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Abstract

Understanding how polypeptides can efficiently and reproducibly attain a self-entangled
conformation is a compelling biophysical challenge, which might shed new light on our
general knowledge of protein folding. Complex Lassos, namely self-entangled protein
structures characterized by a covalent loop sealed by a cysteine bridge, represent an
ideal test system in the framework of entangled folding. Indeed, as cysteine bridges
form in oxidizing conditions, they can be used as on/off switches of the structure
topology, to investigate the role played by the backbone entanglement in the process.

In the present work we have used molecular dynamics to simulate the folding of a
complex lasso glycoprotein, Granulocyte-macrophage colony-stimulating factor,
modeling both reducing and oxidizing conditions. Together with a well-established
Gō-like description, we have employed the elastic folder model, a Coarse-Grained,
minimalistic representation of the polypeptide chain, driven by a structure-based
angular potential. The purpose of this study is to assess the kinetically optimal
pathways, in relation to the formation of the native topology. To this end we have
implemented an evolutionary strategy that tunes the elastic folder model potentials to
maximize the folding probability within the early stages of the dynamics. The resulting
protein model is capable of folding with high success rate, avoiding the kinetic traps
that hamper the efficient folding in the other tested models. Employing specifically
designed topological descriptors, we could observe that the selected folding routes avoid
the topological bottleneck by locking the cysteine bridge after the topology is formed.

These results provide valuable insights on the selection of mechanisms in
self-entangled protein folding while, at the same time, the proposed methodology can
complement the usage of established minimalistic models, and draw useful guidelines for
more detailed simulations.

Author summary

We have investigated, by means of numerical methods, the folding mechanism of
Granulocyte-macrophage colony-stimulating factor, a glycoprotein that handles a
variety of functions in the human body. Our interest in this protein focuses on the
self-entangled native state, which is classified as a so-called complex lasso. Complex
lasso structures contain a backbone loop, closed by a cysteine bridge, which is pierced
one or more times by the protein chain, resulting in an entangled conformation.
Understanding how a polypeptide can encode into its sequence the capability of tying

December 19, 2018 1/28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507079doi: bioRxiv preprint 

https://doi.org/10.1101/507079
http://creativecommons.org/licenses/by/4.0/


itself into such kind of structures would represent a major advancement in the
comprehension of a crucial biological process such as protein folding.

To study this folding mechanism we have employed molecular dynamics simulations, 1

adopting both a well-known minimalistic model of the protein, and an alternative 2

model, that was specifically proposed for unveiling the preferential pathways of 3

entangled folding. Our calculations show how the protein can avoid the kinetic traps 4

related to self-entanglement, managing to fold in a reproducible and efficient way. 5

Introduction 6

Almost a quarter of a century of research has been dedicated to the study of proteins 7

that exhibit a self-entangled native fold. Nowadays, up to the 6% of the structures 8

deposited in the Protein Data Bank (PDB) [1] are self-entangled proteins [2, 3]. Since 9

the first natively knotted protein was discovered in 1994 [4], the existence of such 10

topologically complex folds has represented a new challenge in the understanding of 11

protein folding, fostering a wide range of studies. A number of reviews addressing the 12

topic of self-entangled proteins can be found in the literature (see e.g. [2, 5–7], just to 13

name the most recent), each addressing a different aspect of this variegated research 14

field. The discovery of self-entangled protein structures has raised a few crucial 15

questions related to their scarcity [8, 9], their conservation along evolution [10,11], and 16

their possible biological function [2, 7, 12–14]. 17

In the present work we address the following question: how can the amino acid chain 18

fold reproducibly and efficiently into a specific, nontrivial topology? Many experiments 19

were conducted to answer this question, showing e.g. that these proteins can 20

spontaneously tie themselves to the native topology [15]; that the formation of the 21

entanglement is a rate limiting step [15–17]; and that one or few folding routes happen 22

to be dominant, presumably representing the most efficient and reliable 23

mechanisms [18]. These crucial results demonstrate that self-entangled folding clearly 24

differentiates from the simple picture of two-state folding of small, non-entangled 25

proteins, but it is evident that efforts are still needed to reach a comprehensive and 26

sound picture of this phenomenon. 27

In this framework, an interesting class of proteins is constituted by Complex Lassos 28

(CLs) [19], entangled structures that exhibit a covalent loop closed by a disulphide 29

bridge. The surface of this loop is pierced one or more times by the polypeptide chain, 30

forming a non-trivial topology. Since Leptin was classified as the first CL protein [20], 31

this topological state has been found to be widespread in the known PDB structures, 32

characterizing about 18% of the proteins containing a cysteine bridge [21]. Most of the 33

CLs are secreted proteins, with signaling functions, and their topology is believed to 34

have a crucial role in their biological activity [22,23]. Moreover, the topology of CLs can 35

be controlled externally, since the cysteine bridge is stable in an oxidizing solution, 36

while it does not form in a reducing environment. This feature allows one to directly 37

study the effect of the topological barrier on the folding mechanism, electing CLs as 38

ideal test systems for a deeper understanding of entangled folding. 39

As for simple proteins, the experimental probe of folding pathways in self-entangled 40

proteins such as CLs can only provide indirect indications. For this reason Molecular 41

Dynamics (MD) simulation represents an essential, complementary tool for the study of 42

the process. We must however stress that the time duration of self-entangled folding 43

typically exceeds the range accessible by all-atom simulations employing realistic 44

interactions. This is the reason why, except in two notable cases [24,25], the available 45

computational results have been obtained using simplified, minimalistic protein models, 46

which allow for a thorough sampling of the conformational space, while at the same 47

time providing indications on the theoretical principles of the folding. 48
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By far the most used methods are the so-called Gō models (GōM) (see e.g. [26, 27]), 49

named after the pioneering work of Gō [28]. In GōMs the protein is described as an 50

hetero-polymer chain that encodes its native fold in the interaction potential. This kind 51

of description stems out from the established Energy Landscape Theory (ELT), 52

according to which proteins have evolved to fold along a smooth, funneled free energy 53

landscape. Such “folding funnel” determines the efficient and reproducible collapse of 54

the denatured polymer chain to its compact and functional 3D structure [29]. The 55

majority of GōMs employ a Coarse-Grained (CG) representation of the protein in which 56

each residue is mapped onto a sphere centered at the position of the Cα atoms. The 57

residues in contact in the native state interact via attractive pair potentials, defined so 58

that the energy minimum of the model corresponds to the native fold. This picture 59

assumes that folding is dominated by native contact interactions while non-native 60

interactions play a minor role [30]. GōMs have been validated using both experimental 61

data and more detailed simulation models [31–36], and their predictions are considered 62

reliable in the framework of small protein folding. 63

GōMs have been widely used to study the folding of entangled proteins, providing 64

valuable indications on their thermodynamics and kinetics [37–41], also in the 65

framework of lasso folding [20,22,23]. However, the underlying theory clashes with the 66

presence of knots in proteins, as the formation of entanglements implies a high degree of 67

coordination at different length scales which can hardly be encoded in native contact 68

potentials. For example, the mandatory passage through the specific, non-alternative 69

folding intermediates imposed by topological barriers, can trigger the untimely 70

formation of native contacts, which can entrap the molecule in misfolded states. When 71

this happens, the protein has to break such contacts and retrace the proper folding 72

route. On the one hand this “backtracking” process can explain the longer folding times 73

measured for knotted proteins, on the other hand it lowers the capability of GōMs to 74

