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Abstract

We propose a new mathematical model to infer capillary leakage coefficients from

dynamic susceptibility contrast MRI data. To this end, we derive an embedded

mixed-dimension flow and transport model for brain tissue perfusion on a sub-voxel

scale. This model is used to obtain the contrast agent concentration distribution in a

single MRI voxel during a perfusion MRI sequence. We further present a magnetic

resonance signal model for the considered sequence including a model for local

susceptibility effects. This allows modeling MR signal–time curves that can be

compared to clinical MRI data. The proposed model can be used as a forward model in

the inverse modeling problem of inferring model parameters such as the diffusive

capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach

in the integrity of the blood brain barrier. Applying the model to perfusion MR data of

a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall
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conductivity is a good indicator for characterizing activity of lesions, even if other

patient-specific model parameters are not well-known.

Author summary

The use of advanced brain imaging techniques has supported in-vivo research targeted

to the integrity of the blood-brain barrier. We propose a new type of post-processing for

raw image data using contrast agent perfusion simulations on the data-poor capillary

scale. Combining modern simulation techniques with the clinical image data allows us

to determine patient-specific and pathologically relevant parameters such as the

capillary wall conductivity. The presented simulation model is a step towards the

quantification of contrast agent leakage in the brain, which is typical for acute multiple

sclerosis lesions, but also occurs with other diseases affecting the blood-brain-barrier,

such as cerebral gliomas.

Introduction 1

Multiple sclerosis (MS ) is characterized by a cascade of inflammatory reactions that 2

result in the formation of acute demyelinating lesions (MS plaques). Acute lesions are 3

associated with an impaired blood-brain-barrier (BBB) [1]. In healthy brain tissue, the 4

tight junctions between endothelial cells forming the blood vessel walls, are an efficient 5

barrier for most molecules in the brain capillaries. In active MS lesions tight junctions 6

have been found to be damaged or open [2]. Due to an auto-immune reaction, 7

immunological cells can pass the BBB and attack the myelin sheath covering the 8

electrical pulse conducting axons, leading to dysfunctions of the central nervous 9

system [3]. Magnetic resonance (MR) enhancement, using contrast agents such as 10

Gadolinium-based molecules, corresponds to areas of inflammation and contrast agent 11

leakage into the extra-vascular space. Furthermore, it is related to the histologic age of 12

the plaques [4]. Advanced imaging techniques, such as perfusion MR imaging (perfusion 13

MRI ), aim at the characterization of the temporal evolution of enhancing lesion 14

formation in relapsing-remitting MS [5]. Perfusion MRI is sensitive to inflammatory 15

activity and can depict active lesions previous to Gadolinium enhancement and even 16
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after its disappearance [6]. Furthermore, it has been shown that perfusion in lesions is 17

highly dynamic and related to the activity and temporal evolution of the lesions [7, 8]. 18

Cross-sectional studies in normal appearing white matter (NAWM ) have also 19

demonstrated abnormal perfusion behavior in patients with MS compared with healthy 20

controls (for review, see [9]). 21

Dynamic susceptibility contrast MRI (DSC-MRI ) has proven to be informative 22

when assessing the integrity of the blood-brain barrier (BBB) [10,11]. In a typical 23

DSC-MRI study, contrast agent is administered intravenously (bolus injection) and 24

whole brain MR image sequences are recorded with a repetition time of about two 25

seconds over a few minutes [11]. Normal appearing white matter is distinguished from 26

inflammatory plaques by image contrast and differences in intensity–time curves. Using 27

adequate post-processing techniques, qualitative assessment of leakage coefficients 28

allows to identify contrast-enhancing lesions in an automated way [12]. Although today, 29

perfusion MRI is not considered a standard procedure in the neuro-imaging workup of 30

MS, it enables a classification of lesions according to parenchymal leakage of an MR 31

contrast agent due to differences in perfusion behavior [13]. Perfusion imaging, both 32

DSC and dynamic contrast enhanced (DCE ), may provide information about the 33

leakiness of the tissue under investigation. In this work, we investigate DSC-MRI. 34

However, the extension of the method to DCE-MRI is conceivable. 35

For the interpretation of images obtained in a DSC-MRI study, the gray scale image 36

Fig 1. Signal intensity–time curves in a contrast-enhancing lesion (red) and in NAWM
(blue) with the respective sampling locations in the brain (left). Signal values are
normalized to the pre-contrast baseline. Data obtained by gradient echo - echo planar
imaging (GRE-EPI ), at magnetic field strength 3 T, repetition time TR = 1400 ms, echo
time TE = 29 ms, flip angle α = 90°, voxel size 1.8× 1.8× 5 mm, and an image
resolution of 256× 256 pixels per slice.
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Fig 2. Schematic figure of a two-compartment pharmacokinetic model for tissue
perfusion. Concentrations are denoted by C(t), where the subscript a stands for aterial,
p for plasma, and e for extra-vascular, extra-cellular space, Fp is the plasma flux, and
PS denotes the permeability-surface product, a proportionality constant of the
transmural exchange rate.

sequence is post-processed to provide indicators within regions of interest to the 37

radiologist. Two typical signal intensity–time curves from the brain white matter, with 38

the characteristic first pass signal dip, are shown in Figure 1. Mathematical models 39

(forward model) for contrast agent perfusion in the brain tissue can help understanding 40

the underlying reasons for a particular intensity–time curve of a voxel, by identifying 41

and analyzing the model parameters which are able to reproduce the MRI data. This 42

process is also known as solving the inverse problem. To this end, the model parameters 43

are tuned by using parameter estimation techniques. Forward models are typically 44

based on a two-compartment pharmacokinetic tracer model and are parameterized by a 45

small number of parameters [14–16]. Figure 2 visualizes a two-compartment model 46

conceptually, with compartments representing plasma and extra-vascular, extra-cellular 47

space. The plasma compartment is supplied by a flux determined by an arterial input 48

function (AIF ) [17]. The AIF can be estimated from voxels that are mostly constrained 49

within a larger afferent artery [18]. The plasma compartment exchanges mass with the 50

extra-vascular, extra-cellular space proportionally to its permeability-surface product. 51

Common indicators derived from such models are the cerebral blood volume (CBV ), 52

the cerebral blood flow (CBF ), the mean transit time (MTT ), and leakage 53

coefficients [10,12,19]. 54

A routinely used state-of-the-art post-processing procedure and model is described 55

in [12]. Such models have to reflect two processes: (1) the perfusion process governed 56

mainly by bio-fluid-mechanical principles, and (2) the physical process of nuclear 57
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magnetic resonance (NMR) exploited to acquire the MR image. There have been many 58

suggestions for improving the modeling of the latter process [20–23]. The authors 59

of [24,25] show that the local, sub-voxel tissue structure has a significant effect on the 60

NMR signal. However, all previous studies, including the recent study by [23], rely on 61

state-of-the-art two-compartment models for the perfusion process providing only 62

average concentrations in two tissue compartments within a voxel. 63

To overcome the limitations of two-compartment models, we present a perfusion 64

model on a sub-voxel scale, including the capillary network structure. Fully, 65

three-dimensionally resolved fluid-mechanical models of brain tissue perfusion imply 66

prohibitively complex and computationally expensive simulations due to the large 67

number of vessels, their non-trivial geometrical embedding, and the complex geometry 68

of the extra-vascular, extra-cellular space [26]. To reduce complexity, we use a 69

mixed-dimension embedded model description, where blood vessels are represented by a 70

network of cylindrical segments which are embedded into the extra-vascular space, 71

represented by a homogenized three-dimensional continuum. The model reduction, 72

which is described in more detail in the following, leads to a coupled system of 73

one-dimensional partial differential equations for flow and transport in the vessels, and 74

three-dimensional partial differential equations for flow and transport in the 75

extra-vascular space. Related models have been used to study the proliferation of cancer 76

drugs [27–29], the transport of oxygen [30–34], and nano-particle transport for 77

hypothermia therapy [35]. A recent study [36] describes contrast agent perfusion based 78

on diffusive transport with a mixed-dimension model. The herein presented 79

fluid-mechanical model is similar to the drug proliferation model described in [27] and 80

introduced by [28]. It is derived here for the specific application of contrast agent 81

perfusion in brain tissue. 82

The fluid-mechanical model is coupled to an NMR signal model. We propose that 83

the local distribution of the contrast agent and resulting local susceptibility effects 84

obtained by a sub-voxel scale model may better explain the NMR signal response of the 85

tissue. The application of this new perfusion model is demonstrated for the example of 86

