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Abstract

Genome-wide associations studies (GWASes) have identified many germline genetic variants that are as-

sociated with an increased risk of developing cancer. However, how these single nucleotide polymorphisms

(SNPs) alter biological function in a way that increases cancer risk is still largely unknown. We used a

systems biology approach to analyze the regulatory role and functional associations of cancer-risk SNPs in

thirteen distinct tissues. Using data from the Genotype-Tissue Expression (GTEx) project, we performed

an expression quantitative trait locus (eQTL) analysis, keeping both cis- and trans-eQTLs, and represent-

ing those significant associations as edges in tissue-specific eQTL bipartite networks. We find that each

network is organized into highly modular communities that group sets of SNPs together with functionally-

related collections of genes. We mapped cancer-risk SNPs to each tissue-specific eQTL network. Although

we find in each tissue that cancer-risk SNPs are distributed across the network, they are not uniformly dis-

tributed. Rather they are significantly over-represented in a small number of communities. This includes

communities enriched for immune response processes as well as communities representing tissue-specific

functions. Moreover, cancer-risk SNPs are over-represented in the central ”cores” of communities, meaning

they are more likely to influence the expression of many genes within the same community, thus affecting

biological processes. And finally, we find that cancer-risk SNPs preferentially target oncogenes and tumor

suppressor genes, suggesting non-genic mutations may still alter the effects of these key cancer-associated

genes. This bipartite eQTL network approach provides a new way of understanding genetic effects on

cancer risk and provides a biological context for interpreting the results of GWAS cancer studies.
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Introduction

Cancers often result from somatic mutations in oncogenes and tumor suppressors, which frequently arise

due to environmental exposures such as UV light, tobacco, smoke, or chemicals. Hereditary cancers are

representing between 5 and 10% of all cancers and are characterized by a family history of the disease,

a younger than usual age of onset, and a higher likelihood of primary cancers in multiple organs. They

are often associated with germline alterations in these same classes of genes, called oncogenes or tumor

suppressor genes. However, beyond these obvious candidate cancer drivers, it is widely recognized that

other genetic factors play a role in development and cancer progression. Genome Wide Association Studies

(GWASes) have identified germline single nucleotide polymorphisms (SNPs) that are associated with al-

tered cancer risk (“cancer-risk SNPs”), including BRCA1 and BRCA2 gene mutations known to increase

risk of breast and ovarian cancers. However, many SNPs identified through GWASes fall into non-genic re-

gions, making it difficult to interpret their biological role in disease development, progression, and response

to therapy.

The population frequency of a germline cancer-risk SNP is generally anti-correlated with its effect,

calculated as the relative risk between people who carry the mutation and those who do not [1]. Although

the functions of the small number of rare variants with strong effects are well-studied, little is known

about the functions of the more common risk variants with small effects that are present at intermediate

frequency in the general population. Among the SNPs in the GWAS catalog that pass the genome-wide

significance bar for association with an elevated risk for one or more cancers, most have an odds ratio less

than 1.3, and most fall outside of genes (in “non-genic” regions), suggesting they may play a role in the

regulation of gene expression [2, 1].

Expression quantitative traits locus (eQTL) analysis tests for associations between the genotype at a

SNP locus and expression levels of a gene, and an eQTL association can provide evidence for a SNP’s reg-

ulatory role. GWASes have identified germline SNPs that are linked to cancer risk and a number of studies

have found that these SNPs influence gene expression levels [3, 4, 5]. However, no study has systematically

investigated the biological characteristics and functional impact of regulatory germline “cancer risk” SNPs

in the general population.

This gap in our understanding of cancer-risk SNPs may be due to their inherent characteristics. In

addition to their small effect on the macroscopic phenotype (developing cancer), cancer-risk SNPs also

usually have small effects on the expression of individual genes. Moreover, because many genes exhibit

tissue-specific expression, it is difficult to characterize the regulatory role of cancer-risk SNPs that target

genes not expressed in the most frequently studied tissues, such as whole blood. Finally, because the

transformation of a healthy cell into a cancer cell is associated with many genomic and transcriptomic

changes, we cannot use the studies of tumor cells to investigate the effect of the regulatory cancer-risk

SNPs on pre-tumor cells.