fold reproducibly, resulting in very low success rates [40]. 75

For this reason the possibility of including non-native interactions within GōMs has 76

been explored, obtaining significant improvements in the folding efficiency [42–45]. This 77

suggests that non-native interactions can play a crucial role in topologically complex 78

folding, regulating the timing of native contacts formation, and guiding the concerted 79

non-local moves required for the tying of the backbone [46]. Moreover, in agreement 80

with ELT, the folding of GōMs exhibits multiple pathways reaching the folded 81

state [38,42,47], differently from the indications of all-atom MD [24] and 82

experiments [18], which suggest the reproducible selection of a single route. 83

The presence of a dominant pathway can indicate that evolution has optimized 84

knotted proteins in their folding behavior, minimizing the probability of misfolding, and 85

promoting the most reliable and fast folding routes. Building on this optimality 86

principle, in Ref. [48] an alternative CG description for the study of knotted folded 87

proteins has been proposed. This model, dubbed Elastic Folder Model (EFM), is a CG, 88

minimalistic description in which the folding of the polypeptide is driven exclusively by 89

backbone bending and torsion potentials. EFM embodies the idea that the folding 90

process has been kinetically optimized by evolution, in that it promotes the most 91

efficient pathways of the backbone across the topological bottlenecks of knotted folding. 92

To attain this optimality, once a specific protein is chosen, the relative magnitudes of its 93

angular forces are tuned via a stochastic process, aimed at maximizing the folding 94

success rate. The heterogeneous force-field obtained through this optimization 95

procedure represents a sort of mean-field approximation of the cooperation between 96

native and non-native interactions, and can provide valuable information on the folding 97

mechanisms of the system under examination. This model has been used to investigate 98

the folding of two small knotted proteins [48], observing a qualitative agreement with 99

the all-atom simulations results of Ref. [24]. 100
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In the present work we have employed EFM simulations to study the folding of a 101

glycoprotein, Granulocyte-macrophage colony-stimulating factor, that exhibits a CL 102

native state. We have extended the original EFM introducing contact interactions 103

between those cysteines that form a disulfide bridge in the native conformation. This 104

allowed us to simulate the folding in oxidizing conditions, assessing the differences with 105

respect to the process in a reducing environment. The angular potentials of this protein 106

model have been optimized with a newly implemented evolutionary strategy, that could 107

tune the model to fold reproducibly and rapidly, avoiding kinetic traps and efficiently 108

surpassing the topological bottleneck associated to the formation of the lasso. The 109

resulting dynamics has been compared with that of a well-established GōM [26] with 110

the purpose of enlightening the most efficient folding pathways, in relation with the 111

topological state of the protein. To this aim we have also introduced and employed two 112

topological variables that, building on the minimal surface analysis [19] and the Gauss 113

linking number [49] methods, allow to monitor the evolution of the CL topology along 114

the MD trajectory. 115

As a result we could outline a detailed picture of the folding scenario, demonstrating 116

that the same, kinetically optimal mechanism dominates in both reducing and oxidizing 117

conditions. This folding route, characterized by the formation of the cysteine bridge 118

after the lasso topology, is supported both by the GōM simulations at the fastest folding 119

temperature and by the optimized EFM. These results show how the principle of kinetic 120

optimality can determine the selection of a single folding mechanism among the possible 121

ones, and qualify the considered protein as an interesting testing ground for all-atom 122

simulations or experimental study. 123

Results 124

System Structure 125

We have studied the folding of Granulocyte-macrophage colony-stimulating factor, a 126

monomeric glycoprotein that acts as growth factor for white blood cells. We shall refer 127

to the protein by using the PDB code of its crystal structure, 2GMF [50]. 2GMF is an 128

helical cytokine formed by 127 residues, of which 121 are resolved in the PDB structure, 129

shown in Fig. 1. As highlighted in figure, 2GMF forms two cysteine bridges, which we 130

name b1, connecting residues 88 and 121, and b2, connecting residues 54 and 96. 2GMF 131

is classified as L2 lasso structure, where the covalent loop formed by b1 is threaded by a 132

12 residue hairpin from residue 43 to residue 53. Instead, b2 does not determine any 133

lasso topology. 134

Three different MD models of the protein were employed, a non-optimized EFM 135

with homogeneous stiffness coefficients, an optimized EFM, obtained with the MFFO 136

procedure presented in the Methods section, and a GōM constructed using the 137

native-contact based description proposed by Clementi et al. [26]. The folding of 2GMF 138

was studied by performing sets of MD runs starting from random stretched 139

configurations, both in reducing and in oxidizing conditions. As discussed in the 140

Methods section, the stability of cysteine bridges in oxidizing environment is modeled in 141

the EFM by means of native contact potentials between the cysteine pairs, and in the 142

GōM by rescaling the existent native contacts. We shall employ natural units, 143

indicating energies in units of ε, temperatures in units of ε/kB, lengths in units of σ, 144

and time-lengths in units of τMD = σ
√
m/ε, m being the bead mass. 145
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a) b)

c)

Fig 1. 2GMF Protein structure and geometry of topological descriptors. Panel a):
Cartoon representation of Chain A of 2GMF in its native fold. The cysteine bridges are shown
with atomistic resolution. Panel b): view of 2GMF native structure, showing only the Cα
residues. Cysteines 88 and 121, forming b1, are represented as yellow beads. The structure
reduction employed for the definition of the topological variables L and G (see Methods
section) is also displayed: the 5 residues chosen to represent the loop are highlighted as red
circles connected by red lines, while the 3 residues representing the threading hairpin, are
highlighted as green circles connected by green lines. The red dashed lines indicate how the
loop surface is divided in 3 triangles for computing L. The green arrows represent the
integration verse along the hairpin segments used for the calculation of G. Panel c): same as b)
but rotated. The coloring of backbone residues depends on their index along the chain, going
from red (N-terminal) to blue (C-terminal).
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Homogeneous EFM 146

We first report the folding behavior of 2GMF described by an homogeneous EFM, in 147

which the angular potentials (see Eq. 1 in Sec. Methods) are parametrized using 148

homogeneous angular coefficients kbendi = kb and ktori = kt, where kb = 36.5 and 149

kt = 38.5. From now on we shall refer to this representation as Homogeneous Model 150

(HM). The order of magnitude of kb and kt is consistent with the settings used in 151

Ref. [48], but the values were chosen equal to the average of the optimized bending and 152

torsion coefficients, presented in the following. This choice allowed us to assess the 153

impact of the force-field heterogeneity introduced by the optimization procedure. 154

Consistently with Ref. [48], we have studied the model at T = 0.1, that is below the 155

melting point of the model and, as shown in the following, determines a quite frustrated 156

free-energy landscape. An ensemble of 2048 folding trajectories has been collected, both 157

in reducing and oxidizing conditions. Eq. 9 was used to model the bridge in oxidizing 158

environment. 159

In order to define the folding criterion we monitored two variables, the Root Mean 160

Square Displacement (RMSD) F1/2 from the native state, and the lasso variable L, 161

indicating the formation of the CL topology (see the Methods section for the definitions 162

of F and L). We have selected two threshold values for F1/2 and L, considering the 163

protein as fully folded only if both F1/2 < 0.9 and L > 0.9. In most of the cases the 164

