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Abstract 

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of                
genome architecture has been achieved using imaging and chromatin conformation capture methods such             
as Hi-C. To study variation in chromosome structure between different cell types, computational             
approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few              
methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here,                 
we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on               
imputations using linear convolution and random walk. Using both simulated and real data as              
benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C            
datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically             
associating domains (TADs) could be identified within single cells, and their consensus boundaries             
among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster               
facilitates visualization and comparison of single-cell 3D genomes.  

Availability: https://github.com/zhoujt1994/HiCluster.git 

 

Introduction 

In recent years there has been a rapid increase in the development of single-cell transcriptomic and                
epigenomic assays 1, including single-cell/nucleus RNA-seq2, ATAC-seq3,4, bisulfite sequencing5 and         
Hi-C6–11. Such powerful techniques allow the study of unique patterns of molecular features that              
distinguish each cell type. Computational methods have been developed to identify different cell types in               
heterogeneous cell populations based on various molecular features such as transcriptome12,13,           
methylome14 and open chromatin15–17. However, unbiased and efficient algorithms for single cell            
clustering based on 3D chromosome structures are limited. In previous studies, principal component             
analysis (PCA) performed on both intra- and inter-chromosomal reads was unable to completely             
distinguish between four cancer cell lines 7. An embedding method for single-cell Hi-C data has been               
specifically designed for capturing structural dynamics, allowing determination of the cell cycle state18.             
However, these data are continuous in nature and the approach has not explicitly been tested for the                 
purpose of cell type identification. 

Clustering of single cells based on Hi-C data faces three main challenges: (1) Intrinsic variability. 3D                
chromosome structures are highly spatially and temporally dynamic. Imaging-based technologies have           
suggested a large degree of heterogeneity of chromosome positioning and spatial distances between loci              
even within a population of the same cell type19–22. How this fluctuation between cells of the same cell                  
type compares to fluctuations between different cell types remains unclear. (2) Data sparsity. The              
sparsity of single-cell Hi-C data is higher than most other types of single-cell data. State-of-the-art               
single-cell DNA assays typically cover only 5-10% of the linear genome. Since Hi-C data is represented                
as two-dimensional contact matrices, this level of sensitivity leads to coverage of only 0.25-1% of all                
contacts to be captured. (3) Coverage Heterogeneity. It is often observed that the genome coverage of                
cells extends over a wide range within a single cell Hi-C experiment. We find this bias often acts as the                    
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leading factor to drive clustering results, making it difficult to systematically eliminate. For example, this               
bias could be alleviated by removing the first principal component (PC1) before clustering and              
visualization. However, PC1 is not guaranteed to represent only cell coverage in these experiments as it                
may also contain information related to other biological variables. 

To address these challenges, we developed a new computational framework, HiCluster, to cluster             
single-cell Hi-C contact matrices. To overcome the sparsity problem, we performed two steps of              
imputation on the chromosome contact matrices to better capture the topological structures. To solve the               
heterogeneity problem, we selected only the top-ranked interactions after imputation, which were proved             
to be sufficient to represent the underlying data structure. This framework significantly improved upon              
the clustering performance using low coverage datasets as well as facilitated the visualization and              
comparison of chromosome interactions among single cells. 

Results 

Overview of HiCluster. 

As shown in Fig. 1, HiCluster consists of four major steps. In the first step, every element of the contact                    
matrix is replaced by the weighted average of itself and its surrounding elements, in a type of linear                  
convolution. Then a random walk (with restart) algorithm is applied to smooth the signal to further                
capture both the local and global information of the contact maps. In particular, the convolution step only                 
allows the information to pass among the linear genome neighbors, while the subsequent random walk               
step aides information sharing among the network neighbors. To alleviate the bias introduced by uneven               
sequence coverage, we only keep the top 20% interactions after the imputation. Finally, we project the                
processed contact matrices onto a shared low dimensional space, so that the topological structure of the                
3D chromosome contacts can be compared between cells and used for further clustering and visualization. 

HiCluster improves clustering performance on simulated data. 

