rate, predicting the root state becomes impossible, but the equilibrium frequencies 

() are well estimated. For the rate parameters ( and µ), their estimation first improves when µ 25	

increases, and then becomes poorer with Yule trees and large µ values, due to large numbers of 

changes in pending branches. This makes the tip states nearly independent one from the other, 

which is an advantage to estimate the equilibrium frequencies, but not the rate parameters. This 
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finding reinforces again the uncertainty principle, as with large µ neither the root state nor the rate 

parameters can be accurately estimated. With coalescent trees (having short pending branches), 

the estimation of  and µ is still improving with µ = 16 (Fig. 2), but drops with extreme µ values 

(results not shown). As expected from Theorem 2, the accuracy of all estimations improves with 

Yule trees when n = 1,000, compared with n = 100. With n = 1,000 we observe a narrow region 5	

around µ = 1 (corresponding to 1 expected mutation along any root-to-tip path), where the 

simultaneous estimation of all parameters (including the root state) is reasonably accurate (error  

< 25%). However, outside this region some of the parameters are still poorly estimated. With 

coalescent trees, we do not observe such a region, and (as expected) the estimation of the root state 

has similar accuracy with n = 100 and n = 1,000. Lastly, a surprising and positive finding is that 10	

the accuracy of root state estimation is not affected by the poor estimation of the model parameters: 

the results are nearly the same when using the estimated parameter values (RootMLfull) and their 

true values (RootMLtrue), and this finding still holds with low µ rate when the model parameters 

are very poorly estimated. 

Discussion 15	

Although our results (theorems, simulations) demonstrating and quantifying the 

uncertainty principle are obtained in simple settings, it is highly likely that with more complex 

models and real biological data the situation is even worse. Theorem 1 and the simulation results 

have a similar flavor to a fundamental principle in quantum physics – Heisenberg’s uncertainty 

principle – which provides an absolute lower bound on the precision of simultaneously estimating 20	

both the position and the momentum of a particle (27). Here, we take the phylogenetic analogue 

of ‘position’ as ‘ancestral state’, and thus ‘momentum’ (closely related to velocity) corresponds to 

the rates at which ancestral states change into different alternative states. In physics, increasing the 

mass of a particle reduces the uncertainty of jointly specifying its position and momentum; in our 

setting, the analogue of mass is n, the number of leaves. Theorem 2 shows that for certain tree 25	

shapes (Yule trees) increasing n also reduces the uncertainty of joint estimation. Though the 

models and mathematics are radically different, our results thus have a similar spirit: it is not 

possible to accurately estimate both the ancestry and the rate of state changes in characters 
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commonly used in a number of current studies, to describe a wide range of evolutionary 

phenomena, from molecular to ecological levels. 

 

Figure 2: Simulation results with Yule (a) 

and coalescent (b) trees: Horizontal axis: 5	

value of the global rate µ used to simulate the 

data. Vertical axis: error measurements 

(probability of error for root state predictions; 

relative absolute error for other estimations; 

see Methods). GlobalRateML: ML estimation 10	

of the global rate µ; FreqML: ML estimation 

of the equilibrium frequencies; FreqTips: 

quick estimation of the equilibrium 

frequencies by counting the number of state 

occurrences on the tree leaves (clearly worse 15	

than ML estimation); FreqMultin: best 

possible estimation of the state frequencies 

with n samples, as obtained with a 

multinomial; KappaML: ML-based estimation 

of  (the transition to transversion ratio); 20	

RootMLtrue: root state prediction by ML, with 

the knowledge of the evolutionary model used 

to simulate the data; RootMLfull: root stat 

prediction when all model parameters (µ, , ) 

are estimated from the data; RootMultin: root 25	

state ‘prediction’ with uninformative data, as 

obtained with a multinomial model (similar to 

a tree with very long edges). 

	
	 	30	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 26, 2018. ; https://doi.org/10.1101/506535doi: bioRxiv preprint 

https://doi.org/10.1101/506535


 

9 
 

 

Methods    

Statement and sketch proof of Theorem 1 

Let T be a rooted phylogenetic tree (not necessarily binary), for which each edge e has an 

associated positive length l(e). Consider the evolution of a discrete character on T based on a 5	

stationary continuous-time Markov process from an unknown root state X to the leaf-states (by 

stationarity, the prior distribution of X is ).  