RMSD criterion was sufficient to classify the nativeness, however the measurement of L 165

has allowed to point out few false positives, and to distinguish successful folding 166

trajectories with better accuracy. Once the success criterion has been defined, the 167

probability of folding was estimated as Pf = nf/ntot where nf is the number of 168

trajectories attaining the folding, and ntot = 2048 is the total number of runs. This 169

estimate of the success rate depends on the length τrun of the simulated trajectories. 170

Since the EFM focuses on the optimal pathways of folding we aimed at observing those 171

folding events that occur within the initial stages of the dynamics, not long after the 172

collapse of the polymer chain. We have chosen τrun = 1.5× 104 which, as shown in the 173

following, is enough to capture all the fastest folding events obtaining indications on the 174

timescales of the slower processes as well. 175

The computed Pf of HM in reducing conditions is equal to 55%, while in oxidizing 176

conditions the folded configuration is reached by the 17% of the trajectories. This shows 177

that the topological barrier introduced by the cysteine bridge significantly increases the 178

frustration of the model. We define the “folding landscape” as F = − log f , where f is 179

the frequency histogram of some chosen reaction variables (e.g. the RMSD), computed 180

over the ensemble of trajectories. This quantity is sometimes named “non-equilibrium 181

free-energy surface” [51,52]. We also introduce the “successful folding landscape” 182

Fs = − log fs, which considers only those trajectories that reach the native state. 183

In Figs. 2A and B the folding landscape of the HM in reducing and oxidizing 184

conditions is reported, as a function of the RMSD and of db1 , the distance of the two 185

cysteine residues forming b1. The corresponding Fs is instead shown in Figs. 2C and D. 186

By comparing the successful trajectories to the whole ensemble we observed that the 187

native basin is located in the region F1/2 . 0.9. In both environmental conditions, the 188

landscapes show a variety of metastable states, testifying the roughness of the 189

free-energy surface. Since, except from the bridge potential, EFM does not introduce 190

native contacts, this roughness is the result of the topological bottlenecks encountered 191

during the folding trajectories. In particular, if we consider only the successful 192

trajectories in reducing conditions (Fig. 2C), we observe a metastable state at 193

RMSD∼ 2.0, presumably connected to the native basin by an open-bridge pathwhay, 194

with db1 ∼ 4.0. In oxidizing conditions (Fig. 2D) this metastable state is perturbed by 195

the action of the bridge potential, which restrains part of the trajectories close to its 196

minimum, where the covalent loop is closed. Most of these trajectories remain trapped 197
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in this state, and cannot overcome the topological barrier to reach the native basin. 198
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Fig 2. Folding landscapes F and Fs of the HM as a function of the RMSD from
the native structure and of the b1 bridge distance. A panel: N = 2048 trajectories in
reducing conditions. B panel: N = 2048 trajectories in oxidizing conditions. C panel:
successful trajectories (N = 1133) in reducing conditions. D panel: successful trajectories
(N = 350) in oxidizing conditions.

In order to extract valuable information about the folding pathways, we have defined 199

two topological descriptors: the aforementioned lasso variable L, and the Gauss’ linking 200

number G, which monitors the topology of the backbone by quantifying the 201

intertwining between the covalent loop and the threading hairpin sections of the chain. 202

The definition and implementation of these descriptors is reported in the Methods 203

section. Both L and G are useful to monitor the topological state of the protein along 204

the trajectory but, since they exhibit a different behavior, we employ them for different 205

purposes. Since L switches sharply from 0 to 1 when the native topology is attained, it 206

is used to detect the time of formation of the lasso and, as mentioned before, to assess 207

the folded state. G displays instead a smoother behavior, it is thus employed as reaction 208

variable for computing the folding landscape, as shown in Fig. 3, where Fs(G, db1) is 209

reported. The plot confirms that in reducing conditions the model establishes the lasso 210

topology (attaining G & 1) while the loop is open, and that the metastable state 211

preceding the folding can be identified with a populated region without lasso 212

conformation (G ∼ 0). In oxidizing conditions the topological barrier is instead 213

surpassed along two separate pathways, either with closed or open loop. We can classify 214

the folding pathways as follows: 215

1. A “threading” mechanism, in which the contact between C88 and C121 is formed 216

before the topology, then the closed loop is threaded by the hairpin to reach the 217

native basin. 218

2. A “bridge reopening” mechanism, in which, again, the covalent loop is closed 219

before the lasso is formed. The topology is then attained in a second moment 220
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Fig 3. Successful Folding landscape Fs of the HM as a function of the Gaussian
linking number G and of the b1 bridge distance. A panel: successful trajectories
(N = 1133) in reducing conditions. B panel: successful trajectories (N = 350) in oxidizing
conditions.

thanks to a wide fluctuation of the bridge distance, and to the subsequent 221

penetration of the loop by the hairpin. 222

3. An “open loop” path, in which the lasso is formed before the contact between C88 223

and C121, with the loop that “wraps around” the hairpin to form the native state. 224

A graphical illustration of these three processes is provided in Fig. 4. The successful 225

trajectories can be classified according to these three pathways, by performing a 226

“kinematic” analysis that compares the timing of the main events in the folding process. 227

For each trajectory we thus computed three transition times: a) the bridge formation 228

time tb, namely the first time at which C88 and C121 approach at a distance 229

db1 < 1.5σb1 = 1.992, b) the time of first topology formation tk, when L > 0.9, and c) 230

the folding time tf , that is when the protein first visits the native basin (F1/2 < 0.9 and 231

L > 0.9). We required that the conditions for a), b) and c) remain valid for ∆t = 10 for 232

the transition to be completed. Then, by comparing the measured tb, tk and tf with the 233

time evolution of db1 , which signals the closure of the loop, and of L, which indicates 234

the topological state, we could classify the folding routes traveled by the protein in 235

successful simulations. 236

In Fig. 5 the bridge formation times tb are plotted versus the folding times tf for 237

each successful HM trajectory. The mechanism associated to each trajectory is 238

indicated by different colors. The fraction of trajectories undertaking different routes is 239

reported in Tab. 1. The folding mechanisms are differently distributed in reducing and 240

oxidizing simulations. In the first case the successful folding events are similarly divided 241

between open-loop and reopening pathway, while a relatively small number of threading 242

trajectories is detected. Instead, in oxidizing conditions the reopening is prevented by 243

the action of the cysteine bridge potential and, while the model mostly relies on the 244

open-loop route, threading events are significant. 245

Another aspect that emerges from Fig. 5 concerns the folding time-scales 246

characterizing the different pathways. Most of the observed folding events occurred for 247

t < 103, in particular those undergoing open-loop mechanism. In reducing conditions 248

the re-opening events are distributed also beyond this time-scale, while the few 249

threading events were faster. This is somehow counter-intuitive, as we expect that the 250

entropic barrier of piercing the loop is larger when this is closed. If we look at the 251

oxidized model results, we observe that threading events exhibit a bimodal time 252

distribution, this suggests the existence of two possible threading pathways, a fast 253

process, taking place for t < 103 and a slower one, that requires a timescale comparable 254

to τrun = 1.5× 104. This bimodality disappears in reduced folding, in which the slow 255
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Fig 4. Illustration of the three folding pathways revealed by 2GMF EFM
simulations. Each box contains the snapshot of a representative configuration along the
corresponding folding route (represented by a colored arrow, numbered according to the
pathway definition in the text). For further clarity, intermediate configurations are provided
with a schematic diagram of the structure.
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Fig 5. tb versus tf for the successful trajectories of the HM. Panel A shows the
results of the N = 1133 successful trajectories in reducing conditions and panel B shows the
results of the N = 350 successful trajectories in oxidizing conditions. The color of the circles
indicates the folding pathway, following the classification indicated in the text. The black line
corresponds to tb = tf .

threadings are suppressed as the reopening of the bridge occurs over faster timescales. 256

Overall, this analysis reveals the main features of the folding of 2GMF as described 257

by the EFM, and highlights the role of the topological barrier in selecting the accessible 258

mechanisms to attain the native state. We underline here the importance of the defined 259

topological diagnostics, L and G, in clarifying the folding pathway scenario. 260
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Table 1. Probability of folding Pf and pathway distribution.