To explore the combinatorial effects of different levels of coverage and resolution, we first applied our                
algorithm to a set of simulated single-cell Hi-C data. We noticed that direct sampling from the Hi-C                 
contact matrices of bulk cells leads to a relatively lower sparsity and heterogeneity (Fig. S1), which often                 
yields more accurate clustering results compared to real single-cell data. The real data concentrated more               
on specific loci in each cell, and the individual loci were different between different cells (Fig. S1A). On                  
the contrary, the simulated cells from bulk data often had more evenly distributed contacts (Fig. S1B).                
Therefore, we controlled the sparsity of each simulated contact matrix and added noise to the               
contact-distance curves to better mimic the sparsity and noise of real data (Methods ). As shown in Fig.                 
S1G, when considering the first two principal components (PCs), the simulated cells generated were              
indistinguishable from real single cells of the same cell type. 

In our simulation we performed downsampling from bulk Hi-C experimental data from two studies. Rao               
et al. 201423 examined seven human cell types (GM12878, IMR90, HMEC, NHEK, K562, HUVEC and               
KBM7) while Bonev et al. 201724 examined three mouse cell types (embryonic stem cells (ESC), neural                
progenitor cells (NPC) and cortical neurons (CN)). We downsampled each dataset to 500k, 250k, 100k,               
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50k, 25k, 10k, 5k contacts respectively, and used 1 Mbp and 200 kbp resolution contact maps to test our                   
algorithm. At each coverage level and resolution, we generated 30 simulated cells for each cell type. We                 
evaluated the ability of HiCluster compared with PCA to recover the correct cell type in an unsupervised                 
way. The adjusted rand index (ARI) was used to measure the accuracy of clustering. As shown in Fig. 2                   
and Fig. S3, in both datasets, HiCluster consistently performed better than PCA. The performances began               
to be impaired with fewer than 25k contacts, and a complete loss of clustering ability is observed at 5k                   
contacts. We also found that 1 Mbp resolution performed better than 200kbp (Figs. S4C, D), suggesting                
that lower sparsity (lower resolution) may be sufficient to distinguish cell types. Thus, we used 1 Mbp                 
resolution in all subsequent experiments. 

HiCluster has superior performance on published single-cell Hi-C data. 

Next, we evaluated our analysis framework using authentic single-cell Hi-C datasets. Thus far there have               
been three published studies focusing on single-cell chromosome structures with analyses of multiple cell              
types. Ramani et al.7 used a combinatorial indexing protocol to generate single-cell Hi-C libraries from               
thousands of cells for four human cell lines (HeLa, HAP1, GM12878 and K562). The number of contacts                 
captured in each cell ranged from 5.2k to 102.7k (median 10.0k). Flyamer et al.10 performed whole                
genome amplification after ligation and detected 6.6k to 1.1m contacts per cell (median 97.3k) in mouse                
zygotes and oocytes. Tan et al.11 developed an optimized protocol also using whole genome amplification               
and obtained data with a median coverage of 513.0k contacts. Since the last benchmark dataset (Tan) had                 
relatively high coverage, either simple PCA (Fig. S5) or chromosome compartment score11 easily allowed              
cell types to be distinguished. Due to cost considerations, it is still challenging to achieve such depth of                  
genome coverage. Therefore, we focused on the first two datasets with lower coverage (Ramani and               
Flyamer) to test the utility of our computational framework. 

We compared our algorithm with three baseline methods: PCA, HiCRep+MDS and the Eigenvector             
method. Liu and colleagues compared different tools to calculate the similarity of single cell Hi-C               
matrices and concluded that HiCRep followed by multidimensional scaling (MDS) performed the best             
among all the single-cell embedding methods they investigated18. The chromosome compartments are also             
considered to be cell type specific based on the bulk Hi-C experiments, and the first eigenvector of                 
contact matrix is widely used to represent these compartment features 23,25,26. HiCluster outperformed the             
baseline methods on both datasets in terms of better visualization (Figs. 3A, B) and improved ARI (Figs.                 
3C, D). In the mouse dataset (Flyamer), HiCluster made a significant distinction among all three cell                
types (Fig. 3A); while in the human dataset (Ramani), the algorithm separated K562 and HAP1 better in                 
the first two PC dimensions (Fig. 3B). It is also worth commenting on the scalability of each methods.                  
Computing the HiCRep similarity required 8 hours (Flyamer) and 4.5 days (Ramani); however, the              
HiCluster and other methods consumed around 30 seconds (Flyamer) and 60 seconds (Ramani) (Fig. S6).               
Additionally, we carried out the same experiments on each chromosome separately and noticed that              
almost every chromosome showed advanced separation on the mouse dataset (Fig. 3E), while only one               
chromosome showed significant improvement on the human dataset (Fig. 3F). These results may suggest              
that to separate cells using global chromosome structure differences (e.g., oocytes and zygotes), the              
information provided by a single chromosome might be sufficient, but to distinguish more complex cell               
types, a combination of different chromosomes or a more careful feature selection is necessary.  
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We also visualized the weights of each element in the contact matrices when computing the final PCs                 
(whitening matrices). In general, the weights for PC1 were uniformly distributed parallel to the diagonal               
(Fig. S7A), which suggested it captures the information of the contact-distance curve and might              
correspond to the variance resulting from cell-cycle or other relevant biological effects 9. This is also               
corroborated by the observation that cells with greater PC1 values tended to have a higher frequency of                 
short-range contacts, while smaller PC1 inclined to correspond to a higher frequency of long-range              
contacts (Fig. S7B). On the contrary, the weights for computing PC2 showed region specificity (Fig.               
S7A), which may indicate its correlation with compartment strength. These finding also explained why              
the oocytes and zygotes in Flyamer 2017 are dominantly separated by PC1, where the contact distance                
curve differ between cell types; meanwhile, PC2 performed better partition of the cancer cell lines in                
Ramani 2017. 