We will assume that this model follows the ‘equal input model’ on k >1 states, with 

equilibrium vector . In the case where k = 2, this class includes any stationary continuous-time 

Markov process; for k = 4 this model is known as the Felsenstein 1981 (F81 or Tajima-Nei) model 10	

(2, 19). An important property (28) of this model, is that it is equivalent to the model in which 

events (called resampling events here) occur at a constant rate  along the edges of the tree, and 

when such an event occurs the state at that point is replaced by a state chosen from the equilibrium 

distribution  independently of the original state (thus the state may or may not actually change). 

Conditional on the vector , the transition rate r (i.e. the rate at which states change to different 15	

states) is related to the rate of these resampling events according to the identity: 

 2

1
1

k

ii
r  


  . 

We regard  as an unknown quantity to be estimated (i.e. as a random variable having some 

distribution). The transition rate r is also a random variable and we will let µ be the expected rate 

of transition. Thus  2

1
1 ( )

k

ii
E  


   and so µ and  are proportional to each other. Consider 20	

the following information measures as a function of µ. Let XL denotes the states observed at the 

leaves of T, and let: 

 ( ) ( ; )LI I X X    be the mutual information between the state at the root vertex  and the 

states observed at the leaves of T; 

 ( ) ( ; )LI I X    be the mutual information between the equilibrium distribution () for the 25	

model and the states observed at the leaves of T.  
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We can now state our first theorem (details and full proof in SI). 

Theorem 1: For any phylogenetic tree with any number of leaves, I() is a monotone decreasing 

function of  (with limit 0 as ߤ → ∞). By contrast, I() is bounded above by a monotone 

increasing function    , which agrees with I() at  = 0 and as ߤ → ∞. The latter limit 

corresponds to the highest possible information that can be obtained with n samples drawn from 5	

 corresponding to a multinomial distribution (given by a tree with very long edges). 

The proof of both parts of Theorem 1 applies the classical Data Processing Inequality (DPI) 

from information theory (29), but in different ways. Recall that the DPI states that if X, Y and Z are 

any three random variables (not necessarily real-valued), and if X Y Z   is a Markov chain, 

then I(X; Z) is less or equal to both I(X; Y) and I(Y; Z). Moreover, unless the associated process10	

X Z Y   is also a Markov chain, then these inequalities are strict. To show that I() is a 

monotone decreasing function of we establish a more general result (allowing each edge to have 

its own expected transition rate) and then examine the impact of increasing this expected rate on 

any given edge. A (probabilistic) coupling argument, together with an application of the DPI, leads 

to the claimed monotonicity. For the second part of Theorem 1 (concerning I()), we consider the 15	

more informative (but unobservable) process Q in which one knows all the resampling events and 

the transitions within the tree (not just the states at the leaves). Let  ( ) ,I Q    be the mutual 

information between  and this more informative process. Using the DPI we show that 

   I    . A further application of the DPI to the more informative process Q shows that     

is a monotone increasing function of , and the claims about the values of     at  = 0 and as 20	

ߤ → ∞ then follow.  

Statement and sketch proof of Theorem 2 

Notice that the estimation error curves in the simulations (Fig. 2) appear to come down as n 

increases. However, it is not at all clear whether they would continue to decrease towards zero or 

would instead converge to some non-zero value. We show that Yule trees with fixed heights allow 25	

for asymptotically precise estimation of both the root state and the relative rates as the number of 

leaves become large. To simplify the calculations, we increase the speciation rate  (as this grows, 
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the number n of leaves is a random variable that tends to infinity). In Theorem 2 we allow more 

general models than the equal input model (as assumed in Theorem 1), encompassing most models 

used in molecular phylogenetics, including the HKY model used in our simulations.  

We state Theorem 2 as follows (details and full proof in SI).  

Theorem 2: For any continuous-time evolutionary model with positive rate matrix R, the ancestral 5	

root state, and the rate matrix R (i.e. both the relative rates and the global rate ) can both be 

estimated with an error converging to zero on a Yule tree, as the number of leaves tends to infinity. 

However, this is not possible for other tree shapes such as the star and Kingman coalescent trees.  