However, new data sets can help shed light on the role of cancer-risk SNPs. Large-scale studies, such as

the Genotype-Tissue Expression (GTEx) project, provide genomic and transcriptomic data from hundreds

of individuals and dozens of non-diseased tissues [6], thus allowing the effects of cancer-risk SNPs to be

assessed in multiple tissues, including those in which their effects are most relevant.

In this study, we used a system biology approach to characterize the regulatory role of germline cancer-
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risk SNPs in thirteen different tissues (Table S2) using data from the GTEx project v6.0 . In each tissue,

we performed an eQTL analysis and represented both cis- and trans-eQTLs using a bipartite network.

We then mapped both germline cancer-risk SNPs and the oncogenes and tumor suppressor genes to these

networks and used the properties of the networks to identify the biological functions and pathways that

cancer-risk SNPs affect.

We find that although cancer-risk SNPs are distributed across the network, they are enriched in a

small number of communities associated with immune response and recognition of pathogens, underscoring

the importance of immune processes in cancer. In particular, cancer-risk SNPs preferentially map to

communities enriched for genes belonging to the Major Histocompatibility Complex (MHC) indicating a

potentially greater role for immune processes in cancer risk than might have been expected. We also find

that cancer-risk SNPs are overrepresented among local community hubs (”core SNPs”), regulating multiple

genes involved in the same biological function both in cis and in trans. Finally, we find that cancer-risk

SNPs are preferentially located in the promoters of oncogenes and tumor suppressor genes and are more

likely than expected by chance to influence the expression level of these cancer-related genes. This analysis

demonstrates the power of using tissue-specific bipartite eQTL networks as a framework to investigate how

germline SNPs can act coordinately to deregulate the expression of biological functions and lead to an

increased risk to develop cancer.

Results

Cancer risk SNPs are located in non-coding regions

We defined a set of cancer-risk SNPs based on the NHGRI-EBI GWAS catalog (accession date: 2017-04-

24); we extracted a set of 874 SNPs from 565 independent linkage disequilibrium (LD) blocks associated

(at genome-wide significance p ≤ 5 × 10−8) with 130 unique traits and diseases terms related to cancers,

representing 41 cancer types (see Supplementary Table S1). Most of the cancer-risk SNPs were associated

with only one cancer type; only 6% were associated with two or more cancers, and only 2% with more than

three cancers. In contrast, most cancer types (82%) were associated with multiple independent SNPs, with

number of associated independent SNPs ranging between 1 (B cell non-Hodgkin lymphoma, cardiac gastric

cancer, chronic myeloid leukemia, meningioma, non-melanoma skin cancer, small intestine neuroendocrine

tumor, and sporadic pituitary adenoma) and 95 (prostate cancer).

When examining the genomic location of cancer-risk SNPs, we found that their individual effect on the

risk of developing cancer was also generally small with over 99% of cancer-risk SNPs having an odds ratio

under 3. To our surprise, we found that only 9.7% of cancer-risk SNPs were exonic or splice variant SNPs.

The lack of a clear known biological function based on SNP location suggests that many of the remaining

91.3% may play a regulatory role.

Cancer-risk SNPs regulate cancer-related biological functions

To characterize the biological functions of this large number of small-effect, regulatory, cancer-risk SNPs,

we performed a systems-based eQTL analysis of genotyping and RNA-Seq data from GTEx v6.0. After

filtering and normalizing the GTEx data, and eliminating tissues for which there were fewer than 200
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samples, we were left with gene expression and genotype data for thirteen tissues (twelve primary tissues

and one cell line, see Supplementary Table S2). We used MatrixeQTL [7], correcting for reported sex, age,

ethnic background and the top three genotype principal components, to compute eQTLs in cis and trans,

within a +/-1Mb window around the genes (see Methods).