Next, we wanted to evaluate the contribution of each step to the final clustering performance. For the                 
three major steps of the pipeline, we tested all possible combinations of one or two steps of the three.                   
More specifically, we compared our framework with PCA (with none of the steps), CONV (convolution               
only), RWR (random walk only), CONV_TOP (convolution and select top elements), RWR_TOP            
(random walk and select top elements) and CONV_RWR (convolution and random walk). From Fig. 4,               
we concluded that all three steps are necessary to achieve the current visualization (Figs. 4A, B) and                 
clustering accuracy (Figs. 4C, D). The necessity of these steps is more evident when using the mouse                 
dataset. Notably, for the methods with skipped steps, we chose the best ARI among a wide range of PC                   
dimensions and clustering methods; while for the framework with three steps, we fixed the clustering part                
to be K-Means on 10 PCs. 

HiCluster allows visualization of structural difference in single cells. 

The most popular method to interpret and validate identified cell clusters in single cell experiments is to                 
analyze known marker genes. Gene expression is directly measured in single-cell RNA-seq data and              
promoter, gene body ATAC-seq signals or cytosine methylation ratios can also be used to infer the                
cluster-specific genes in single-cell open chromatin and methylome data. Similarly, in single-cell Hi-C             
data, the differential chromosome interactions could serve as cell-type markers. With the single-cell Hi-C              
data, imputed contact matrices from every single cluster can be merged, where we observed square               
patterns that are visually similar to the topologically associating domains (TADs) identified in bulk Hi-C               
experiments along the diagonal. However, since the existence of TAD remains unclear in single cells, and                
accurate identification of the structures were limited by data sparsity, we referred to this featured pattern                
as TAD-like structures (TLSs) hereafter. Thus, differential TLSs could be applied to characterize different              
cell types. For instance, as demonstrated in Fig. 5 and Fig. S8, a TLS at chr9:133.6M-134.2M is observed                  
in 9 of 10 K562 cells but in two of the GM12878 cells. This structure difference is concordant with the                    
bulk Hi-C data from the same cell lines. Gene expression and H3K4me1 signals which marks active                
enhancers are also higher in K562 within this TLS. 

Structural differences are also observed near differentially expressed genes between the two cell types,              
including CXCR4 and ZBTB11. CXCR4 is a chemokine receptor that enhances cell adhesion, which is               
highly expressed in non-cancer cells (GM12878) comparing to cancer cells (K562)27. With HiCluster             
imputation, a TLS surrounding CXCR4 was detected in 6 of 10 GM12878 cells but only 2 of 10 K562                   
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cells (Fig. S9, Methods ). Intriguingly, an H3K4me1 peak was detected in bulk GM12878 but not K562 at                 
the other boundary of the TLS, which may indicate the potential interaction between the gene and its                 
enhancer. Similarly, a TLS whose boundary located at ZBTB11 was observed in more GM12878 cells               
than K562 cells (Fig. S10). Consistently, more H3K4me1 peaks within this TLS were also detected in the                 
bulk GM12878 sample. 