Model Environment Pf Pthreading Preopening Popen−loop

HM
Red. 0.55 0.01 0.26 0.28
Ox. 0.17 0.06 0.0 0.11

OM
Red. 0.96 - 0.01 0.95
Ox. 0.95 0.05 - 0.90

GōM (T = 0.7)
Red. 0.60 0.12 0.01 0.47
Ox. 0.55 0.11 0.01 0.44

GōM (T = 1.1)
Red. 0.63 0.11 0.30 0.23
Ox. 0.27 0.24 0.01 0.02

Folding probability Pf and probability of undergoing different mechanisms (Pthreading, Preopening and Popen−loop), for each of
the considered models, in reducing and oxidizing conditions. The probabilities are estimated as frequency of occurrence over
2048 trajectories of length τrun = 1.5× 104.

Optimized EFM 261

In this section we report the folding behavior of the EFM when optimized with MFFO, 262

the evolutionary algorithm introduced in Sec. Methods. As most of the lasso structures, 263

2GMF is a secreted protein, and its folding occurs in the endoplasmic reticulum, that is 264

an oxidizing environment. For this reason the MFFO has been performed in oxidizing 265

conditions. The settings and parameters of the optimization procedure are reported in 266

the Methods section. 267

The progress of the optimization procedure is displayed in Fig. 6, where the 268

evolution of the folding success rate is reported. We observe that, as the MFFO 269

introduces heterogeneity in the angular interactions, the rate increases significantly 270

reaching a value larger than 0.95. In Fig. 6 we also show how the folding success rate 271

evolved when no crossover between different force-fields was operated. This represents 272

the success rate resulting from 16 independent SFFO runs (namely the serial stochastic 273

optimization algorithm of Ref. [48], outlined in the Methods section). It is evident that 274

the MFFO approach provides a remarkable boost to the optimization, attaining a 275

strong folding reproducibility, before the independent SFFOs exhibit any significant 276

improvement. This substantial advancement in the optimization strategy opens the 277

possibility of employing the EFM for the study of larger proteins, undergoing even more 278

complex folding processes. 279

After 30 MFFO cycles we chose the top ranked force-field and tested it over 2048 280

folding trajectories, both in reducing and oxidizing conditions. We shall refer to this 281

optimized model with the acronym OM. As described before, the bending and torsion 282

stiffnesses of the HM have been set equal to the average values of the OM, this way we 283

could assess the impact of heterogeneity on the folding behavior. 284

The Pf ’s obtained for the OM are reported in Tab. 1. We notice how the OM 285

reaches high probabilities both in reducing and oxidized folding, showing that the 286

heterogeneity of angular forces can be crucial to achieve a nontrivial topology in a 287

reproducible way, in agreement with what found for knotted protein folding in Ref. [52]. 288

We then investigated the successful folding landscape Fs associated to the OM, reported 289

in Fig. 7 as a function of F1/2 and db1 , and in Fig. 8 as a function of G and db1 . The 290

landscapes look qualitatively different to those of Figs. 2 and 3, indicating that the OM 291

selects different folding pathways with respect to HM. In particular we can appreciate 292

how the non-entangled intermediate state is now less populated and how the closure of 293

the cysteine bridge mostly occurs as a late event. 294

To assess which folding pathways are more populated we repeated the kinematic 295

analysis operated for the previous model. The results, shown in Fig. 9, reveal that the 296

bridge formation and folding times are on average slower than in the HM model. The 297
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the definition of which is provided in the Methods section. The red curves correspond to
MFFO combining NK = 16 force-fields, the blue curves correspond to an MFFO without
crossover of force-fields, equivalent to NK parallel SFFOs. Solid lines indicate the success rate
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Fig 7. Successful Folding landscape Fs of the OM as a function of the RMSD
from the native structure and of the b1 bridge distance. A panel: successful
trajectories (N = 1970) in reducing conditions. B panel: successful trajectories (N = 1946) in
oxidizing conditions.

optimization acted on the timescale of the folding events by delaying the closure of the 298

loop. As a result, the open-loop folding mechanism is promoted and characterizes the 299

great majority of the trajectories, as indicated in Tab. 1. In EFM, the open-loop folding 300

turns out to be the optimal route to the formation of the native lasso fold, in agreement 301

with the intuition that the closure of the covalent loop determines an entropic barrier, 302

slowing down the process. The behavior of OM shows how the optimization pressure, 303

building on the requirement of a reproducible and efficient folding, can select a pathway 304

among the possible ones, and polarize the mechanism of folding, similarly to what is 305

observed in experiments and simulations of small, knotted protein folding [18,24]. 306

Gō Model 307

To complement the picture obtained by means of the EFM we have performed a set of 308

folding simulations employing the well-established GōM proposed by Clementi et 309

al. [26], that has already been used by Haglund et al. to study lasso proteins [20, 22, 23]. 310
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Fig 9. tb versus tf for the successful trajectories of the OM. Panel A shows the
results of the N = 1969 successful trajectories in reducing conditions and panel B shows the
results of the N = 1946 successful trajectories in oxidizing conditions. The color of the circles
indicates the folding pathway, following the classification indicated in the text. The black line
corresponds to tb = tf .

For details on the description we refer to the cited references, here we just underline 311

that the native contacts establish through a 12-10 Lennard Jones potential, which is the 312

main driving force of the folding. As mentioned in Sec. Methods, also this description 313

models the backbone stiffness with the angular potentials of Eq. 6. The stiffness 314

coefficients are homogeneous, set to kbend = 40.0, ktor1 = 1.0, ktor3 = 0.5. Following 315

Ref. [53] we model the oxidizing conditions by rescaling the contact potential between 316

the cysteines that form bridges in the native conformation. As a result of the 317

temperature study presented in the Supporting Information (SI), we have chosen to 318

simulate this model at a temperature T = 0.7, at which the folding is kinetically 319

optimal, or minimally frustrated [27,35]. 320

The folding criterion adopted for this model is the one chosen for EFM, namely 321

requiring that F1/2 < 0.9 and L > 0.9 simultaneously. However, since the dihedral 322

angles are substantially less stiff than in the EFM, the computation of L must involve a 323

larger number of residues (see the SI for further details). The folding success rates 324

resulting from 2048 simulations in both reducing and oxidizing conditions are reported 325

in Tab. 1. The measured probability is in both cases above 0.55, with a lower value in 326

oxidized conditions. This similarity in folding propensity suggests that the topological 327

barrier imposed by the formation of the bridge does not have a substantial effect in this 328
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model. This is possibly related to the fact that the native contact between the cysteines 329

is present also in the model under reducing conditions, albeit weaker. However, the 330

analysis of the folding pathways provides further indications to explain this similar 331

capability of folding. 332

Applying the same criteria employed for the EFM, we have analyzed the successful 333