For each of the thirteen tissues, we represented the significant cis- and trans-eQTL results at a FDR

threshold less than or equal to 0.2 as a bipartite network, where nodes are either SNPs or genes and edges

are significant associations between SNPs and genes[8],[9]. We obtained thirteen tissue-specific networks

containing between 57,641 (ATA—aorta) and 431,036 (THY—thyroid) SNPs (median across all thirteen

tissues = 198,226), corresponding to between 3,550 and 34,016 LD blocks (median = 15,514), and between

1,090 and 10,003 genes (median = 4,820). We used R condor package [8] in each of the thirteen eQTL

networks to identify communities, defined as groups of SNPs and genes more densely connected to each

other than would be expected by chance (see Methods). The modularity of these networks ranges from 0.83

to 0.97 (median = 0.95), indicating that they are highly structured, with SNPs and genes grouped in well-

defined communities; in the thirteen tissues we found between 29 and 177 (median = 124) communities.

We then functionally annotated those communities by testing for over-representation of genes annotated

to Gene Ontology (GO) biological processes [10] (Supplementary Table S3).

We mapped the cancer-risk SNPs to the eQTL network for each of the thirteen tissues and found that

cancer-risk SNPs appear in communities associated with a wide range of biological processes. Depending on

the tissue, between 21% (heart left ventricle) and 49% (lung) of communities contain at least 1 cancer-risk

SNPs. However, most communities contain only one or two cancer-risk SNPs (Table 1 and Figure 1A). A

complete list of the cancer-risk snps mapping to the communities in each 13 tissues and their corresponding

Gene Ontology Biological processes is provided in Supplementary Table S4). Using Fisher’s exact test, we

identified 2 to 8 (median = 4) communities in each tissue that were enriched for SNPs associated with

increased risk of any cancer (independent of tissue), and only a very small number that were enriched for

cancer-risk SNPs associated with one particular type of cancer (Table 1). The details about enrichments,

odds ratios, and p-values for each cancer type, each community, and each tissue are given in Supplementary

Table S5.

We explored the functional consequences of cancer-risk SNPs by testing whether communities enriched

for these SNPs were also enriched for genes annotated to GO biological process terms. Across all tissues

except tibial artery (ATA), we found that communities with increased representation of cancer-risk SNPs

contain genes enriched in functions linked to immunity, mainly genes belonging to the Major Histocompat-

ibility Complex (MHC) class I and II families, and that the majority of these immune-related genes were

cis-eQTLs with cancer-risk SNPs. An example of the Gene Ontology enrichment of this shared community

in whole blood is presented Figure 1B. Other communities were enriched in non-specific biological processes

like RNA metabolic processes and DNA binding. Only two of the tissue-specific networks presented a com-

munity enriched in both cancer-risk SNPs and tissue-specific biological pathways: epithelium development

in skin and cell-cell adhesion in fibroblasts (Supplementary Table S3).
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Cancer risk SNPs are core SNPs in their communities

As shown previously, the communities in eQTL networks have a characteristic structure, with local hubs,

or “core SNPs,” central within their communities. Disease-associated SNPs found through GWAS map

not only to communities with relevant biological functions, but also to the cores of those communities[8, 9].

As a measure of SNP centrality, we define a “core score” equal to the relative modularity contributed

by a SNP to the overall modularity of its community (see Eq. 2 in Methods). We calculated core scores

for all SNPs in the network and compared the core score distribution for cancer-risk SNPs and SNPs not

associated with any trait or disease in GWAS. We found that cancer-risk SNPs were enriched for higher

core-scores (Figure 2A). This result is consistent across tissues (Supplementary Figure S2), indicating that

germline cancer-risk SNPs, being central to their communities, affect the expression of many genes involved

in coherent biological processes related to cancer development and progression.