Next, we examined if the imputation based on HiCluster could facilitate the systematic identification of               
TLSs in both simulated and real single cells. We first leveraged Bonev et al. data for bulk ESC and NPC,                    
and downsampled them to 1 Mbp, 500 kbp, 250 kbp, 100 kbp contacts per cell. We applied HiCluster on                   
contact matrices and run TopDom28 to detect TLSs in every single cell. A TAD in NPC that splits into                   
two TADs in ESC was selected to test the performance of TLS-calling (Fig. 6A). The visualization of                 
single cell TLSs was significantly improved after HiCluster smoothing (Fig. 6B), and the alternative              
boundary was captured in more cells (Fig. 6C). Next, we applied HiCluster to analyze single-cell Hi-C                
data from Nagano et al., which contains 1,992 mouse ESCs across different stages of cell-cycle9. The                
dataset was sequenced with high coverage and enabled us to statistically analysis the dynamic of TADs                
location within single cells. We identified TLSs on the contact matrices smoothed by HiCluster at 40 kbp                 
resolution with TopDom, and for each bin, we counted the number of cells in which the bin was                  
determined as a TLS boundary. We observed non-zero probability for almost all bins to be a TLS                 
boundary in single cells, and these probabilities peaked at the Ctcf and cohesin binding sites, and the TAD                  
boundaries described in bulk Hi-C (Fig. 6D), which is in agreement with the conclusions of a recent                 
imaging study29. This signal was significantly enhanced after convolution and random walk (Fig. 6D),              
which further highlighted the potential application of HiCluster to study single cell chromosome structure. 

Our imputation method also helps visualize the signature of chromatin structures within specific cell type.               
Sox2 is a classic marker gene of ESCs, and the chromosome structure around this gene is unique to                  
ESCs 24. Specifically, Sox2 is located within a large TAD in NPC (Fig. S11B), which is split into two                  
smaller TADs in ESCs, with Sox2 located at the boundary between the two smaller TADs (Fig. S11A).                 
Stevens et al.8 carried out Hi-C analysis of eight single haploid mouse ESCs. A median of 49.4 kbp                  
long-range intra-chromosome contacts was detected (21.0k to 78.0k). Although this study provided            
superior coverage among the current single-cell Hi-C experiment, the limited number of cells examined              
made it difficult to observe the interaction pattern surrounding the Sox2 even if contact matrices from all                 
cells are merged (Fig. S11C). However, after the imputation using the HiCluster framework, the TLS               
boundaries at Sox2 are observed in 4 of the 8 cells (Fig. S11E). Merging the imputed matrices reveals the                   
known domain splitting pattern near Sox2 (Fig. S11D). A similar interaction pattern is also observed near                
another ESC marker Zfp42 (Fig. S12). 

Discussion 

To advance our understanding of the role of genome structure in cell-type specific gene regulation, new                
computational tools are needed for deconvolution of single cell Hi-C data. We describe a novel               
computational approach for cell type clustering, HiCluster, that requires only sparse single cell Hi-C              
contact data. In the HiCluster framework, the chromosome interactions are considered as a network. The               
contact information is first averaged in the linear genome. A random walk is then used to propagate the                  
smoothed interaction throughout the graph and further reduce the sparsity of the single cell contact               
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matrices. HiCluster performed significantly better than existing methods in clustering single-cell data into             
constituent cell types and facilitated identification of local chromosome interaction domains. 

A major challenge in clustering single cell Hi-C data is the sparsity of the contact matrices. To overcome                  
this limitation, HiCluster uses both a linear smoothing and a random walk step. Similar methods have                
been utilized for smoothing bulk Hi-C data, including HiCRep which took the average of genome               
neighbors before computing the correlation of two Hi-C matrices 30, and GenomeDISCO which provided a              
network representation of Hi-C matrices and used random walk to smooth it31. Liu et al.18 systematically                
evaluated these methods for single cell Hi-C data embedding. However, since they used a cell similarity                
matrix that is embedded by MDS, the data are generally continuous under their low-dimensional              
representation and are unable to present explicit clusters for each cell type. Our HiCluster framework               
combines the advantage of both HiCRep and GenomeDISCO and provides a flexible pipeline to resolve               
the clustering of Hi-C data, where some components (e.g. embedding) can be further tuned and improved                
when the algorithm is applied to more specific and challenging situations such as tissues with greater cell                 
type complexity.  