MS lesions. 87

In the following, we refer to the sub-voxel spatial scale, ranging from a few 88

micrometers to several hundreds of micrometers, as meso-scale. We call the scale below 89
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the meso-scale, which includes the molecular scale, micro-scale, and refer to the scale 90

above as macro-scale. 91

Mixed-dimension embedded model for brain tissue 92

perfusion 93

The tissue is conceptually decomposed into two domains. The vascular compartment 94

comprises blood vessels, including the capillary lumen, the endothelial surface layer, the 95

basement membrane, and blood. The extra-vascular compartment includes cells, the 96

extra-cellular matrix (ECM ), and the interstitial fluid. The compartments communicate 97

by the exchange of fluids and molecules over the capillary wall (transmural exchange). 98

In the following three sections, the assumptions are discussed separately for both 99

compartments and the transmural exchange. These sub-domain models are then 100

combined, to obtain the mixed-dimension tissue perfusion model. 101

Vascular compartment 102

Blood flow can generally be described by the Navier-Stokes equations. Assuming 103

negligible radial velocities, long vessels (compared to their radius), low Reynolds 104

numbers (Re << 1), non-pulsatile flow, and rigid vessel walls, the equations can be 105

simplified [37]. Furthermore, we employ a homogenized continuum model for blood, 106

using an apparent viscosity, µ̂B . Assuming a constant hematocrit of 45%, the apparent 107

viscosity can be described as a function of the effective vessel radius, R, by an empirical 108

relation [38], derived from experimental data, 109

µ̂B = 0.001 ·
[
220 · e−2.6R−2.44 · e−0.06·(2·R)0.645 +3.2

]
Pa s. (1)

The effective vessel radius, R, is chosen with respect to the cross-section area, 110

Av = πR2. Blood density is assumed constant, ρB = 1050 kg m−3 [39]. Under these 111

assumptions, the flow in the lumen of a capillary vessel can be described by 112

∂

∂s
(AvρB v̄V ) = − ∂

∂s

(
ρB

πR4

8µ̂B

∂pv
∂s

)
= q̂m, (2)
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with the mean velocity v̄V , the rate of mass exchange with the extra-vascular 113

compartment, q̂m, with units of kg s−1 m−1, the cross-section averaged pressure, pv, and 114

the axial coordinate, s. At vessel bifurcations, we enforce continuity of pressure and 115

conservation of mass to couple the equations of the different vessel segments. 116

The transport of contrast agent can be described by an advection-diffusion equation. 117

By integration of the three-dimensional equations over the vessel cross-section, the 118

model can reduced to a one-dimensional equation for the cross-section-averaged mole 119

fraction, xv, [37] 120

AvM
cρm,I

∂xv
∂t

+
∂

∂s

(
Avωv̄vM

cρm,Bxv −M cρm,BD
c
B

∂xv
∂s

)
= q̂c, (3)

where M c is the molar mass of the contrast agent, ρm,B the molar density of blood, and 121

Dc
B the binary diffusion coefficient of the contrast agent in blood. The exchange with 122

the extra-vascular compartment is modeled by the flux q̂c, with units of kg s−1 m−1. 123

The shape factor ω > 0 reflects the variation of axial velocity profiles in vessel 124

cross-sections [37], 125

ω =
1

Av

∫ 2π

0

∫ R

0

χ(r)φ(r)r drdθ, and
1

Av

∫ 2π

0

∫ R

0

f(r)r drdθ = 1 for f ∈ {χ, φ},

(4)

where χ(r), φ(r) are the dimensionless velocity profile and the dimensionless 126

concentration profile, respectively. As it has been observed that small nano particles are 127

likely to be distributed evenly [40], we choose ω = 1. 128

In the following, we consider the Gadolinium-based contrast agent Gadobutrol. For 129

the perfusion MRI sequence, it is administered intravenously in solution, with a 130

concentration of 1 mol l−1. Gadobutrol has the chemical formula C18H31GdN4O9, 131

corresponding to a molar mass of M c = 604.715 g mol−1 [41]. In high concentrations, 132

Gadobutrol has a significant influence on fluid density and viscosity. However, the 133

concentrations arriving in the brain tissue sample are strongly diluted by diffusion and 134

dispersion along the tortuous path through the vascular network, so that the influence 135

on blood density and viscosity can be neglected in this study. The binary diffusion 136

coefficient of Gadobutrol in plasma can be estimated by means of the Stokes-Einstein 137
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radius, rhy = 0.9 nm [42], 138

Dc
B =

kBT

6πµP rhy
≈ 1.9 · 10−10 m2 s−1, (5)

where µP = 1.32 Pa s [43] denotes the blood plasma viscosity, T the temperature in K, 139

and kB the Boltzmann constant. 140

Extra-vascular compartment 141

The extra-vascular compartment is modeled as a porous medium with a rigid solid 142

skeleton, consisting of cells, fibers, and extra-cellular matrix. Flow of a single fluid 143

phase, the interstitial fluid, through a porous medium is described by Darcy’s law [44] 144

∇ ·(ρIvt) = −∇ ·
(
ρI
µI

K∇pt
)

= qm, (6)

where ρI , µI are density and viscosity of the interstitial fluid, vt the filter velocity 145

vector, K the intrinsic permeability tensor of the extra-vascular compartment, and qm 146

(kg s−1 m−3) the mass exchange with the vascular compartment. We assume constant 147

density and viscosity, ρI = 1030 kg m−3, µI = 1.32 Pa s, given that contrast agent 148

concentrations in the extra-vascular compartment are even smaller than in the blood 149

stream, and we consider perfusion an isothermal process. Furthermore, we choose an 150

isotropic intrinsic permeability K = 8.3 · 10−18 m2 [45], where K = KI. The transport 151

is modeled by an advection-diffusion equation, 152

φM cρm,I
∂xt
∂t

+∇ ·(vtM cρm,Ixt −M cρm,BDe∇xt) = qc, (7)

where φ denotes the porosity, the ratio of pore volume to total volume in a 153

representative elementary volume, ρm,I the molar density of the interstitial fluid 154

solution, De is the effective diffusion coefficient, and qc (kg s−1 m−3) is the contrast 155

agent mass exchange with the vascular compartment. We assume that the interstitial 156

space in the extracellular matrix, with pore throat diameters of around 50 nm [26], still 157

allows for a viscous flow regime. Furthermore, it is assumed that Gadobutrol will not 158

enter cells. The effective diffusion coefficient in the porous medium can be estimated as 159
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De = τφDc
I , where τ denotes the tortuosity of the extra-cellular matrix, and Dc

I the 160

binary diffusion coefficient of contrast agent in interstitial fluid, for which we choose the 161

same value as for the binary diffusion coefficient of contrast agent in plasma Eq. (5). 162

Following the literature for tortuosity and porosity values [26], we choose τ = 0.4 and 163

φ = 0.2, which yields, De ≈ 1.5 · 10−11 m2 s−1. 164

Transmural exchange 165

The wall of continuous capillaries consists of an endothelial surface layer, a basal 166

membrane, and a layer of charged proteins, called glycocalyx [46,47]. Mass exchange 167

can occur passively through the endothelial tight junctions, or through trans-cellular 168

pathways. Here, we consider only transport by advection and diffusion, following [39]. 169

Given a blood vessel volume fraction of 3 %, an average thickness of the endothelial 170

surface layer of 1 µm [48], and an average vessel radius of 10 µm, the volume fraction of 171

the capillary wall is less than 1 % of the tissue volume. The capillary wall can be 172

conceptually reduced to a two-dimensional interface, denoted by Γ, separating the 173

vascular from the extra-vascular compartment. Note that this results in a pressure jump 174

across Γ, which is inversely proportional to wall permeability and wall thickness. 175