To show that the root state can be accurately estimated, the primitive method of maximum 

parsimony (MP) (2–3) suffices (even though it is less accurate than maximum likelihood). The 10	

proof that MP is consistent here combines two ideas: first we apply a (probabilistic) coupling 

argument which shows that it is enough to establish the result for an associated 2-state process; we 

then investigate this simpler process by deriving and analyzing a system of non-linear differential 

equations (analogous to ref. 17).  

To show that the entries in the rate matrix R can also be consistently estimated we consider 15	

an estimation method based on 3-leaf pendant subtrees. While such a method is not likely to be 

optimal (e.g. maximum likelihood surely performs better) it is nevertheless sufficient to establish 

the theorem, and its simplicity allows for a tractable mathematical analysis that would be difficult 

for more complicated methods. We deal with 3-leaf pendant subtrees rather than just 2-leaf pendant 

subtrees (‘cherries’, commonly used to estimate models from sequence data) for two reasons. First, 20	

it allows us to consider more general Markovian processes (in particular, we need not assume the 

Markovian process is time-reversible). Second, even for time-reversible models, an approach 

based on cherries only works if the leaves are very far from the root (so that the frequencies of 

states is at (or very close to) equilibrium); in our setting, the tree has fixed height, and so generally 

the distribution of states amongst the leaves will not be very close to the equilibrium distribution 25	

(as observed in the simulations, a major difference with sequences where the equilibrium 

distribution is well approximated by the state frequencies among the sites, due to stationarity).  
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For each pair of not necessarily distinct states i and j, we say that a 3-leaf pendant subtree 

(ab)c is of type ij if leaf c and one of the remaining leaves (a or b) have state i and the other leaf 

(from the pair a, b) has state j. We will also say that (ab)c is of type i if it is of type ik for some k 

(including the case k = i), and that (ab)c is typical if its height is no more than twice its expected 

height (in a Yule tree). For each pair of distinct states i, j, let Nij denote the number of typical 3-5	

leaf trees of type ij and Ni denote the number of typical 3-leaf pendant subtrees of type i. 

Define iL  to be twice the sum of the heights of the cherries of the typical 3-leaf pendant 

subtrees of type i. Our proof uses the following simple estimator of the transition rates in the rate 

matrix R: for any two (distinct) states i, j, let ˆ
ij ij iR N L . We show that ˆ

ijR  is a statistically 

consistent estimator of ijR  as  grows. The proof uses the distribution of the number and height 10	

(30–31) of 3-leaf subtrees in a Yule tree, together with further asymptotic arguments to show that 

ˆ
ijR  converges in probability to ijR .  

For the second part of Theorem 2, first suppose that Tn is a star tree. Then neither the 

ancestral root state, nor the equilibrium vector can be estimated accurately, even as n→∞. More 

precisely, the following non-identifiability result holds. One can switch the root state to any other 15	

one other state, and adjust the parameter and resampling rate to give an identical probability 

distribution on the data that such a tree generates regardless of how large n is (details are provided 

in the SI). This is a strongly negative result, even if biological trees are not purely star trees. With 

star-like trees corresponding to rapid radiations, estimations are likely to be very difficult. 

Next suppose that Tn is a tree generated by the Kingman coalescent. For any value of  20	

 > 0, the state at the root of Tn has an error that does not decrease to zero as n→∞. The proof 

relies on a well-known property (24) of the coalescent tree Tn: the shorter of the two edges incident 

with the root of Tn has an exponential distribution with a mean that is asymptotic (as n→∞) to l/2, 

where l is the height of the tree. A simple coupling argument (32) then shows that with probability 

at least p > 0 (where p is independent of n but dependent on , l and the rate matrix R) the states 25	

at the leaves are independent of the root state of Tn, and so the error in inferring the root state does 

not tend to zero as n grows. 
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Simulation protocol 

To explore the behaviour of evolutionary models that are more complex and realistic than F81 and 

the equal input models used in Theorem 1, we performed computer simulations using the HKY 

model (2, 25). We generated Yule and coalescent trees with a number n of tips equal to 100 and 

1,000. These trees were rescaled to have a total height of 1.0. Then, we simulated the evolution of 5	

a 4-state character according HKY with  (transition/ transversion ratio) equal to 4.0, and i 

equilibrium frequencies equal to 0.15, 0.35, 0.35, and 0.15, for A, C, G, and T, respectively. The 

HKY rate matrix was normalized as usual (i.e. the expected number of changes along a branch of 

length 1.0 was set to 1.0) and then multiplied by the global rate  with values equal to 1/16, 1/8, 

1/4, 1/2, 1, 2, 4, 8, and 16. For each of the tree models (Yule, coalescent) and  values, 1,000 trees 10	

and data sets were generated with n = 100, and 500 with n = 1,000 for computing time reasons. 