Published single cell Hi-C datasets have employed cell lines which contain relatively large 3D genomic               
structural differences, simplifying the cell clustering problem. In practice, heterogeneous tissues with            
more closely related cell types, such as brain tissue, might pose a much greater challenge than cell lines.                  
For cell clustering using complex tissues, further improvement of clustering algorithms and feature             
selection would be necessary. An alternative approach would be to simultaneously profile 3D genome              
architecture along with other “omic” information in the same cell, such as jointly profiling chromatin               
conformation and DNA methylation32. While such single cell multi-omic data modalities may provide the              
information content necessary to deconvolute cell types while preserving 3D structural information33, they             
can also be more costly to perform, and more technically challenging to carryout.  

We noted that the smoothing and random walk steps aid in visualization of chromosome contact maps in                 
single cells. Such visualization can facilitate analysis of the variability in features of 3D genome               
organization between cells. Previous studies using bulk cell lines have reported the existence of several               
3D structural features: megabase level A/B compartments, sub-megabase level TADs, and kilobase level             
loops 23,25,34,35. In our study, visualizing the smoothened HiCluster results revealed the existence of TLSs in               
specific cells. The boundaries of these structures were variable between cells. However, the boundaries              
shared between TLSs in individual cells corresponded to TAD boundaries identified in bulk Hi-C studies.               
These results would support recent imaging studies 29 which suggested that TLSs exist in single cells, and                
their boundaries in individual cells are variable but non-random.  

Methods 

Data processing. 
For Ramani 2017, interaction pairs and cell quality files of combinatorial single cell Hi-C library ML1                
and ML3 were downloaded from GSE84920. Interaction pairs for Flyamer 2017, Stevens 2017 and Tan               
2018 were downloaded from GSE80006, GSE80280 and GSE117876, respectively. Interaction pairs for            
diploid ESC cultured with 2i in Nagano 2017 were accessed from           
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https://bitbucket.org/tanaylab/schic2/src/default/. Given a chromosome of length and a resolution ,      L     r  
the chromosome is divided into non-overlapping bins. Hi-C data is represented as a contact     n =

r

L          n × n   
matrix , where denotes the number of read-pairs supporting the interaction between the -th and A   A

ij
           i   j

-th bins of the genome. For each dataset, contact matrices were generated at 40kbp and 1 Mbp resolutions                  
for each chromosome and each cell. Total contacts of the cell were counted as the non-diagonal                
interaction pairs in intra-chromosomal matrices. As quality control, we ruled out the cells with less than                
5k contacts. Also, for a single chromosome whose length is Mb, we required the number of contacts to          x          
be greater than , in order to avoid the chromosomes with too few contacts. We only kept cells where all   x                  
chromosomes satisfied this criterion. 
 
Simulations. 
We downsampled bulk Hi-C data to simulate datasets with similar sparsity and heterogeneity of single               
cells. Bulk MAPQ30 contact matrices were extracted from Juicerbox at 100kbp resolution for datasets              
Rao et al. 2014 and Bonev et al. 2017, respectively. Contact matrices for each cell type at 200kbp and 1                    
Mbp resolution were calculated by merged bins in the 100kbp-resolution matrices. 

Normalization . SQRTVC normalization was applied to the bulk contact matrices to deal with the              
coverage bias along the genome. The normalized contact matrices  are computed byB  

   (1)ADB = D
− 2

1 − 2
1

 

where  is a diagonal matrix where each elements  is the sum of the -th row of .D D
ii

i A   

Sparsity controlling. After directly downsampling the read counts from , we still observed a         B      
significantly lower sparsity of simulated data comparing to real single-cell data with the same number of                
contacts in total (Figs. S1A, B). Therefore, we further controlled the sparsity during sampling to make the                 
simulated data more similar to the real data. Leveraging Ramani et al. 2017 and Flyamer et al. 2017                  
datasets, we fit a linear relationship between total contacts  and sparsity  at log scale (Fig. S2),C S   

     (2)ogS logCl = a + b  

To generate a simulated dataset with the median contact counts to be , for each simulated single cell            M       
we uniformly sampled from to and set the total contacts number of the cell as   t   ogM .5l − 0   ogM .5l + 0            

. The sparsity of the cell was computed based on (2). The sampled new contacts are randomlyC = e
t       S             

assigned to different chromosomes based on the contact numbers of each chromosome in a particular cell                
type in the bulk cell dataset. 