According to Starling’s hypothesis [49, 50], the transmural flux of a fluid is proportional 176

to the hydrostatic and colloid osmotic pressure gradient between capillary lumen and 177

interstitial space 178

q̂m = ρILpS [(pv − p̄t)− σ(πv − πt)] , (8)

where Lp is the filtration coefficient, with units of m Pa−1 s−1, S = 2πR is the 179

circumference of the vessel, 180

p̄t =
1

S

∫ 2π

0

pt|RR dθ (9)

is the average hydrostatic pressure on the vessel wall, πv, πt, denote the osmotic 181

pressure in capillary lumen and interstitial space, respectively, and 0 ≤ σ ≤ 1 is the 182

osmotic reflection coefficient. The difference in osmotic pressure results from large 183

plasma proteins in the blood stream, such as albumin, and effectively draws fluid into 184

the vessels. For the in silico experiments, we assume the osmotic pressures to be 185

constant, with ∆π = πv − πt = 2633 Pa [51]. Furthermore, we choose σ = 1, 186
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corresponding to the vessel wall modeled as a perfect selectively permeable membrane. 187

The contrast agent is assumed to be transported by advection with the plasma, as 188

well as by molecular diffusion. The reduction of the vessel wall to a surface leads to a 189

concentration jump across the vessel wall, which is inversely proportional to diffusive 190

wall conductivity and wall thickness. The transmural transport is described as [50] 191

q̂c = DωM
cSρm,I(xv − x̄t) + q̂m(1− σc)M cρm,Ixup, (10)

where Dω is the diffusive wall conductivity, with units of m s−1, 192

x̄t =
1

S

∫ 2π

0

xt|RR dθ (11)

is the average contrast agent mole fraction on the vessel wall, 193

xup =


xv if q̂m < 0

x̄t if q̂m > 0

(12)

denotes the mole fraction in upwind direction, and 0 ≤ σc ≤ 1 denotes the solvent-drag 194

reflection coefficient. As the considered contrast agent is a small molecule and the 195

endothelial tight junctions are damaged in lesion tissue, we set σc = 0, neglecting 196

reflection. Determining Dω from MRI data is the major objective of this work. 197

The mass balance Eqs. (2), (3), (6) and (7) are coupled by Eqs. (8) and (10), 198

whereas Eqs. (6) and (7) are described in the three-dimensional extra-vascular domain 199

Ω, while Eqs. (2) and (3) are associated with the one-dimensional vascular domain Λ. 200

We follow the concept suggested in [28]: if the source terms, q̂m, q̂c, are defined as line 201

sources along the vessel center line in the three-dimensional domain, while the 202

three-dimensional quantities, pt, xt, are evaluated as the average values on Γ, then, the 203

resulting exchange term is a good approximation of the source term in a non-reduced 204

three-dimensional setting. To this end, we define qm, the source term in Eq. (6), as 205

qm = −q̂mδΛ, with

∫
Ω

f(x)δΛ dx =

∫
Λ

f(x) dζ ∀f(x),

∫
Ω

δΛ dx = 1, (13)

so that qm is a line source restricted by the Dirac delta function δΛ to the center line of 206

December 20, 2018 10/45

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507103doi: bioRxiv preprint 

https://doi.org/10.1101/507103
http://creativecommons.org/licenses/by/4.0/


a vessel. Analogously, we set qc = −q̂cδΛ, for the source term in Eq. (7). 207

Vessel geometry, boundary conditions and initial conditions 208

Fig 3. The capillary network grid extracted from measurements in the rat
cortex [34,52] and the Cartesian computational grid for the extra-vascular domain, used
for the model analysis in this study. The tubes are scaled with the respective vessel
radius. The color visualizes hydraulic pressure from high (red) to low (blue). The cones
indicate the flow direction.

We base our vascular model on a small network of capillaries from the superficial 209

cortex of the rat [34,52], which we consider a sufficient approximation of the actual 210

capillary network geometry for type of model analysis presented in this work. The 211

network has the dimensions 150 µm× 160 µm× 140 µm, and is shown in Fig. 3. The 212

location of inflow and outflow boundaries are given in this data set. For the inflow 213

boundaries, [34] provide velocity estimates based on the vessel radius, which are applied 214

as Neumann boundary conditions. At the outflow boundaries, we enforce Dirichlet 215

boundary conditions for the pressure, pv,out = 1.025 · 105 Pa. 216

The domain initially contains no contrast agent, so that xv(x, t) = 0. During the 217

perfusion MR study, 10 ml contrast agent (0.1 mmol per kg body weight) is 218

administered intravenously as a solution at 5 ml s−1 and a concentration of 1 mol l−1. 219

The injected fluid thus forms a sharp bolus. However, the bolus disperses significantly 220

before it reaches the brain capillaries. Therefore, the concentration inflow profile to the 221

capillary network has to be estimated from the parameters of the bolus injection. To 222
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this end, we use an ansatz from [22] 223

cv,in(t) = ρm,Bxv,in(t) = at−2
p t e−t/tp +b

(
1− e−t/tp

)
, (14)

which describes a concentration profile starting at cv,in(0) = 0 mol m−3 and approaching 224

an equilibrium concentration b (mol m−3, contrast agent is equally distributed in the 225

whole body blood volume), with a single peak after the arrival of the bolus. The 226

parameters a (mol s m−3) and tp (s) are shape parameters of the capillary input 227

function, and can be interpreted as the scaling parameter for the area under the curve, 228

and the time to peak, respectively, in the absence of re-circulation (b = 0). The 229

parameter values are patient-specific and also depend on the location in the brain. 230

Values for a,b, and tp are discussed below, in the context of parameter estimation. 231

At the inflow boundary, contrast agent influx is enforced by a Neumann boundary 232

condition. At the outflow boundary, the normal mole fraction gradient is set to zero and 233

the advective component flux is computed by a first-order upwind scheme. For the 234

extra-cellular compartment, we enforce symmetry boundary conditions everywhere, 235

assuming that the modeled domain is surrounded by domains with similar properties. 236

Mixed-dimension embedded model for tissue perfusion 237

In summary, the complete coupled fluid mechanical model of tissue perfusion reads as: 238

(1) Find pt,pv such that

− ∂

∂s

(
ρB

πR4

8µ̂B

∂pv
∂s

)
= q̂m in Λ,

−∇ ·
(
ρI
µI

K∇pt
)

= −q̂mδΛ in Ω, (15)

q̂m = ρILpS [(pv − p̄t)− σ(πv − πt)] ,

(2) then find xt,xv such that

AvM
cρm,I

∂xv
∂t

+
∂

∂s

(
Av v̄vM

cρm,Bxv −M cρm,BD
c
B

∂xv
∂s

)
= q̂c in Λ,

φM cρm,I
∂xt
∂t

+∇ ·(vtM cρm,Ixt −M cρm,BDe∇xt) = −q̂cδΛ in Ω, (16)

q̂c = DωM
cSρm,I(xv − x̄t) + q̂m(1− σc)M cρm,Ixup,
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subject to the Neumann and Dirichlet boundary conditions on the inflow and outflow 239

boundaries of the vascular compartment, ∂Λ, respectively, and no-flow boundaries for 240

the boundaries of the extra-vascular domain, ∂Ω, as discussed in the previous section. 241

This model stands in contrast to the often employed two-compartment kinetic 242

modeling approaches, because it resolves meso-scale flow phenomena, and because it is 243

based on parameters with a clear physical interpretation. 244

NMR signal model 245

A model linking concentration fields with the nuclear magnetic resonance (NMR) signal 246

response is required to connect the results of the fluid mechanical model to clinical MRI 247

data. To this end, we develop a model of NMR on the meso-scale. In the following, we 248

describe a gradient echo, echo planar sequence (GRE-EPI ) commonly used in DSC-MRI. 249

This fast imaging technique allows acquisition of an entire brain image stack in less than 250

two seconds. Thus, after the injection of a contrast agent, a time series of such images 251

can be acquired, where the characteristic signal-time curve for every voxel is dependent 252

on the evolution of the contrast agent concentration distribution on the meso-scale. 253

The GRE-EPI sequence starts with a radio frequency (RF ) pulse, which reorients 254

the magnetic moments in the tissue sample, with the flip angle α to the main magnetic 255

field B0. The RF pulse causes the magnetic moments to precess. Energy dissipation, 256

characterized by an exponential decay with the longitudinal and transversal relaxation 257

times, T1, T ∗2 , relaxes the magnetization into the initial state aligned with B0. 258