For each data set we jointly estimated using the maximum likelihood principle (ML) the  and  

parameters, the four i equilibrium frequencies, and the ancestral character state at the tree root. 

The latter was inferred using the MAP (maximum a-posteriori) principle (i.e. the predicted state 

corresponded to the maximum of the posteriors among the four states), which is known to be 15	

optimal (26). The estimation procedure was performed in three steps: 

1- As the HKY parameters were unknown, we first used the Jukes and Cantor (JC) model (2) to 

obtain a rough   estimate of  by ML. Then, the tree was rescaled by multiplying all branch 

lengths by  . 

2- The resulting rescaled tree was given to PhyML (33) along with the tips values, to estimate the 20	

 and  parameters (corresponding to KappaML and FreqML curves in Fig. 2). It has been 

demonstrated in a number of studies (e.g. (34)) that the estimation of evolutionary model 

parameters remains accurate with approximate trees, as we have here regarding the branch 

lengths that are rescaled using   (instead of  that is unknown). 

3- These ML-estimates of  and  were used to jointly infer the root state (RootMLfull in Fig. 2) 25	

and obtain a better ML-estimate of  assuming an HKY model (GlobalRateML in Fig. 2). To 

quantify the loss of accuracy induced by the approximate estimation of the model parameters 
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(,  and ), we also estimated the root state with the model parameter values used to generate 

the data (RootMLtrue in Fig. 2). 

A difficulty with ML-based estimations of , is that when the mutation rate is low, the root 

and tip states tend to be identical, and then  is estimated to be zero. Similarly, with high rate  is 

often estimated to be infinite. In both cases the estimation of the other parameters and root state 5	

becomes impossible (at least using a standard ML implementation, as PhyML). Thus, we imposed 

the constraint:  ˆ 4, 4    , where  is the true value and   the estimate. This constraint was 

used with both JC-based (Step 1,  ) and HKY-based (Step 3) estimations of . 

To quantify the estimation error, for the numerical estimates (,  and ) we measured the 

average over all data sets of the relative absolute error (e.g. with : ̂   ), and the error of the 10	

four frequencies was further averaged over the four states. For the root state we simply measured 

the frequency of the prediction errors. For comparison with the more accurate ML approach, a 

rough estimate of the equilibrium frequencies was also obtained by counting the number of state 

occurrences at the tree tips (FreqTips in Fig. 2). The error of this quick estimator (used in many 

ML software programs, but with sequences, not a single character) is clearly higher than FreqML, 15	

corresponding to the fact that with low and moderate  the tip state frequencies do not reach the 

equilibrium probabilities. We also compared the estimations of the i frequencies and root state, 

with those obtained with a multinomial with n trials drawn using the same nucleotide probabilities 

as in tree-based simulations. This multinomial model is equivalent to the tree model when  is 

very large and/or the pending branches are extremely long. In this condition, the tips state values 20	

do not bring any information on the root state ( 0I  ), while the I  information on is as high 

as possible with n tips/trials (see Theorem 1). The root prediction error (RootMultin in Fig. 2) is 

then nearly equal to 0.65 (MAP returns C and G states with ~0.5 probability each, and both have 

a prediction error of 0.65). The frequency estimation error was computed by simulations 

(FreqMultin in Fig. 2, ~0.148 and ~0.047 with n = 100 and 1,000, respectively). As expected 25	

RootMultin ≈ RootML ≈ 0.65 with = 16, and FreqMultin ≈ FreqML ≈ FreqTips with  = 16 and 

Yule trees. Coalescent trees have much shorter pending branches, and the convergence of FreqML 

and FreqTips toward FreqMultin is slower. 
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All software programs –but PhyML– used to perform the simulation study were 

implemented in Common Lisp and are available on request. We used the version 3.3.20170530 of 

PhyML available from https://github.com/stephaneguindon/phyml. 
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