Adding random noise. After controlling the sparsity of the contact matrices, the heterogeneity of the               
simulated cells is still not high enough to mimic the complex situations within the real data. To address                  
the problem, we add noise to the contact frequency through Contact-Distance Curve, which describes the               
values in the contact matrices changed with respect to their distance to the diagonal. More specifically, we                 
generated a random vector of length , where is the bin number of the contact matrix. The values in    R    n   n             
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ranges from to following a uniform distribution, where denotes the noise level. Then, theR    − k   k       k        
normalized bulk contact matrix was rescaled linearly to the noisy representation by    B         E   

. Finally, based on , we sampled positions to be non-zero candidates based on Eq. 2,E
ij

= B
ij

× R
j−i| |     E    S           

and distributed the  simulated contacts to these positions.C  

HiCluster. 
Convolution-based imputation. Imputation techniques are widely adopted in single-cell RNA-seq data           
to improve the data quality based on the structure of the data itself. For HiCluster, the first step is to                    
integrate the interaction information from the genomic neighbors to impute the interaction at each              
position. The missing value in the contact matrix could be due to experimental limitations of material                
dropout, rather than no interactions. Since the genome is linearly connected, our hypothesis is that the                
interaction partners of one bin may also be close to its neighboring bins. Thus, we used a convolution step                   
to inference these missing values. Specifically, given a window size of , we applied a filter of size           w      F    

, where , to scan the contact matrix of size . The elements in the imputedm × m   wm = 2 + 1       A    n × n       
matrix  is computed byB   

   (3)AB
ij

= ∑
 

p,q
F pq pq  

where . In this work, all the filters are set to be all-one matrices, , ji − w ≤ p ≤ i + w  − w ≤ q ≤ j + w              
which is equivalent to taking the average of the genomic neighbors. However, the filters could be tuned to                  
incorporate different weights for elements during imputation. For instance, the elements located further             
from the imputed elements could be assigned smaller weights. The window size was set to 1 for 1 Mbp            w         
resolution maps.  

Random-walk-based imputation. Random walk with restarts (RWR) is widely used to capture the             
topological structure of a network36. The random walk process helps to infer the global structure of the                 
network and the restart step provides the information of local network structures. What Hi-C data               
fundamentally describe is the relationship between two genomic bins, which can be considered as a               
network where nodes are the genomic bins and edges are their interactions. Different from the               
convolution step which taking information from the neighbor on the linear genome, the random walk step                
considers the signal from the neighbor with experimentally measured interactions. The imputed matrix             B  
defined in Eq (3) is first normalized by its row sum. 

    (4)C
ij

=
B

ij

∑
 

j′
B

ij′

 

We use to represent the matrix after the -th iteration of random walk and restart. Then the random  Q
t
       t           

walk starts from the identity matrix , and  is computed recursively byQ0 = I Q
t

  

    (5)C IQ
t

= (1 )− p Q
t−1 + p  

where is a scalar representing the restart probability to balance the information between global and p                
local network structures. The random walk with restart was performed until . Each             | | Qt

− Q
t−1| |2 ≤ 10−6   
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element in the matrix after convergence signifies the probability of random walk to reach the -th Q
ij

               j  
node when starting from the -th node.i  

Embedding. Since the coverage of the matrices from each cell is different, the sparsity and scales of the                  
matrices after random walk is also distinct. Thus, after random walk, a threshold was chosen to convert             t      
the real matrix into binary matrix . The threshold was set to be the 80th percentile of for all   Q     Q

b
   t          Q    

the analysis, and its impact is discussed in Fig. S4. This is a crucial step since it facilitates us to choose                     
the most conserved and reliable interactions in each cell. Then the matrix is reshaped to           n × n   Q

b
    1 × n

2  
and the matrices from different cells were concatenated into a matrix. In the last step, PCA was    m        m × n

2         
used for projecting the matrix into a low dimensional space and produce the embedding of the cells. Each                  
single chromosome was embedded separately and the embedding of all chromosomes was concatenated at              
last and another PCA was applied to derive the final embedding. The whitening matrices for the two steps                  
of PCA were multiplied, and the dot product representing the weight of each element in the contact                 
matrices for computing each PC was visualized. 

Baseline methods. 
PCA. The raw contact matrices of each cell were log2 transformed and reshaped to . The matrices              1 × n

2    
from different cells were concatenated into a matrix. The matrix for each chromosome was m        m × n

2         
PCA transformed and concatenated at last, and another PCA was applied to derive the final embedding                
with all chromosomes. 
HiCRep+MDS. HiCRep 1.6.0 was installed from bioconductor. For each chromosome, the raw contact             
matrix of each cell were log2 transformed and smoothed with a window size of 1. The stratum adjusted                  
correlation coefficient (SCC) were computed between each pair of smoothed matrices. The median of              
SCC distances across all chromosomes were transformed to euclidean distances by Eq (6). 