For example, SNP rs72699833 is a core SNP in skin community 147. This SNP is in LD with rs11249433,

which has been associated with an increased risk of breast cancer (Figure 2B). When examining skin

community 147, we find it to be enriched for SNPs associated with breast cancer (Supplementary Table

S5) and for genes involved in epithelium development (Supplementary Table S3 and Figure 2C); as breast

cancer is a epithelial cancer, the association with skin is not surprising. SNP rs72699833 is located on

chromosome 1 and is associated in cis to PHGDH, a gene involved in the metabolism of serine and is over-

expressed in some subtypes of breast, cervical, colorectal and non-small cells lung cancer and generally

associated with a poorer outcome [11, 12, 13, 14].

In addition, rs72699833 is associated through our eQTL analysis in trans with five other genes: LAD1

on chromosome 1, COL17A1 on chromosome 10, KRT10 on chromosome 17, LGALS7B on chromosome 19

and FERMT1 on chromosome 20 (Supplementary Table S6). All of these genes are involved in epithelium

development and in particular with extra-cellular matrix (ECM) secretion and cell-ECM interactions.

Most of these genes have been shown to be dysregulated in breast cancer or during epithelial-mesenchymal

transition. Indeed, LAD1 has been associated with aggressive breast tumors [15], COL17A1 is under-

expressed in breast cancer and over-expressed in head and neck squamous cell carcinoma, lung squamous

cell carcinoma, and lung adenocarcinoma [16] and FERMT1 is a know mediator of epithelial–mesenchymal

transition in colon cancer [17].

Cancer risk SNPs preferentially target cancer genes

We expected that cancer-risk SNPs might be preferentially associated with genes known to be involved in

cancer development and progression. We assembled a catalog of oncogenes and tumor suppressor genes

(”cancer genes”) using databases that included the Network Gene Cancer version 5.0 [18] and the COSMIC

[19] census (see Methods and Supplementary Table S7).

We tested whether cancer-risk SNPs are more frequently associated with cancer genes than other SNPs

based on the eQTL networks. We mapped cancer-risk SNPs to the giant connected component of each of

the thirteen tissue-specific eQTL networks. We then compared the number of cancer genes targeted by

cancer-risk SNPs and others SNPs, taking into account linkage disequilibrium and global degree distribution

(the total number of genes to which they were associated; see Methods). We showed that cancer-risk SNPs

were indeed more likely to target cancer genes than expected by chance (p < 10−6 based on 1,000,000
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resamplings) when studying all networks together (Figure 3B); similar results were found in each tissue-

specific network (Supplementary Figure S1).

Finally, we tested whether the cancer-risk SNPs are located in the promoters of genes known to be

mutated in cancers. For genes expressed in at least one of the thirteen tissues, we mapped SNPs with minor

allele frequencies greater than 5% to their promoters. We then compared SNPs mapping to cancer and

non-cancer genes. We found that cancer-risk SNPs are not more likely than other SNPs to fall in promoter

regions of non-cancer genes, but cancer-risk SNPs appear preferentially in the promoters of oncogenes and

tumor suppressor genes (Figure 3A, supplementary Figure S3).

Discussion

It has long been known that both germline and somatic mutations in oncogenes and tumor suppressor

genes drive development and progression of cancer[?]. However, we know that cancer has a genetic com-

ponent beyond these well known “cancer drivers,” and that genetic factors can influence differences in the

natural history of cancer in individuals possessing the same somatic mutations. Genome-wide association

studies have analyzed hundreds of thousands of individuals to find genetic variants that are associated

with increased risk of developing cancer, but many of these fall into intergenic regions and have no clear

functional association with cancer drivers. As a result, the functional link between genetic risk and the

mechanism of cancer development has not been fully understood.

Using data from GTEx, we built bipartite eQTL networks representing germline SNP-gene associations,

including both cis- and trans-acting eQTLs in thirteen different tissues[9]. When we mapped germline

cancer-risk SNPs to each of these networks, we found that cancer-risk SNPs are associated with the

expression levels of oncogenes and tumor suppressor genes at a far greater rate than expected by chance.