trajectories collected with reduced and oxidized GōMs, and assessed the population of 334

different folding mechanisms. The results are reported in Tab. 1, and represented in the 335

tb versus tf plots of Figs. 10A and B. The data indicate that the distribution of folding 336

mechanisms is similar in reducing and oxidizing conditions. This symmetry confirms 337

indeed that the successful folding events are not significantly affected by the cysteine 338

bridge potential. However, most of the trajectories adopted an open-loop pathway, in 339

which the topology forms before the contact of cysteine residues. This mechanism 340

selection is the main reason why the model folds with a similar success rate in both 341

environmental conditions. Moreover, we have found that the behavior of GōM, at the 342

temperature of fastest folding, is in qualitative agreement with that of OM. Indeed both 343

descriptions select a folding pathway characterized by the formation of the CL topology 344

before the closure of the covalent loop, pointing at this way of overcoming the 345

topological bottleneck as the most efficient option for the protein. 346

Moreover, almost all folding events take place at early times (t < 103), while only a 347

minor fraction of trajectories folds in the remaining simulation length. This indicates 348

that the non-successful runs have reached deep, metastable states and would need much 349

longer times to find their way to the native basin. We thus notice that this Gō-like 350

description of 2GMF is prone to kinetic traps, hampering the reproducible folding of the 351

model. Backtracking is here a crucial factor in determining the access to the native 352

state but, at this temperature, it would necessitate much longer timescales than those 353

accessed by our simulations. The optimized EFM model could instead reach a very high 354

probability of folding within the early stages of dynamics. This supports the idea that 355

concerted, non-local motions of the backbone, as those driven by EFM angular 356

potentials, are crucial for reproducible and efficient folding of self-entangled proteins. A 357

model (almost) purely driven by native contacts misses this aspect, and thus fails in 358

folding reproducibly. 359

To further enrich this picture we show the behavior of the GōM when the folding 360

temperature is increased, facilitating the backtracking mechanism. To this purpose we 361

have studied the GōM at T = 1.1, both in reducing and oxidizing conditions. Again, we 362

have collected 2048 runs of length τrun = 1.5× 104, to detect the fast folding events. As 363

reported in Tab. 1, the probability of folding within this simulation time is now strongly 364

affected by the environment, with a much lower success rate in oxidizing conditions. To 365

investigate the reason for this difference we have collected the distribution of folding 366

times, once again distinguishing among the different pathways. The results, displayed in 367

Fig. 10, show that the process at T = 1.1 is on average much slower than at T = 0.7, 368

and that the population of folding routes is not symmetric anymore between reduced 369

and oxidized model. 370

At T = 1.1 the model is outside the kinetically optimal regime, and slower routes, 371

that at T = 0.7 are prevented by the roughness of the free-energy surface, are made 372

accessible by thermal fluctuations, that allow backtracking and the exploration of the 373

folding funnel across different pathways. This aspect is evident from the behavior of the 374

model in reducing conditions (Fig. 10 C), where the all three mechanisms are well 375

populated, and the incidence of slower pathways is limited only by the finite sampling 376

time of the trajectories. In the oxidized model (Fig. 10 D) the situation is different, 377

since the cysteine bridge potential anticipates the closure of the loop, narrowing the 378

conformational space accessible by thermal fluctuations, and polarizing the choice of 379

folding mechanism towards the threading pathway. The promotion of a single folding 380
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route has here a different nature than in EFM results, where it was determined by the 381

optimality of folding kinetics. It would be therefore of great interest to verify the 382

preferential folding pathway of 2GMF by means of more detailed all-atom MD 383

simulations, or with experimental probing. This kind of evidence, on the basis of the 384

results presented here, would indeed provide insights on the nature of folding 385

mechanism selection, that is a characterizing feature of self-entangled proteins. 386
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Fig 10. tb versus tf for the successful trajectories of GōM simulations. Panels A
and B display the results of the GōM at T = 0.7: the N = 1228 successful trajectories in
reducing conditions are shown in panel A and the N = 1130 successful trajectories in oxidizing
conditions are shown in panel B. Panels C and D display the results of the GōM at T = 1.1:
the N = 1291 successful trajectories in reducing conditions are shown in panel C and the
N = 549 successful trajectories in oxidizing conditions are shown in panel D. The color of the
circles indicates the folding pathway, following the classification indicated in the text. The
black line corresponds to tb = tf .

Discussion 387

In this work we have presented an investigation on the folding of the glycoprotein 388

Granulocyte-macrophage colony-stimulating factor (2GMF), which presents a Complex 389

Lasso native structure. The study is performed by means of MD simulations, employing 390

both the widely used Gō Model, proposed by Clementi et al. [26] and the EFM, a 391

Coarse Grained, minimalistic description proposed in Ref. [48] for investigating the 392

folding mechanisms of knotted proteins. We here extended the original models by 393

implementing the formation of native cysteine bridges, in order to assess their effect on 394

the folding process. 395
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The EFM dynamics is based on optimized bending and dihedral potentials, which 396

are tuned to improve the folding capability of the model, with the purpose of 397

enlightening the optimal pathways towards the native structure. In this work we have 398

introduced the MFFO, an evolutionary approach for the optimization of EFM 399

interaction potentials. The results show that this algorithm significantly outperforms 400

the original stochastic method, allowing the study of more complex systems with EFM. 401

Moreover, this evolutionary strategy is general, and can be employed to optimize other 402

minimalistic protein descriptions, such as Gō-like models. Relying on this evolutionary 403

approach, we have built an optimized model of 2GMF, capable of reaching a very high 404

success rate during the early stages of the folding, avoiding kinetic traps, and providing 405

indications on the pathways that enable efficient and reproducible folding. We have 406

then compared the behavior of this model to the results obtained with the GōM. 407

In our study we focused on the capability of folding in relatively short times, that is, 408

without encountering major kinetic traps. The optimized EFM is in this sense more 409

successful, attaining a folding probability of 0.95 against the 0.6 achieved by the 410

considered Gō-model at the temperature of fastest folding. This demonstrates the 411

importance of force-field heterogeneity, and concerted angular motions, for efficiently 412

crossing the topological bottlenecks of self-entangled folding. 413

Besides the capability of reaching the native state, we were also interested in 414

studying the folding pathways of the protein. To this purpose we have defined two 415

topological descriptors, the lasso-variable L, and the Gauss linking number G, inspired 416

by successful methodologies for the classification of protein structures. By monitoring 417

the topology of the protein, these variables turned out to be useful tools for the analysis 418

and classification of folding trajectories. As a result, we were able to characterize the 419

folding scenario of 2GMF, outlining three main mechanisms. Building on this picture, 420

we showed that the optimization of EFM can polarize the trajectories towards an 421

open-loop folding route, in which the lasso topology sets in before the cysteine bridge is 422

formed and seals the covalent loop. The selection of this optimal pathway is also 423

confirmed by the GōM that, at the temperature of fastest folding, privileges an 424

open-loop folding route. 425

By simulating the GōM at a higher temperature, to lower the free-energy barriers 426

and allow for backtracking mechanism, we have found that the scenario of folding 427

pathways changes. These temperature conditions fall outside the range of optimal 428

folding kinetics, and the process requires much longer simulation times. Nonetheless, as 429

native contacts can break more easily, the protein can sample a larger portion of the 430

free-energy landscape, populating all possible folding routes. Also at this temperature 431

regime, under oxidizing conditions, we have observed a polarization of the folding 432

pathway towards a single mechanism. However, differently from the optimal kinetic 433

scenario, these simulations favor a loop-threading route. Indeed, the early formation of 434

the covalent loop, imposes an entropic restraint to the model, restricting the possible 435

routes to the threading one. Starting from this picture, we think that the study of 436