According to [22], the GRE-EPI voxel signal during a DSC-MRI perfusion sequence can 259

be modeled as 260

S(t) =
S0

(
1− e−TR/T1(c(x,t))

)
e−TE/T

∗
2 (c(x,t)) · sin(α)

1− e−TR/T1(c(x,t)) · cos(α)
, (17)

where the repetition time TR, is the time between two RF pulses, and the effective echo 261

time, TE, is the time between RF pulse and signal readout. The base signal S0 > 0 262

depends, i.a., on tissue proton density and the MR scanner hardware. In the following, 263

we look only at the normalized signal Sn(t) = S(t)S−1
pre, where Spre is the signal before 264

the contrast agent bolus arrives in the tissue sample. The pre-contrast signal, Spre, 265
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contains all constant factors in Eq. (17), including S0. It follows from Eq. (17) that a 266

shortening of T ∗2 results in a decrease of NMR signal strength, while a shortening of T1 267

results in signal enhancement. 268

The following two sections introduce the models for the relaxation rates R1 = T−1
1 , 269

R∗2 = T ∗−1
2 that depend on the spatial and temporal evolution of the contrast agent 270

concentration, c(x, t), within an MRI voxel. The authors of [23] developed a model 271

including an artificial microstructure using a combination of a finite perturbator 272

method [21] and a finite-difference solution of the Bloch-Torrey equations. However, 273

their model is coupled to a two-compartment tracer perfusion model, only providing 274

voxel-averaged concentrations. In contrast, the presented perfusion model computes the 275

sub-voxel distribution of the contrast agent concentration. We follow [22], to develop a 276

model considering the spatial and temporal distribution of the contrast agent. 277

Transversal relaxation in tissues with locally heterogeneous microstructure 278

The transversal relaxation rate, R∗2, depends on the complex local microstructure of the 279

tissue [24] and is altered by the presence of the contrast agent. We are only interested 280

in the signal change relative to the baseline, so we split the relaxation rate in a static 281

pre-contrast contribution and a time-dependent contribution depending on the contrast 282

agent concentration, 283

R∗2 = R̂∗2 + R∗2,pre. (18)

The relaxation rate for a sub-voxel control volume can be described by contributions 284

of three compartments, the vascular compartment (B), the extra-cellular, extra-vascular 285

space (I), and the cellular compartment (S), weighted by their volume fractions, φB, φI, 286

φS [22], 287

R∗2 = φBR∗2,B + φIR
∗
2,I + φSR∗2,S. (19)

According to [25], the rate in each compartment κ ∈ {B, I,S}, comprises 288

contributions on three spatial scales 289

R∗2,κ = R∗2,κ,micro + R∗2,κ,meso + R∗2,κ,macro. (20)

The rate R∗2,macro describes effects of static local inhomogeneities of the magnetic field 290

December 20, 2018 14/45

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507103doi: bioRxiv preprint 

https://doi.org/10.1101/507103
http://creativecommons.org/licenses/by/4.0/


B0, which are time-independent. Since the static effects do not depend on the contrast 291

agent concentration, they are included in the pre-contrast relaxation rate, R∗2,pre. The 292

rate R∗2,κ,micro depends on the local chemical composition. The effects are independent 293

of the pulse sequence. Gadolinium-based contrast agent molecules increase the 294

relaxation rate, which can be described by a linear relationship [25], 295

R∗2,κ,micro = r2cκ + R∗2,κ,pre,micro, (21)

where r2 is the molar relaxivity, and cκ the local contrast agent concentration in 296

compartment κ. The molar T2 relaxivity, r2, of Gadobutrol at 3 T and 37 ◦C is 297

approximately 3.9 m3 mol−1 s−1 [53]. Here, we assume that the contrast agent cannot 298

enter the cells, cS = 0, hence R∗2,S,micro = 0. 299

The term R∗2,meso stems from a meso-scale effect. The magnetic field perturbations 300

induced by the difference in magnetic susceptibility in the blood vessel and the 301

extra-vascular space, increase the relaxation rate of the extra-vascular space in 302

proximity of a blood vessel. The generated magnetic field perturbations are several 303

orders of magnitude smaller than B0. Furthermore, the influence decays rapidly with 304

distance to the vessel surface. Therefore, we consider each segment of the vessel network 305

to cause a perturbation independent of the other segments. The increase in R∗2 at a 306

given location in the tissue caused by mesoscopic magnetic field perturbation will then 307

be the superposition of all n segment perturbations 308

R∗2,meso,I = κB

n∑
i=0

ϕi|c̄B − c̄I|i, (22)

where |c̄B− c̄I| is the difference of the concentrations averaged on the vessel surface. The 309

factor κB ≥ 0 is an ad-hoc parameter, scaling the strength of these perturbations. The 310

proportionality factor ϕi models the decay of the influence of the with distance from the 311

vessel wall. We set ϕi = R2/r2, assuming a quadratic decay, where r is the distance to 312

the vessel center line and R the radius of the vessel segment. The susceptibility contrast 313

likewise increases the transversal relaxation rate, which we model by 314

R∗2,meso,B = κB |c̄B − c̄I|. (23)
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The same effect occurs at the cell surfaces, induced by the difference in magnetic 315

susceptibility between interstitial space and cells. Note that we consider cells not to be 316

invaded by contrast agent. We include this effect by adding a term to Eq. (22), 317

R∗2,meso,I = κB

n∑
i=0

ϕi|c̄B − c̄I|i + κT |cI|, (24)

and to the relaxation rate of the cell compartment, 318

R∗2,meso,S = κT |cI|, (25)

where κT ≥ 0 is a second ad-hoc parameter, determining the strength of these 319

perturbations. Furthermore, we assume that there is no direct interface between the 320

cells and the vascular compartment. 321

Combining Eqs. (19), (21) and (23) to (25), we obtain a formulation for the

transversal relaxation rate dependent on the concentration fields and the volume

fractions of the three compartments:

R∗2 = R∗2,pre + r2(φBcB + φIcI) + φB(κB |c̄B − c̄I|)

+ φI(κB

n∑
i=0

ϕi|c̄B − c̄I|i + κT |cI|)

+ φS(κT |cI|). (26)

Longitudial relaxation with contrast agent administration 322

Similar to T ∗2 , the contrast agent also shortens T1. However, the effects occur merely on 323

the micro-scale. Thus, we can model the relaxation rate R1 = 1/T1 of the tissue sample 324

by 325

R1 = r1(φBcB + φIcI) + R1,pre, (27)

where we implicitly assumed that contrast agent does not enter cells, cS(x, t) = 0. The 326

molar T1 relaxivity, r1, of Gadobutrol at 3 T and 37 ◦C is approximately 327

3.2 m3 mol−1 s−1 [53]. 328
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Voxel signal 329

The relaxation rates, R∗2 and R1 (Eqs. (26) and (27)), are computed for each control 330

volume in the three-dimensional domain Ω. The volume fraction of the vascular domain, 331

φB, is computed by integrating over the volume of all vessels within a control volume 332

and dividing this number by the volume of the control volume. A local NMR signal can 333

then be computed for each control volume, by using Eq. (17). The voxel signal is 334

determined by the volume average of all control volume signals. 335

Numerical treatment and implementation 336

The equations of the fluid flow equation system (Eq. (15)), and the contrast agent 337

transport system (Eq. (16)), are discretized with a cell-centered finite volume method 338

with a two-point flux approximation in space, and an implicit Euler method in time. 339

The two systems are only coupled in one direction, such that Eq. (16) depends on the 340

pressure field computed in Eq. (15), but Eq. (15) can be solved independently of 341

Eq. (16). Furthermore, Eq. (15) is stationary, so that the pressure field only has to be 342

computed once per perfusion experiment. The discrete systems are assembled in a 343

block-matrix structure in residual form, 344

Ju∆u =

 Auv Cuv→t

Cut→v Aut


∆uv

∆ut

 =

ruv
rut

 , u ∈ {p, x}, (28)

where u is the respective discrete primary variable (fluid pressure in Eq. (15), contrast 345

agent mole fraction in Eq. (16)), and ∆u denotes the difference of the current solution 346

to the solution of the previous time step (or initial solution). The Jacobian matrix Ju 347

can be split into blocks, where Auv is the block with derivatives of the residual ruv with 348

respect to the degrees of freedom uv of the discrete vascular domain Λh ⊆ Λ, Cuv→t 349

contains derivatives of the residual ruv with respect to the degrees of freedom ut of the 350

discrete extra-vascular domain Ωh ⊆ Ω, and Aut , Cut→v are defined analogously in terms 351

of the residual rut . 352

The linear equation systems, Eq. (28), are solved using a left preconditioned 353

stabilized bi-conjugate gradient method [54, Chapter 7], with the block diagonal 354
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preconditioner 355