This indicates not only that mutations in these cancer genes are important, but also that the genetic

control of these genes by regulatory variants plays an important role. A natural assumption might be that

cancer-risk SNPs lie in the promoter regions of oncogenes and tumor suppressor genes, but many of the

GWAS cancer-risk SNPs are located outside of promoters, leaving the question of the mechanism by which

these variants exert their influence.

As we reported previously, SNP-gene eQTL networks are organized into highly modular, regulatory

communities that are frequently enriched for genes carrying out distinct biological functions. Consis-

tent with our previous analysis of disease-associated SNPs[8][9], we find that cancer-risk SNPs are over-

represented at the ”cores” of individual communities, meaning that those SNPs are at key positions in

functional communities where the cancer-risk SNPs can influence the expression of groups of functionally

related genes, thus exerting a substantial effect on key biological processes.

Despite the observed concentration of GWAS SNPs in the core of communities, we find that disease-

associated germline SNPs in cancer and chronic diseases are distributed differently across eQTL network

communities. In chronic obstructive pulmonary disease (COPD), GWAS SNPs map to a small number

of communities that possess disease-relevant functions[8]. In contrast, we find that cancer-risk SNPs are

distributed across a large number of functionally diverse communities; this distribution is consistent with

our understanding that cancer is a systemic disease that affects many different cellular processes.
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When we search for communities with the greatest enrichment of cancer-risk SNPs across all thirteen

GTEx tissues, we find an over-representation of these SNPs in communities enriched for immune-related

genes. In particular, cancer-risk SNPs are linked to altered expression of Major Histocompatibility Complex

(MHC) class I and II genes. MHC genes are clustered on the p-arm of chromosome 6 and play a role in

recognizing pathogen-infected and other types of modified cells (including cancer cells) and in triggering the

innate and adaptive immune system. The high recombination rate and high density of SNPs and genes in

the MHC region makes association studies difficult. However, most of the eQTL associations in the region

are in cis, and some of these have been found in previous studies that targeted the MHC region[20, 21, 22],

lending support to our findings. By modulating the expression of MHC genes, cancer-risk SNPs may be

modifying an individual’s immune response so as to interfere with the elimination of mutated, pre-cancer

cells. Indeed, those eQTL-associated immune response genes belong to the MHC class I and II regions that

known to be down-regulated in most cancer cells and affect genes that are targets for some of the newest

cancer therapies[23, 24].

In addition to the association with immune response observed in all thirteen tissues, cancer-risk SNPs

are over-represented in other functionally interesting communities. For example, SNPs that have been

linked in GWASes to breast and epithelial cancer cluster in one eQTL network community in the skin

network; a community that is enriched for genes linked to epithelium development and extra-cellular ma-

trix secretion. These and other examples suggest that the distribution of these SNPs within and among

communities provides evidence for the functional significance of germline SNPs that are associated with

cancer risk and development. It is particularly notable that while the cancer-risk SNPs that associate with

gene expression differ between tissues, those diverse SNPs are generally associated through the eQTL net-

work community structure with common functions across tissues. This suggests that similar mechanisms,

moderated by tissue-specific expression, may be perturbed across many cancers. This, in turn, may well

point to common disease-associated functions that could be targeted therapeutically.

Most importantly, we confirm that the method used here provides an efficient way to explore the effect

of germline genetic variants on the risk of cancer. Representing eQTLs using a bipartite network in thirteen

tissues, we find that SNPs and genes are organized into communities that reflect the genetic regulatory

influence of SNPs on functionally related groups of genes, as demonstrated by GWAS annotation, gene

ontology analyses, and enrichment of cancer-risk SNPs in the promoters of cancer genes. By mapping

disease-risk SNPs to these networks, we can develop hypotheses about how these SNPs work individually

and collectively to moderate risk and possibly enable disease development.