2GMF folding using further techniques, either more detailed simulations or experimental 437

studies, would be crucial to validate the hypothesis that entangled folding has evolved 438

to privilege optimal pathways. Overall, this discussion can provide a useful viewpoint in 439

the debate on protein folding mechanisms, and their driving principles (see e.g. [54–56]). 440

The methodological advancements presented here constitute a useful complement to 441

the existing protein models. They can provide valuable insights on the folding landscape 442

of topologically complex proteins, and draw the guidelines for molecular simulations 443

using more detailed physical models. Moreover, by highlighting the most efficient 444

folding routes, the qualitative picture obtained with the EFM can also shed light on the 445

role played by environmental factors that accelerate folding, such as chaperonins or 446

cotranslational folding. 447
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Methods 448

Elastic Folder Model Simulations 449

The EFM introduced in Ref. [48] is here reviewed in detail. The model describes an 450

N -residues polypeptide chain by means of a CG representation, in which only the Cα 451

atom positions are retained, resulting in a chain of N identical beads connected by stiff 452

bonds. The steric hindrance of each residue is represented by a short-range excluded 453

volume interaction. As said, the driving force of the folding is modeled by bending and 454

torsion potentials, parametrized so that the energy minimum is attained for a chosen 455

reference configuration. In principle, this reference corresponds to the native PDB 456

structure, however other choices can be convenient as well [48]. 457

The total potential energy is: 458

Utot = Usteric + Ubonds + Uangular + Ubridges . (1)

Weeks-Chandler-Anderson interaction [57] is used for the steric term: 459

Usteric =
N∑
i<j

UWCA(ri,j) , (2)

where ri,j = |ri − rj | and the pair potential is given by: 460

UWCA =

{
ULJ(r; ε, σ) + ε if r < 21/6

0 otherwise
, (3)

in which ULJ is the Lennard-Jones potential: 461

ULJ(r; ε, σ) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (4)

The chain beads are connected via Finitely Extensible Nonlinear Elastic (FENE) 462

bonds [58], namely: 463

Ubonds = −
N−2∑
i=0

kFENE

2

(
R0

σ

)2

ln

[
1−

(
ri,i+1

R0

)2
]
, (5)

in which kFENE is the interaction strength parameter and R0 is the maximum bond 464

length. The length scale σ is chosen equal to the steric diameter of Eq. (2), that 465

corresponds to the separation between two consecutive Cα, i.e. roughly 3.8 Å. 466

The remaining terms of Eq. (1) contain specific structural information of the protein 467

which has to be described. As mentioned, the folding is guided by the angular potential, 468

that generates the dynamics of the chain bending and torsion angles: 469

Uangular =
N−2∑
i+1

Ubending(θi; θ
0
i , k

bend
i ) +

N−3∑
i+1

Utorsion(φi;φ
0
i , k

tor
1i , k

tor
3i ) , (6)

in which θ0i and φ0i are, respectively, the i-th bending and torsion angles of the reference 470

conformation. kbendi and ktori are the stiffness coefficients associated to the angular 471

potentials, which are given by: 472

Ubending(θ; θ0, k) = k
(
θ − θ0

)2
, (7)

Utorsion(φ;φ0, k1, k3) = k1 cos(φ− φ0) + k3 cos(3φ− 3φ0) . (8)
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In EFM we consider a single torsion coefficient, imposing k3 = k1/3. Angular 473

interactions such as Eqs. 7 and 8 (or analogous chiral potentials) have been included in 474

Gō models as well [26, 27], in order to bias the formation of proper backbone 475

chirality [59]. 476

In this work we have modeled the formation of disulfide bridges by introducing an 477

attractive potential term Ubridge between those nB cysteine pairs {c1, c2} that form a 478

bridge in the reference state. 479

Ubridge =
∑
{c1,c2}

UsLJ(rc1c2 , εb, σb) , (9)

in which rc1c2 is the distance between the cysteines and UsLJ is a truncated and 480

force-shifted LJ potential, given by: 481

UsLJ =

{
ULJ(r; ε, σ)− ULJ(rc; ε, σ)− (r − rc)dULJ

dr

∣∣
r=rc

if r < rc

0 otherwise
. (10)

The scale length σb is chosen so that the minimum of Ubridge is located at the reference 482

distance between the residues in the considered pair. 483

The folding of this protein model is studied simulating its Langevin dynamics 484

starting from a stretched (i.e. end-to-end distance ∼ Nσ), randomly generated 485

configuration. The potential parameters, as well as the MD settings, were chosen 486

following the previous work on EFM [48]. The FENE parameters had the typical values 487

kFENE = 30 and R0 = 1.5, the friction time of Langevin equation was τfrict = 1.0 and 488

the integration time step was ∆t = 5× 10−4. The EFM dynamics was integrated by 489

means of an inhouse software. 490

Gō Model Simulations 491

The employed Gō model is that introduced by Clementi et al. in Ref. [26]. The system 492

setup was generated using the SMOG web server (http://smog-server.org) [60]. Details 493

on the interaction potential, which is based on 12-10 Lennard Jones native contacts, can 494

be found in the cited references. The shadow contact map [61] is used for the definition 495

of native contacts. As mentioned before, also this description models the backbone 496

stiffness with the angular potentials of Eq. 6. The stiffness coefficients are here 497

homogeneous, set to kbend = 40.0, ktor1 = 1.0, ktor3 = 0.5. The formation of cysteine 498

bridges in oxidizing condition is modeled by increasing the amplitude εij of the native 499

contact potential associated to the cysteine-cysteine contacts. The value was set to 500

εij = 10 kBT , so that thermal fluctuations would hardly break the bridge once formed. 501

As for the EFM, the GōM folding is studied by means of Langevin dynamics, 502

starting from random stretched configurations. GROMACS 2018.3 package [62, 63] was 503

used for integrating the motion. The MD parameters were chosen consistently with the 504

EFM simulations, with time step ∆t = 5× 10−4 and friction time τfrict = 1.0. To select 505

the simulation temperature we have performed a study of folding times and 506

probabilities at different values of T , the results are presented in the SI. 507

Single Force-Field Optimization 508

To satisfy the principle of optimality of the folding pathway, the EFM angular force 509

parameters kbendi and ktori are tuned to maximize the success rate of the folding. In 510

Ref. [48] this optimization is performed through a stochastic search procedure, which we 511

recall here. Let us first define: 512

K = {kbend1 , . . . , kbendN−2, k
tor
1 , . . . , ktorN−3} = (11)

= {kang1 , . . . , kang2N−5} , (12)
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in which kangi is used for both bending and torsion stiffnesses. We shall refer to K as 513

the force-field of the model. The optimization step consists in two operations: first, a 514

mutated force-field K ′ is generated: 515

K ′ = {kang1 , . . . , kangj + δk, . . . , kang2N−5} , (13)

in which the j-th coefficient is modified by adding δk. j is randomly chosen among the 516

2N − 5 coefficients, while δk is generated with a prescribed probability distribution 517

(e.g. in our calculation it is normally distributed, with standard deviation equal to 2.5). 518