P−1 =

ILU0(Auv ) 0

0 ILU0(Aut )


−1

, (29)

where ILU0(A) denotes an incomplete LU-factorization of the matrix A using A’s 356

sparsity pattern (zero fill-in) [54, Chapter 10]. 357

We assume that the influence of the sub-voxel contrast agent evolution during a 358

single image acquisition on the NMR signal is negligible, and thus, Eq. (17) is solved as 359

a post-processing step after each time step of the perfusion model. 360

The model converges in time and space to a reference solution computed on a very 361

fine grid and a very small time step size. The convergence study is described in detail in 362

S1 Appendix. As a result of the convergence study, we choose our computational grids 363

such that the largest grid cell does not exceed 8 µm. This results in a run-time of a few 364

seconds on a normal laptop for a single forward model run. 365

The model is implemented with the open-source porous media simulator DuMux [55], 366

which is based on the Distributed Unified Numeric Environment (DUNE) [56,57]. The 367

implementation of the mixed-dimension embedded tissue perfusion model is based on a 368

recent extension of DuMux for multi-domain porous media problems, first described 369

in [58] for the simulation of root–soil interaction in the vadose zone. We refer to this 370

publication for a more detailed description of the discretization, assembly procedure, 371

and software implementation of mixed-dimension embedded models. 372

Inverse modeling using clinical MRI data 373

We use clinical MRI data to evaluate the presented model. We choose a patient with 374

relapsing-remitting MS from a clinical study with 12 MS patients, diagnosed according 375

to the revised McDonald’s criteria [59], and showing at least one contrast enhancing 376

lesion on MRI. The data is selected from a previous study that has been published 377

elsewhere [60], and fully anonymized for further analysis. For the employed GRE-EPI 378

protocol, 19 parallel images with a slice thickness of 5 mm are taken 80 times during an 379

acquisition time of 119 s. The sequence parameters are given in the caption of Fig. 1. 380

From these images, a clinical expert annotated a voxel within a Gadolinium enhancing 381

MS lesion (sample L) and a corresponding voxel in NAWM (sample N). Fig. 1 shows the 382
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samples L and N, together with the respective voxel locations in the MRI slice. 383

Several model parameters can be assigned a fixed value, either because the parameter 384

assumes a well-known fixed value given in the literature, or because the parameter is not 385

expected to significantly affect the results of this particular study and an approximate 386

value can be obtained from the literature. However, there are also parameters that are 387

inherently patient-specific and cannot be directly measured, or parameters for which the 388

measurement data is not available for the given patient. These parameters are, a, b, tp, 389

κB , κT , T1,pre, T ∗2,pre, Lp, Dω. Determining these parameters for a given signal–time 390

curve constitutes an inverse problem. In particular, we aim to determine Dω, which 391

may quantify contrast agent leakage, and thus, has direct clinical relevance. 392

In the following, we briefly discuss typical values or value ranges for these 393

parameters. The shape parameters, a, b, tp, determine the inflow profile of the bolus 394

arriving at the voxel under study. They are generally varying from voxel to voxel. In 395

particular, a and tp depend on the voxel location and vessel network structure, as well 396

as the resulting bolus dilution during transport through the vessel tree. The equilibrium 397

contrast agent concentration, b, depends on the patient’s blood volume. Neglecting the 398

filtration of contrast agent in the kidney, and contrast agent leakage, the upper bound 399

for b is the administered amount of contrast agent divided by the total blood volume. 400

However, b, can become lower in regions of contrast agent leakage and is dependent on 401

the severity of the leakage and the size of the affected region in the brain. Here, we 402

choose values for a, b, and tp within large enough bounds to ensure physically 403

meaningful inflow profiles. The parameters κB and κT are dimensionless scaling factors 404

for the effect of meso-scale T ∗2 -shortening due to the magnetic susceptibility contrast at 405

the interface of the vascular and the extra-vascular, extra-cellular compartment and the 406

interface of the extra-vascular, extra-cellular and the cell compartment, respectively. 407

Because these values depend on the tissue architecture, κB and κT can also mitigate 408

errors in the NMR signal prediction caused by patient-specific variations in vessel 409

geometry. The pre-contrast relaxation times T1,pre and T ∗2,pre vary from voxel to voxel. 410

From Eq. (17), it is clear that T ∗2,pre, cancels when S(t) is normalized. Therefore, the 411

value of T ∗2,pre is not critical for the present study. The authors of [61] measured T1,pre 412

in patients with relapsing-remitting MS for several lesion types. They reported values 413

between 1.9 s for black holes, and 0.8 s for NAWM, at 3 T. The filtration coefficient Lp 414
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characterizes the fluid mass exchange between the vascular and the extra-vascular 415

compartment. The authors of [45] suggest Lp = 2.7 · 10−12 m Pa−1 s−1 for normal 416

subcutaneous and Lp = 2.1 · 10−11 m Pa−1 s−1 for tumor tissue. While in normal brain 417

tissue the contrast agent stays in the blood stream, it leaves the vascular compartment 418

over the vessel wall in regions where the BBB is impaired. Therefore, the filtration 419

coefficient Lp is likely to be elevated in such tissue, due to opened tight junctions. The 420

diffusive capillary wall conductivity, Dω, characterizes the diffusive transport of contrast 421

agent between the vascular and the extra-vascular compartment. It depends, i.a., on the 422

molecular diffusion coefficient of the contrast agent, the wall thickness, porosity and the 423

tortuosity of the transmural pathway. 424

Parameter estimation 425

In a preliminary model investigation, we use the parameter estimation toolbox 426

PEST [62] to find the parameter set that minimizes the sum of squared differences, 427

||Eopt||22, between the simulated signal-time curve and the MRI data. For the parameter 428

estimation, we employ the truncated singular value decomposition algorithm, available 429

in PEST. The estimated parameter values for the best fit against the curves N and L, 430

cf. Fig. 1, as well as the corresponding ||Eopt||2, are given in Table 1. 431

A comparison of the simulated and measured NMR signals, Fig. 4, indicates that the 432

model can reproduce the measured curves well. Table 1 shows that the diffusive wall 433

conductivity, Dω, is estimated to be low for the NAWM sample (N), and high for the 434

lesion sample (L), with a difference of three orders of magnitude, while the other 435

parameters are within the same order of magnitude. To better understand the 436

influence of the diffusive wall conductivity on the computed NMR signal, we compute 437

the mass of contrast agent in the extra-vascular space 438

mc
t =

∫
Ω

φM cρm,Ixt dx, (30)

at the end of the simulation, tend = 112 s. Additionally, we compute the total mass of 439

contrast agent going into the domain over the entire time of the simulation, 440

minj =

∫ tend

0

∫
∂Λin

Av v̄vM
cρm,Bxv dadt. (31)
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parameter Best fit (L) Best fit (N)
a 30.08 mol s m−3 30.03 mol s m−3

b 1.20 mol m−3 0.61 mol m−3

tp 4.75 s 6.03 s
Lp 7.20 · 10−12 m Pa−1 s−1 1.00 · 10−12 m Pa−1 s−1

Dω 8.20 · 10−8 m2 s−1 1.01 · 10−10 m2 s−1

κB 14.19 35.59
κT 0.73 1.00
T1,pre 1.76 s 2.00 s
||Eopt||2 0.055 0.082

Table 1. Parameter values obtained by a global optimization algorithm for the best fit
of model and MRI data, minimizing ||Eopt||2. The second column shows the parameters
for the lesion sample (L), the last column the parameters for the NAWM sample (N).
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Fig 4. Simulated normalized NMR signals compared with MRI data (see Fig. 1), using
the best fit parameter estimates given in Table 1. Left – the result for the lesion sample
(L), right – the result for the NAWM sample (N).
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Fig 5. The mass of contrast agent in the extra-vascular space at tend = 112 s for
different wall diffusivities. The left axis shows the contrast agent mass in the
extra-vascular space, mc

t . The right axis shows the ratio of mc
t to the total injected

contrast agent mass minj in percent.