It is well known that the power of eQTL studies to detect associations between genotype and gene

expression level depends with the minor allele frequency [25, 26]. In this study, we used data from thir-

teen tissues for which we had available matching RNA-seq and genotyping data in 200 or more samples;

the sample sizes vary between 212 (HRV—heart left ventricle) and 378 samples (SKN—skin). Even the

largest sample size does not allow us to reach the maximum power of eQTL detection for alleles with

low-intermediate frequencies, and so our results are likely to be enriched for high-intermediate frequency

alleles. Because the MHC region is known to include many SNPs with high minor allele frequencies [27], we

may be over-estimating its role in cancer risk relatively to other loci. However, the identification of MHC

is consistent with the increased recognition of the role that immune processes play in cancer development.
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This study provides the first systematic analysis of the regulatory role of germline cancer-risk SNPs

and highlights new evidence on the collective regulatory role they play. By mapping cancer-risk SNPs

to bipartite networks built from both cis- and trans-eQTLs in thirteen tissues, we show that cancer-risk

SNPs play a particular role in the structure of the eQTL networks, altering the expression of groups of

functionally related genes, providing insight into the ways in which these SNPs can increase risk of cancer

development. Indeed, this general approach is not limited to cancer, but could be used to provide insight

into the functional roles played by other SNPs found to be important through GWASes but for which

functional information is not otherwise available. While the approach we implement does not fully bridge

the gap between genotype and phenotype, it provides an explanatory framework that can be used to further

investigate the genetic risk of disease and the synergistic effects of germline genetic variants.
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Methods

GTEx data preprocessing, filtering, and merging

We downloaded NHGRI GTEx v 6.0 imputed genotyping data and RNA-seq data (phs000424.v6.p1, 2015-

10-05 release) from dbGaP (approved protocol #9112). The RNA-Seq data were preprocessed using Bio-

conductor R YARN package [28, 29] and normalized in a tissue-aware manner using smooth quantile

normalization Bioconductor R qsmooth package [30]. We identified and removed GTEx-11ILO due to po-

tential sex misannotation. We also filtered out sex-chromosome and mitochondrial genes, retaining 29,242

genes. We excluded five sex-specific tissues (prostate, testis, uterus, vagina, and ovary) and grouped skin

samples from the lower leg (sun exposed) and from the suprapubic region (sun unexposed) based on gene

expression similarity. For our analysis we only considered tissues for which we had both RNA-seq and

imputed genotyping data for at least 200 individuals. Thirteen tissues met all criteria in preprocessing and

were used in subsequent analyses (Table S2).

The RNA-seq and genotyping data were mapped by the GTEx Consortium to GENCODE version 19,

which was based on human genome build GRCh37.p13 (Sept 2015). We performed principal components

analysis on the RNA-Seq data in each tissue, and searched for potentially confounding metadata elements

by searching for those correlated with the first ten RNA-Seq principle components. For all tissues, we

accounted for the site where the donor was recruited, the RNA extraction kit effects, the quality of extracted

RNA, the death place, the time interval between death and start of the tissue sampling, and whether or

not the donor was on a ventilator immediately prior to death using the R limma package package [31].

eQTL mapping and bipartite network construction

For eQTL analysis, we excluded SNPs from all analyses if they had a call rate under 0.9 or a minor allele

frequency lower than 5% in any tissue. A gene was considered expressed in a sample if its read count was

greater than or equal to 6. Genes that were expressed in fewer than 10 of the samples in a tissue were

removed for the eQTL analysis in that tissue. To correct for varying degrees of admixture in the African

American subjects, we used the first three principal components of the genotyping data provided by the

GTEx consortium and included these in our eQTL model.