Second, the mutation to K ′ is accepted or rejected according to a Metropolis-like 519

criterion: K ′ is tested by performing a set of n parallel folding simulations, starting 520

from a randomly generated stretched configuration, and running for some properly 521

chosen length τrun. The outcome of the n test trajectories is then assessed by measuring 522

F , namely the Mean Square Displacement (MSD) from the target configuration R0, 523

defined as: 524

F(t;K ′) =
1

Nσ2

∣∣R(t)−R0
∣∣2 , (14)

where R(t) is the configuration vector of the protein model, and | · | is the Euclidean 525

distance. We then define: 526

〈F(τ ;K ′)〉 =
1

n

n∑
i=1

F i(τ ;K ′) , (15)

which is the average MSD computed at t = τ over the n test runs. τ is chosen so that 527

Eq. 15 provides a measure of the folding success of the test runs. It can be set e.g. 528

equal to τrun or, as in Ref. [48], chosen according to the the convergence of the MSD 529

value along the trajectory. In the present work we have selected τ = τmin, namely the 530

time at which the MSD reaches its minimum value during the test run. The probability 531

of acceptance of the new force-field K ′ is then: 532

P (K ′|K) = min {1, exp[〈F(τ ;K)〉 − 〈F(τ ;K ′)〉]} . (16)

The operation just described is then iterated to minimize 〈F〉, enhancing the average 533

success rate of the folding trajectories. A schematic representation of this procedure, 534

that we name Single Force Field Optimization (SFFO), is displayed in Fig. 11. 535

For a polypeptide such as the smallest knotted protein MJ0366, with N = 82 536

residues, the parameter space is quite large and the SFFO algorithm can explore only a 537

minimal portion of it in reasonable computation time. The situation can be partially 538

improved by constraining the kang to be locally equal. For example, in Ref. [48] as well 539

as in the present work, neighboring pairs of coefficients are constrained, that is: 540

K = {kbend1 = kbend2 , kbend3 = kbend4 , . . . , ktor1 = ktor2 , ktor3 = ktor4 , . . .} . (17)

These local constraints reduce the dimensionality of the stochastic search, but also the 541

generality of the model. In the present work we have employed Eq. 17, pairing 542

neighboring angular coefficients. 543

Multiple Force-Field Optimization 544

In this work we have employed a development of the SFFO strategy, aiming at a more 545

efficient exploration of the K-space. The basic idea is to apply SFFO for the parallel 546

optimization of several force-fields and then combine the results with an evolutionary 547

strategy, as graphically illustrated in Fig. 11. An initial set, or population, of 548

force-fields {Kj}NK
j=1 is chosen, and each of them undergoes m SFFO steps 549
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Mutation
K → K′�

Test runs

SFFO:

⟨ℱ(τ; K′�)⟩
avg. MSD

accept/ 
reject

iterate

MFFO:

Population:
K1 1. K′�i1

Ranking: New population:

crossover

K2

Kn

2. K′�i2

n . K′�in

SFFO
SFFO

SFFO

Winners
W1

WNwin

Hybrid
H1

Hn−Nwin

+

low-fit, 
random

iterate

Fig 11. Optimization schemes. Schematic illustration of the SFFO and MFFO
optimization algorithms.

independently from the others. The resulting NK mutated force-fields are then ranked 550

according to their capability of folding. The specific ranking criterion is discussed in 551

detail later on. The Nwin top-ranked force-fields, which we shall call “winners”, are 552

selected to build the new population {K ′j}NK
j=1, while the remaining, low-ranked 553

candidates are discarded. The new force-field population is given by: 554

{K ′k}NK

k=1 =
(
{Wi}Nwin

i=1 , {Hj}NK−Nwin
j=1

)
, (18)

in which W indicates the winners, and H indicates a set of NK −Nwin newly generated 555

force-fields, which we shall refer to as “hybrid”. The latter ones are obtained by means 556

of a crossover operation, typical of genetic algorithms (see e.g. Ref. [64]). More in 557

detail, the Hj are generated by combining fragments of force-fields, randomly picked 558

from a set of parent force-fields, as displayed in Fig. 12). The parent set is formed by 559

the Nwin winners together with Nlow “low-fit” candidates, that ensure diversity among 560

the population. The latter can be selected among the worst ranked force-fields or, 561

otherwise, generated with randomly distributed angular coefficients. Further details 562

about the crossover operation are provided in the SI. Once the new population is set the 563

optimization cycle is completed and the algorithm is re-iterated. We name this 564

procedure Multiple Force Field Optimization (MFFO). 565

We now discuss the criterion for the force-field ranking, which naturally builds on 566

the outcomes of the folding tests gathered during the SFFO steps. As explained, each 567

SFFO mutation is tested via n folding simulations. The resulting n trajectories can 568

provide indications on the folding propensities of the NK force-fields. One can 569

e.g. compare the average MSD (Eq. 15) attained by each force-field. Another possibility, 570

which we have adopted in the present work, is to rank the NK candidates according to 571

Pf , namely the folding probability along the test runs. More precisely, we have defined 572

an estimate πf of the folding probability, based on the measurement of the MSD along 573

the test runs. A threshold value F0 has been set, below which the protein is considered 574

to be in the native state. Then, for a set of n test runs, we have defined: 575

πf (F0, τ) =
1

n

n∑
i=1

θ [F0 −F(τ,K)] , (19)

where θ is a function that switches from 0 to 1 when its argument becomes positive. In 576
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particular we used a Fermi function 577

θ(z) =
[
1 + exp

(
− z
w

)]−1
, (20)

that switches continuously with length-scale w. Clearly, πf represents only a proxy of 578

the real folding probability, on the one hand because the sole MSD is not always reliable 579

in discriminating between the native basin and misfolded configurations, and on the 580

other hand because it depends on a limited number of finite trajectories. As mentioned, 581

the ranking operation has performed every m SFFO iterations. Therefore, the 582

trajectories employed in computing Eq. (19) come from the m-th iteration. However, we 583

can assume that the local mutations tested along each SFFO step have a relatively 584

small effect on the force-field folding propensity. It is thus convenient to include in the 585

ranking also the information from the previous m− 1 SFFO steps. To achieve this we 586

have employed an exponential moving average, defined by the iterative formula: 587

Π
(i)
f = απ

(i)
f + (1− α)Π

(i−1)
f , (21)

where π
(i)
f is the folding probability relative to the i-th SFFO iteration and α is the 588

smoothing factor 0 < α < 1. The final value, i.e. Πf ≡ Π
(m)
f , includes the contribution 589

of all m SFFO iterations, assigning them a weight that increases exponentially with i. 590

Thus the NK force-field candidates have been ranked by increasing values of Πf . 591

W1

Winners Low-Fit Hybrid

W2 L1 L2 H1 H2

Crossover 
Points

Parents

Fig 12. Crossover operation. Schematic representation of the crossover operation
generating the hybrid force-fields. The color bars indicate the sets of kang coefficients
associated to the Winners and the Low fit force-fields. These are mixed randomly in the hybrid
force-fields.