The results are shown in Fig. 5 for different wall diffusivities. The other parameters 441

were chosen as in Table 1, sample L. It can be seen that for Dω < 1.0 · 10−9 m s−1, 442

there is almost no leakage into the extra-vascular space, i.e. the BBB is intact. For 443

Dω > 3.0 · 10−6 m s−1, the leakage of contrast agent into the extra-vascular space has 444

reached a plateau and does not increase further with Dω. For such high wall 445

diffusivities, the contrast agent mole fractions in vascular and extra-vascular space reach 446

an equilibrium. This situation would lead to a flat NMR signal (as seen, for instance, in 447

the uppermost curve in Fig. 6 for Dω), which is not observed in any of the clinical data. 448

Therefore, such high values of Dω are unlikely to be physiologically sensible. For the 449

values of Dω in Table 1, this means that there is little to no contrast agent leakage for 450

sample N, while there is significant leakage for sample L. This is in accordance with the 451

present understanding of the pathology, which assumes leaky vessel walls in MS lesions. 452

However, the problem of finding best fit parameters is typically ill-conditioned, or 453

even ill-posed as the solution may be non-unique, such that the employed parameter 454

estimation method may not be reliably applied. Therefore, we discuss other methods to 455

further analyze the model parameters in the subsequent sections. 456
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Parameter sensitivity 457

For a better understanding of the influence of the patient-specific parameters on the 458

signal–time curve, as well as the sensitivity of the model output to the model input 459

parameters, we perform a simple sensitivity analysis, where parameters are individually 460

varied, while all other parameters are kept constant at the values listed in Table 1. The 461

results of this study are shown in Fig. 6 for sample L, and in Fig. 7 for sample N. It can 462

be seen that the parameter sensitivity is different for L and N (which correspond to 463

different locations in the parameter space). Such behavior characterizes non-linear 464

model response. 465

Capillary input function The shape parameters a and tp of the capillary input 466

function have a strong influence on the first pass dip of the NMR signal. The influence 467

is directly related to the T ∗2 -shortening caused by the contrast agent in the blood vessels. 468

Comparing the respective curves in Fig. 6 and 7, shows that contrast agent leakage 469

dampens the influence of a and tp. The difference in concentration between the vascular 470

and extra-vascular space decreases in the presence of leakage, attenuating the 471

T ∗2 -shortening meso-scale effects. For sample L, a also influences the signal in later 472

times in the presence of leakage. A higher a indicates a larger contrast agent bolus, 473

which will also result in a higher amount of leakage leading to a signal increase at later 474

times, due to the T1-shortening effect of the contrast agent in the extra-vascular space. 475

In the absence of leakage (sample N), the late signal is only affected significantly by the 476

equilibrium concentration b. For sample L, b has a significant influence on the late 477

signal slope. In that case, the signal slope is directly related to the leakage rate. With a 478

higher b, the gradient of the contrast agent concentration over the vessel wall is higher, 479

leading to a higher leakage rate. For b = 0, the slope is negative, indicating that leaked 480

contrast agent flows back into the vascular compartment. 481

NMR parameters The NMR parameters, κB , κT , T1,pre, have an equally strong but 482

different effect on the NMR signal. The scaling parameter κB for the meso-scale 483

T ∗2 -effects from the vascular wall, affects the signal strength almost linearly throughout 484

the entire simulation. For κB = 0, i.e. if meso-scale effects on T ∗2 -relaxation are 485

neglected, the early time signal enhancement due to T1-shortening becomes even 486
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stronger than the signal decrease due to T ∗2 -shortening, as clearly seen in Fig. 7. This 487

illustrates that it is essential for the NMR signal model to include meso-scale effects. 488

The scaling parameter κT for the meso-scale T ∗2 -effects from the cell walls, only 489

influences the signal in the presence of leakage (sample L). This is evident, since the 490

difference between the contrast agent concentration in the cells and the extra-vascular, 491

extra-cellular compartment is zero, in the absence of leakage. Fig. 6 shows that signal 492

decrease due to T ∗2 -shortening in the extra-vascular compartment exceeds signal 493

enhancement due to T1-shortening, if κT is chosen too large. Because this is not seen in 494

any of the clinical data, κT is likely to be small (κT < 10). The pre-contrast 495

longitudinal relaxation time, T1,pre, shows a direct influence on the signal-enhancing 496

effect of T1-shortening. If T1 is already elevated before the administration of contrast 497

agent, the T1-shortening has a strong signal-enhancing effect. If T1,pre is closer to T1 498

values measured for NAWM [61], the signal-enhancing effects are significantly weaker. 499

Fig. 6 suggests that signal enhancement is small if T1,pre is not elevated, even in the 500

presence of leakage. 501

Leakage coefficients The leakage coefficients for advective and diffusive transmural 502

transport, Lp and Dω, show a very similar qualitative influence on the NMR signal. 503

However, the sensitivity of the NMR signal with respect to changes in Lp is significantly 504

lower than the sensitivity with respect to changes in Dω. This suggests that the main 505

mechanism for transmural contrast agent leakage is of diffusive nature. Furthermore, 506

note that changing Dω, while keeping the other parameters constant, can change the 507

signal–time curve from the shape of sample N to the shape of sample L, and vice versa. 508

This further emphasizes that diffusive wall conductivity plays a dominant role in 509

characterizing curve shapes. 510

Bayesian parameter inference 511

To complete our critical assessment of the proposed model, we ask and attempt to 512

answer the question: What can we learn about the model parameters, given the MRI 513

data? Bayesian parameter inference is a method to estimate unknown parameters of a 514

model, given some prior knowledge about the parameters, and observations, while 515

quantifying the uncertainty that is inherent to such a parameter estimation. Let θ 516
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Fig 6. Influence of different flow, transport, and NMR parameters on the signal–time
curve. The parameters are individually varied, while the other parameters are chosen as
in Table 1 (sample L).
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Fig 7. Influence of different flow, transport, and NMR parameters on the signal–time
curve. The parameters are individually varied, while the other parameters are chosen as
in Table 1 (sample N).
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denote the parameters of the model M, and X the vector of observed values. Bayes’ 517

theorem, applied to the problem of parameter inference, states that 518

p(θ|X) =
p(X|θ)p(θ)
p(X)

, (32)

where p(θ|X) is the posterior distribution, i.e. the probability of θ given the observation 519

data X. p(X|θ) is the likelihood function, i.e. the probability of the X being from the 520

same population as the model prediction, given θ. p(θ) is the prior distribution 521

reflecting prior knowledge about the parameters θ, before knowing the observations. 522

p(X) is the marginal likelihood, a normalization constant, not depending on θ. Now, let 523

Y =M(θ) be the model prediction given the the parameters θ. We assume that we can 524

write 525

X = Y + ε, ε ∼ N
(
0, σ2

)
, (33)

where ε is the combination of measurement error and unbiased model error and σ its 526

standard deviation. The likelihood that any model answer, Y , comes from the same 527

population as the measurement, X, is a Gaussian likelihood 528

p(X|θ) ∝ e−
∑
i(Xi−Yi)

2

2σ , (34)

if the errors of all observations are assumed to be uncorrelated. The standard deviation, 529

σ, has to be estimated for the given MRI data and the proposed model. We assume 530

that our model represents the underlying physical processes accurately, so that model 531

and discretization error are negligible compared to the MRI data measurement error. 532

The measurement error is estimated from the MRI data obtained before the contrast 533

agent bolus reaches the tissue sample, where the measurement is assumed to fluctuate 534

around a constant baseline signal. To this end, we take 100 random signal samples from 535

the brain slice shown in Fig. 1, normalize the signal to the mean of the first 10 sample 536

data points, and compute the standard deviation of all such baseline data points across 537

all samples, yielding σ = 0.009. 538

Markov chain Monte Carlo (MCMC ) methods are methods to sample from the 539

posterior distribution p(θ|X) without the need to compute marginal likelihood, which is 540

generally expensive. MCMC draws samples on a random walk through the parameter 541
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parameter prior distribution unit

a uniform in [0, 200] mol s l−1

b uniform in [0, 2.0] mol l−1

tp uniform in (0, 15] s
− log10Dω uniform in [2, 12] m−1 s−1

Lp fixed at 1 · 10−12 m Pa−1 s−1

T1,pre uniform in [0.8, 2.0] s
κB uniform in [0, 100] -
κT uniform in [0, 100] -

Table 2. Prior distribution for parameters inferred by a Markov chain Monte Carlo
method.