    (6) deuc = √2 d− 2 scc  
The Euclidean distance matrix was then embedded into two dimensions with MDS. 

Eigenvector. The raw contact matrices of each cell were log2 transformed. PCA was performed on each                
cell and Z-score transformed PC1 was kept as features of the cell. We computed the mean CpG content of                   
the bins with positive and negative features respectively and reversed the features if the negative features                
corresponded to higher CpG content. The features from different cells were concatenated into a        m        m × n  
matrix and PCA transformed. 
 
Identification of TLSs/TADs. 
All TLSs/TADs were computed by TopDom with a window size of 5. TADs in bulk ESC and NPC were                   
identified at 10kbp resolution. All HiCluster imputations on contact matrices were performed at 40 kbp               
resolution with a window size of 1 and restart probability of 0.5, without selecting the top elements. The                  
number of cells with differential TLS were counted as cells with contacts at greater than 40% elements in                  
the green box. The number of TLSs in fig. 6C were counted as TLS identified with both boundaries                  
within 0.25-fold of corresponding TAD boundaries identified in bulk data. 
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Figure Legends 
Figure 1. The workflow of HiCluster. The contact matrices of each single cell are smoothed by two steps                  
of imputation that include convolution and random walk; these are based on the neighboring bins of a                 
linear genome and long-range connections, respectively. To alleviate the coverage bias, only top 20%              
elements of the imputed matrices are selected. Each single cell matrices is then projected into the same                 
space and then clustering is performed to identify distinct cell types. 

Figure 2. The performance of HiCluster and PCA on simulated data. Bulk Hi-C contact matrices in Rao                 
et al. 2014 (A) and Bonev et al. 2017 (B) were sampled to 100k, 50k, 25k, 10k and 5k contacts                    
respectively. The clustering performance is measured by Adjusted Rand Index (ARI). 

Figure 3. The performance of HiCluster and baseline methods on real single-cell Hi-C data. For Flyamer                
et al. 2017 (A, C, E) and Ramani et al. 2017 (B, D, F), the embedding (A, B) and ARI of clustering (C, D)                        
are shown. For HiCluster and Eigenvector, the embeddings are shown in PC1 and PC2 space. For PCA,                 
the embedding is shown in PC2 and PC3 space. (E, F) The performance of HiCluster and PCA on each                   
chromosome (indicated by chr. numbers). The ARI using all chromosomes (indicated by star symbol). 

Figure 4. The performance of HiCluster applying different combinations of substeps. For Flyamer et al.               
2017 (A, C) and Ramani et al. 2017 (B, D), the embedding (A, B) and ARI of clustering (C, D) with each                      
combination of steps are shown. (A, B) The embeddings of combinations with TOP step are shown in                 
PC1 and PC2 spaces, without are shown in PC2 and PC3 spaces. (C, D) The black dash line denotes the                    
performance with all steps. 

Figure 5. Visualization of contact matrices at chr9:132.9M-134.9M. Merged contact matrices from 10             
GM12878 (A) and K562 (B) cells after imputation. (C) The difference between (A) and (B). (D) The                 
contact matrices of bulk cell lines. (E) The RNA-seq and H3K4me1 signals in both cell lines. 

Figure 6. HiCluster facilitates identification of domain-like structures (TLSs). (A) The contact matrices at              
chr19:27.5M-29.5M of bulk Hi-C data with alternative TADs in ESC and NPC. (B) The downsampled               
contact matrices with 1 Mbp, 500 kbp, 250 kbp, 100 kbp total contacts per cell before and after HiCluster                   
imputation. The green lines indicate the TLSs called from the plotted matrix, and yellow lines represent                
the TADs called from bulk data of the corresponding cell type. (C) The number of downsampled ESCs                 
with TLSs at chr19:28170000-28530000 and chr19:28530000-28770000, or downsampled NPCs with          
TLSs at chr19:28170000-28770000 being identified before and after HiCluster imputation. (D) The            
number of single ESCs (1007 in total) with TLSs boundary identified at each genome bin are shown by                  
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lines. The position of Ctcf ChIP-Seq peaks, Rad21 ChIP-Seq peaks and TADs boundaries identified in               
bulk data are presented by dots. 
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