In the optimization results presented in Sec. Results, the MFFO strategy has been 592

applied to a population of NK = 16 force-fields, initially having homogeneous angular 593

coefficients kbendi = kb and ktori = kt, where kb and kt were chosen among the possible 594

combinations of 20.0, 40.0, 60.0 or 80.0. Each force-field was optimized via SFFO, 595

during which it mutated point-wise. The local mutations were accepted via a 596

Metropolis criterion, based on the average MSD of 16 parallel folding trajectories 597

(Eqs. 15 and 16) of length τrun = 3.5× 103. This trajectory time-length has been chosen 598

based on the folding times measured for the HM, in order to promote only the faster 599

folding routes. Every m = 50 steps the force-fields were ranked according to the value of 600

Πf , as given by Eqs. 19 and 21, where the thresold MSD was F0 = 0.9, the switching 601

length-scale w = 0.2 and the smoothing factor α = 0.03, corresponding to a decay time 602
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of τα = 33 steps of the exponential moving average weight. As mentioned, the resulting 603

Πf is a proxy of the success probability Pf , that provided an on-the-fly estimate of the 604

optimization progress. After the force-fields were ranked, the 6 best were chosen as 605

winners, and continued the optimization. The remaining 10 force-fields were constructed 606

combining the winners and 4 randomly generated forcefields, with kbendi and ktori 607

uniformly distributed between 30.0 and 60.0 (more details are reported in the SI). 608

Topology Analysis 609

Minimalistic, CG models make it possible to collect a large statistics of folding 610

trajectories, even in complex folding processes as those of self-entangled proteins. 611

However, in order to gather useful information on the folding dynamics, the analysis of 612

these trajectories strongly benefits from the definition of proper topological descriptors. 613

Many methods for detecting the entangled state of a polymer chain have been proposed 614

(see e.g. Refs. [65] for further details) and extensively applied. For example, in the 615

framework of knotted proteins, knot searching algorithms have been used to classify the 616

topology of known native structures, gathering a comprehensive database [3]. In general 617

these techniques operate on the three dimensional structure of a polymer chain, first by 618

associating it to an equivalent closed curve [66,67], so that the topological state is 619

mathematically well-defined, and second by simplifying this structured curve without 620

changing its topology [8, 68]. The resulting curve is then analyzed by computing 621

topological invariants [69,70] and its entangled state is classified. 622

Although this is the typical approach used to analyze knotted proteins, the 623

non-trivial topology recognized in CL structures, is not yet classified from a 624

mathematical point of view [2]. In Ref. [19] an approach specifically aimed at detecting 625

CLs is presented. This technique, named Minimal Surface Analysis, uses triangulation 626

algorithms mutuated from computer-graphics, to determine the minimal area surface 627

spanned by a protein covalent loop. When this surface is obtained the lasso-type is 628

detected by searching for segments of the backbone that pierce the minimal surface. 629

This is a robust method to assess and classify CL structures, and it has been employed 630

to establish a database of polymeric structures characterized by this topology [19,21]. 631

However in the present work we are interested in descriptors that can monitor the 632

topological state along the folding trajectory of a specific protein. To this purpose the 633

computation can be expensive, and a faster, less general method could be more effective. 634

We can thus exploit the fact that proteins fold reproducibly in a well-defined 635

topology, which is known a priori. For this reason we relax the generality of the 636

topological descriptor, and focus on the specific native geometry of the system under 637

consideration. In CL geometries the main topological feature is a covalent loop closed 638

by a cysteine bridge, pierced by part of the backbone. For simplicity, we limit the 639

discussion to the case of a single loop and a single threading segment, the strategy can 640

be then generalized to more complex topologies. Let l1, . . . , lNl
be the indexes of loop 641

residues and t1, . . . , tNt be the indexes of the threading segment residues. We operate a 642

reduction of the structure, selecting only few crucial residues, namely l′1, . . . , l
′
Ml

for the 643

loop and t′1, . . . , t
′
Mt

for the threading tail, where Ml < Nl and Mt < Nt. The residues 644

l′ and t′ are chosen so that their position can describe whether the protein is in the 645

native topology. This operation is similar to the smoothing performed for protein knot 646

detection [71], however the procedure is not automated, and needs some preliminary 647

analysis of the structure and folding behavior. For clarity, in Fig. 1 (and in the SI) the 648

reduction we adopted for 2GMF is illustrated. The surface spanned by the Ml loop 649

residues is then approximated by Ml − 2 triangles, with vertexes corresponding to the l′ 650

residues positions. After this the threading of a |Rt′+1 −Rt′ | segment through the loop 651

can be verified by computing its intersections with the surface triangles. Once the 652

number and directions of the piercings through the loop surface are determined it is 653
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clear whether the protein has attained its native topology. By means of continuous 654

switching functions (see e.g. Eq. 20) we can associate this binary information to a 655

continuous value L varying from 0 (non-native topology) to 1 (native topology), we 656

name this quantity lasso-variable. The approximated surface formed by the Ml − 2 657

triangles is not the minimal area surface of Ref. [19], which is typically formed by many 658

more triangles. However, in our study, this simplification is convenient to speed up the 659

calculations. 660

Another interesting approach to topology detection is adopted in Refs. [49, 72]. The 661

idea developed in these works is that of employing the Gauss linking number [73], 662

namely the double line integral: 663

G ≡ 1

4π

∫
γ1

∫
γ2

r1 − r2
|r1 − r2|3

· (dr1 × dr2), (22)

in which the integrals are performed along the two curves γ1 and γ2, r1 and r2 being 664

the position vectors belonging to γ1 and γ2 respectively. If the two curves are closed (in 665

R3), G takes an integer value, that is a topological invariant typically used to define 666

links. By applying a proper closure procedure, G can be therefore employed to detect 667

the entanglement of two chains. 668

A crucial observation is that, when γ1 and γ2 are not closed, G is not an integer 669

topological invariant, but it still provides relevant information on the curves’ mutual 670

entanglement [73]. This property can been then exploited to assess the linking in 671

protein dimers [49], or the self-entanglement of folded proteins [72] without the need to 672

define a closure operation. A strong correlation has been found between the value of G 673

computed over open curves and its “closed counterpart”. This indicates that Eq. 22 can 674

be used as a descriptor for the topological state of entangled structures such as CLs. 675

Once again, since we are interested only in a specific topological state, we have 676

simplified the calculation of G in the same way as done for L. Therefore we have 677

computed G by applying Eq. 22 to the polygonal curves defined by the Mt and Ml 678

residues selected by structure reduction. In this case however, we have adopted the 679

convention that the bridge-forming cysteines are always the ends of the integration 680

along the covalent loop. This way, G depends on the distance between the two cysteines, 681

being affected to the opening and closing of the covalent loop. 682

The cross product in Eq. 22 implies that G depend on the relative orientation of γ1 683

and γ2 curves. Therefore one has to define an orientation along which the two 684

sub-chains are integrated. In the present work we have not fixed any conventional 685

orientation, since we have not compared different molecules. However, we have 686

computed G for an L2 lasso structure, in which the tail pierces the loop twice, in 687

opposite directions (as shown in Fig. 1). In this case, the contribution to G provided by 688

the threading in one direction is partially compensated (or entirely compensated, if the 689

curves are closed) by the threading in the opposite direction. To adapt G such that it 690

can detect this double piercing we have separated the threading tail in two parts, 691

assigning two different orientations for the calculation of Eq. 22. As a result, the 692

contributions coming from the two piercings add up, detecting the L2 state. 693

Supporting information 694

SI Appendix Searching the optimal routes to the folding of a Complex 695

Lasso protein: Supporting Information. 696

Figure S1 CG representation of 2GMF native structure and reduced 697

structures employed for the calculation of L and G. 698
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Figure S2 Angular coefficients of the optimized and homogeneous models, 699

OM and HM 700

Figure S3 Temperature range of fastest folding for the SBM. 701
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