space, creating a representative set of samples from the posterior distribution, after a 542

sufficient number of iterations. These samples form a Markov chain such that the 543

parameters with which the sample is generated in one step only depend on the 544

parameters in the previous step. Herein, we use the ensemble sampler proposed in [63], 545

which is implemented in the Python module emcee [64]. Its algorithm features an 546

ensemble of interdependent Markov chains (so called walkers), enabling multiple parallel 547

forward model runs within one step. The algorithm is briefly described in S2 Appendix. 548

We refer to the literature [63,64] for a comprehensive discussion. 549

In the following, Bayesian parameter inference is used to compute the probability 550

distribution of the patient-specific model parameters, under physical parameter 551

constraints, given a signal–time curve from a voxel of a perfusion MRI sequence. To this 552

end, we choose the prior distributions of the parameters to be uniform distributions 553

within the bounds given in Table 2. The ensemble sampler is configured with k = 100 554

walkers. The parameter vector is θ = [a, b, tp, log10Dω, T1,pre, κB , κT ]
T

, so that N = 7. 555

The parameter Lp remains fixed to reduce the dimension of the parameter space. Its 556

influence on the NMR signal has been shown in the previous section to be significantly 557

weaker than the influence of Dω (see Fig. 6). 558

The sampler convergence is estimated using the integrated auto-correlation time, 559

τf [63], 560

τf =
∞∑

t=−∞

Cf (t)

Cf (0)
, with Cf (t) =

1

M − t

M−t∑
k=1

(fk − µf )(fk+t − µf ), (35)

where f = {fi}Mi=1 is a finite chain of length M , e.g. the value of parameter a for each 561

sample in the Markov chain, and µf its arithmetic mean. We use an estimate of the 562
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integrated auto-correlation, τf,e, using the Python module acor [65, 66]. We compute 563

this estimate for the chain of each parameter, θi, and use the minimum and maximum 564

values, τmax = max0≤i<N τθi,e, τmin = min0≤i<N τθi,e. The sampler is run until the 565

sample size, j > 100 · τmax, and the change in the auto-correlation time estimate from 566

sample j − τmax to sample j is less than 1 %. The resulting histograms for each 567

parameter and their covariance with respect to the other parameters is visualized in 568

Fig. 8 for sample L and Fig. 9 for sample N (cf. Fig. 1). To eliminate artifacts from the 569

burn-in phase of the MCMC algorithm, the first 10 · τmax samples are discarded. To 570

have only independent samples, every τmin sample of the remaining samples is 571

chosen [63], while the others are discarded. The solid black lines in Figs. 8 and 9 show 572

the parameter values of Table 1 that were obtained previously with PEST. 573

To interpret the results, we recall the original question: What can we learn about the 574

model parameters, given the MRI data? 575

If the posterior distribution of a parameter is close to uniform, i.e. close to the prior 576

distribution (see Table 2), the data did not provide any additional information about 577

this parameter. This is the case for κT and T1,pre in Fig. 9, which is consistent with the 578

observation in Fig. 7 that the sensitivity of the NMR curve with respect to changes in 579

κT or T1,pre is low. 580

In contrast, if the posterior distribution differs significantly from the prior 581

distribution, the data provides significant information on this parameter. This is the 582

case for the parameters Dω and κT in Fig. 8, and Dω and κB in Fig. 9. Again, this is 583

consistent with the observation in Figs. 6 and 7 that the sensitivity of the NMR curve 584

with respect to those parameters is high, such that only a small range of values for those 585

parameters is likely to match the model results with the clinical MRI data. 586

Most interestingly, the distribution of Dω in Fig. 8 differs significantly from the 587

distribution of Dω in Fig. 9. Both distributions are shown as histograms in Fig. 10. For 588

sample N, the inferred diffusive wall conductivity is very likely to be below 589

Dω = 1 · 10−9 m s−1, while all smaller values are equally likely. The magnitude of the 590

value suggests that diffusive transport of contrast agent across the capillary wall is 591

negligible (see Fig. 5). For sample L, the inferred distribution diffusive wall conductivity, 592

has a distinct peak around Dω = 4 · 10−7 m s−1. Furthermore, it shows that values 593

below Dω = 3 · 10−8 m s−1 are very unlikely, suggesting significant transmural contrast 594
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Fig 8. Histograms of model parameter distributions after learning from MR voxel data
from a lesion (see Fig. 1, sample L). The histograms on the diagonal are the histograms
for single parameters, the scatter plot in the matrix shows the covariance between the
respective row and column parameters (plot generated with [67]). The histogram titles
show median, 5th, and 95th percentile (also visualized as dashed lines). The horizontal
and vertical solid black lines show the parameter values for sample L of Table 1.
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Fig 9. Histograms of model parameter distributions after learning from MR voxel data
from NAWM (see Fig. 1, sample N). The histograms on the diagonal are the histograms
for single parameters, the scatter plot in the matrix shows the covariance between the
respective row and column parameters (plot generated with [67]). The histogram titles
show median, 5th, and 95th percentile (also visualized as dashed lines). The horizontal
and vertical solid black lines show the parameter values for sample N of Table 1.
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Fig 10. Histograms for Bayesian parameter inference, when learning from NAWM data
or contrast-enhancing lesion data. A low diffusion coefficient is most likely for the
NAWM data, while a high diffusion coefficient is most likely for the contrast-enhancing
lesion data.

agent leakage. It can be concluded that the two samples can be distinguished just on 595

the basis of Dω, without looking at the estimates for the other parameters. 596

The uncertainty in Dω reflects the fact that all other parameters are uncertain as 597

well. Consequently, the estimate of Dω may be improved with additional information 598

about other parameters. Such information might be, for instance, a direct measurement 599

of T1,pre, estimations of the AIF, or data from other MR sequences of the same patient. 600

Furthermore, knowledge that a parameter is expected to be similar in a certain region of 601

the brain, could enable learning from other voxel data of the same sequence. In the 602

Bayesian framework, such information can be included incrementally, where the 603

posterior distributions of the previous Bayesian update are the prior distributions of the 604

next Bayesian update. 605

Model limitations and outlook 606

The current model relies on a single exemplary vessel geometry. Today, patient-specific 607

sub-voxel vessel geometries cannot be routinely measured. Hence, the influence of 608

different vessel geometries on the presented results has to be investigated. 609

Furthermore, the used model of the inflow curve (Eq. (14)) neglects re-circulation in 610

the form of a second or third pass of the contrast agent. In particular, the effect of the 611

second pass of the bolus cannot be captured and might lead to more uncertainty in the 612
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estimation of other model parameters. In a future step, the inflow curve model can be 613

improved to include re-circulation and to be derived from AIF measurements. 614

The presented model considers processes in a sub-voxel tissue sample that is 615

surrounded by tissue with the same properties. However, contrast-enhancing lesions in 616

the brain typically span over several MRI voxels, see Fig. 1. Furthermore, patterns such 617

as ring-like shapes have been observed for MS [68], suggesting processes on a larger 618

scale, or possible inter-voxel dependencies. Such effects can not be included in the 619

model in its current state, since simulation of several voxels are prohibitively expensive 620

due to the large number of blood vessels. 621

The applicability of the presented model has yet to be confirmed in a clinical 622

environment. This would be of special relevance for monitoring of pharmacologic effects 623

and drug efficacy, e.g. in drugs that are targeted against immune cell trafficking. It is to 624

be analyzed how reliable the method predicts diffusive capillary wall conductivities over 625

a wider range of patient-specific data. 626

A current drawback of the method is the computational time required to infer 627

diffusive capillary wall conductivities and contrast agent leakage. However, the 628

computational cost can most likely be improved by applying model reduction techniques 629

and machine learning algorithms. Likewise, homogenization techniques can be used for 630

model reduction [69,70]. However, such techniques are difficult to apply, due to the 631

hierarchical structure of the micro-circulation. For all approaches, the presented model 632

can be used as theoretical basis and as validation tool. 633

Summary and conclusion 634

We presented a mixed-dimension fluid-mechanical model for contrast agent brain tissue 635

perfusion on the sub-voxel scale. The blood vessels are considered as a network of 636

cylindrical tubes. The extra-vascular compartment is modeled as a porous medium. 637

The presented discretization results in a coupled system of partial differential equations 638

of three-dimensional and one-dimensional equations. The fluid-mechanical model can 639

describe the three-dimensional evolution of the contrast agent concentration on the 640

sub-voxel scale. We further proposed an NMR signal model, describing the influence of 641

the contrast agent on the NMR voxel signal, including meso-scale effects. A convergence 642

December 20, 2018 33/45

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507103doi: bioRxiv preprint 

https://doi.org/10.1101/507103
http://creativecommons.org/licenses/by/4.0/


study suggests that the combined model is consistent and converges to a unique solution 643

on grid and time step refinement. Using parameter estimation, it was shown that the 644

model can describe two characteristic NMR signal curves from clinical data obtained by 645

DSC-MRI for a patient with MS lesions, and that the estimated model parameters 646

provide a meaningful physical interpretation. Bayesian parameter inference, with the 647

given model and clinical DSC-MRI data, showed that the two given NMR signal curves 648

can be distinguished and characterized, only on the basis of the estimated diffusive 649

capillary wall conductivity distributions. The study suggests that the NMR signal curve, 650

given the model, is informative about some patient-specific model parameters, such as 651

the diffusive capillary wall conductivity, and less informative about others, such as the 652

tissue’s T1 relaxation time before contrast agent administration. Furthermore, the 653

uncertainty of the diffusive capillary wall conductivity predictions could be quantified in 654

the Bayesian framework. In summary, the presented model constitutes a useful tool to 655

study contrast agent perfusion on a sub-voxel scale, and may lead to an improved 656

understanding of the sub-voxel processes beyond the scope of this paper. 657

Supporting information 658

S1 Appendix. Numerical convergence study in space and time. As there is 659

no analytical solution to the problem, we use the solution computed with a very fine 660

resolution in space and time as a reference for a grid convergence study. We compute 661

errors with respect to the fine scale solution by mapping the coarse scale solution to the 662

finest grid. Let R|Mn| be the solution space on grid Mn, where |Mn| is the number of 663

cells on grid level n, and Mn is a set of hexahedra, Ki, such that Mn =
⋃
iKi is a 664

discrete representation of Ω. The levels are constructed by dividing each hexahedron on 665

level n into 8 hexahedrons on level n+ 1, such that ∀L ∈Mref, there exists exactly one 666

K ∈Mn such that L ⊂ K, where Mref denotes the reference grid. The mapping from 667

coarse to fine scale, I, can be defined as 668

I := {IL}L∈Mref
, with IL : R|Mn| 7→ R, IL(u) = uK . (36)
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The relative error of the physical quantity u ∈ {pt, xt}, between reference and a solution 669

on a coarser grid, uref, u, respectively, is defined as 670

eu =

√ ∑
L∈Mref

|L| (IL(u)− uref,L)
2

√ ∑
L∈Mref

|L|u2
ref,L

. (37)

In time, we define the maximum relative error over all time steps ti, i ∈ {0, · · · , τ}, 671

where τ is the number of time steps, as 672

eu,∞ = max
(
eiu
)
. (38)

Finally, we measure the difference of the signal-time curve, S, to the reference curve, 673

Sref, computed with the finest spatial and temporal discretization, in the following norm 674

eS = ||S − Sref||∞ = max |Si − Siref| (39)

The convergence rates for a given error e are computed from one refinement level n 675

to the next as 676

rate =
ln en+1 − ln en

ln νn+1
max − ln νnmax

, (40)

where νmax is the respective maximum discretization length. In space, νmax is defined as 677

the maximum edge length of all elements, hmax. When refining, the vessel domain grid 678

is also refined by bisecting large elements until the maximum element length is smaller 679

than hmax. In time, νmax is defined as the maximum time step size. The time step size, 680

∆t, is chosen to be small around the time where the contrast agent front reaches the 681

domain, and increasingly larger as the process becomes slower, following the heuristic 682

∆t = θ ln(t+ 1.05), (41)

where θ > 0 is a factor controlling the time step size in the refinement study. 683

The reference solution is obtained with hmax = 1 µm and θ = 0.125. The parameters 684

are chosen to be the optimal parameter set computed by an optimization algorithm 685

described in the following section Parameter estimation (see Table 1), minimizing the 686
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hmax ept rate ext,∞ rate

32 µm 0.000414833 - 0.028418 -
16 µm 0.000210479 0.978853 0.0152967 0.893589
8 µm 0.000107219 0.973115 0.00874756 0.806266
4 µm 5.31281e-05 1.01302 0.00471859 0.890526
2 µm 2.54764e-05 1.06032 0.00228896 1.04366

Table 3. Errors and convergence rates in space for the pressure, pt, and the mole
fraction of the contrast agent, xt, in the extra-vascular domain.
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Fig 11. The NMR signal curves and errors to reference solutions when refining in time,
while keeping the same fine resolution in space (left), and in space, while keeping the
same fine resolution in time (right). The top left legend indicates the grid cell size in m,
the top right legend indicates the time step factor θ from Eq. (41). The bottom left error
plot shows convergence with a mean rate of 1.6966 with grid refinement. The bottom
right error plot shows convergence with a mean rate of 1.0092 with time step refinement.

signal difference to the MRI data from an MS lesion shown in Fig. 1 (in red). 687

Table 3 show the errors and convergence rates of the extra-vascular fluid pressure, pt, 688

and the contrast agent mole fraction, xt. Fig. 11 shows the NMR signal curves and 689

errors with respect to the reference solution when refining in space and time. 690

It can be seen that all quantities converge to the reference solution. We obtain 691

convergence rates close to 1 for the pressure and the mole fraction of the contrast agent. 692

The signal curve converges with first order in time and a slightly higher order in space. 693

The higher convergence may be explained by the computation of the signal involving 694

the integration of the concentration over the entire domain. The relative error with 695

respect to the reference solution, is smaller than 1 % for a moderate spatial and 696
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temporal refinement. In conclusion, we consider a spatial resolution of hmax = 8 µm, 697

and a temporal resolution θ = 1 as sufficient for the subsequent analysis. We justify this 698

with the assumption that the errors resulting from model parameter uncertainty, as well 699

as the errors in the measurement data, are larger than the discretization error. This is 700

also evident, when looking at the results of the parameter study and comparing the 701

variability with that of the signal–time curves shown in Fig. 11 for different spatial and 702

temporal discretizations. In order to verify that the discretization error is small also for 703

other parameter configurations, we ran the above analysis for various parameter 704

configurations and confirmed that the analysis looks similar for those other cases. The 705

results are omitted for brevity. 706

S2 Appendix. Brief description of the ensemble sampler. The employed 707

ensemble sampler [63] considers two sets of k/2 random walkers, S0 = {wi}i=1,··· ,k/2, 708

S1 = {wi}i=k/2+1,··· ,k, where the position of walker wi in step n is a position in the 709

parameter space (a vector of parameters), denoted as θin. After each step the walkers in 710

Sm are moved such that 711

θin+1 = θjn+m + ζ
(
θjn − θin+m

)
, (42)

where θj is a walker position randomly drawn from the positions of the other set of 712

walkers, S1−m, and ζ is a random variable drawn from a proposal distribution g(ζ), 713

g(ζ) ∝


1/
√
ζ if ζ ∈

(
1
2 , 2
)

0 otherwise

(43)

Note that this means moving the walkers in S0 first, then the walkers in S1. At each 714

walker position, a sample is proposed. The sample is accepted with the probability [64] 715

z = min

(
1, ζN−1 p(X|θin+1)p(θin+1)

p(X|θin)p(θin)

)
, (44)

where N = dim(θ) is the dimension of the parameter space. If the sample is not 716

accepted, the walker remains at the position θin, increasing the number of samples at 717

this position by one. Each step requires a run of the forward model for every walker, 718
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which is computationally the most expensive part. Fortunately, advancing the walkers 719

within a set of walkers can be done in parallel. 720
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