We used the R MatrixEQTL package [7] to calculate eQTLs with an additive linear model that included

age, sex and ethnic background, as well as the first three genotype PCs, as covariates:

Expression ∼ Genotype+Age+ Sex+ Ethnic Background+ PC1genet + PC2genet + PC3genet + ε

We tested for association between gene expression levels and SNPs both in cis and trans, where we

defined cis-SNPs as those within 1MB of the transcription start site of the gene based on mapping using Bio-

conductor R biomaRt package [32]. P-values were adjusted for multiple testing using Benjamini-Hochberg

correction for cis- and trans-eQTLs separately and only those with adjusted p-values less than 0.2 were

used in subsequent analyses.
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Community identification

For each tissue, we represented the significant eQTLs as edges of a bipartite network linking SNPs and

gene nodes. To identify highly connected communities of SNPs and genes in the eQTL networks, we used

the R condor package [8], which maximizes the bipartite modularity [33]. As recursive cluster identification

and optimization can be computationally slow, we calculated an initial community structure assignment

on the weighted, gene-space projection, using a fast unipartite modularity maximization algorithm [34]

available in the R igraph package [35], then iteratively converged on a community structure corresponding

to a maximum bipartite modularity.

The bipartite modularity is defined in Eq. (1), where m is the number of links in the network, Ãij is

the upper right block of the network adjacency matrix (a binary matrix where a 1 represents a connection

between a SNP and a gene and 0 otherwise), ki is the degree of SNP i, dj is the degree of gene j, and Ci,

Cj the community indices of SNP i and gene j, respectively.

Q =
1

m

∑
i,j

(
Ãij −

kidj
m

)
δ(Ci, Cj) (1)

Cancer risk SNPs

We downloaded the NHGRI-EBI GWAS catalog (Accessed 08 DEC 2015, version v1.0) from the EBI

website (https://www.ebi.ac.uk/gwas). We filtered out associations with P -values greater than 5 × 10−8

and extracted SNPs associated with a risk to develop cancer. We then mapped them to the GTEx data.

Specifically, we determined LD blocks using the plink2 –blocks option and a 5MB maximum block size [36]

and considered all SNPs in the same LD block as a cancer-risk SNPs as a cancer-risk SNPs.

Cancer genes

We generated a list of genes mutated in cancers, called ’cancer genes’ (Supplementary Table S7), including

both oncogenes and tumor suppressor genes, by combining information from 2 databases, the Network of

Cancer Genes [18] and the Cosmic census [37]. We then mapped the cancer genes to the GTEx data.

We then tested whether the cancer-risk SNPs were preferentially located in the promoters of the cancer

genes. We downloaded transcription start site (TSS) positions for all genes present in the GTEx data

from the Ensembl database [38, 39] and defined the promoters as the -750/+250bp region around each

TSS. We then used a Fisher’s exact test to determine whether the cancer gene promoters were enriched in

cancer-risk SNPs. In order to correct for linkage disequilibrium, we used LD blocks rather than SNPs in

this analysis.

We tested whether cancer gene SNPs were preferentially targeting cancer genes. To this end, in each

network, we computed the SNPs ”cancer” degrees for each SNPs, i.e. the number of cancer genes to which

each SNP was linked. We then compared the cancer degree distribution between cancer risk and non-cancer-

risk SNPs taking into account the global degree distribution using 106 resamplings. We then obtained

p-values by comparing the U values obtained from Mann-Whitney U tests on the real and resampled data.
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Cancer risk SNPs enrichments

We tested whether communities were enriched for cancer-risk SNPs using a Fisher’s exact test. We pooled

together SNPs from the same LD block and annotated them as cancer risk LD blocks or not cancer risk

LD blocks. In each network, we tested whether each community was enriched in each type of cancer risks

separately, and then if they were enriched for all cancer risks, taking the whole network as background. To

consider a community as enriched in cancer-risk SNPs, we used a threshold of a minimum of 4 LD blocks

in the community.

SNP core score calculation

We defined a SNP’s core score as the SNP’s contribution to the modularity of its community. Specifically,

For SNP i in community h, its core score, Qih, is defined by Eq. (2). To normalize SNPs across communities,

we accounted for community membership in our downstream testing (Eqns. 3 and 4), which better accounts

for community variation compared to the normalization method used in [8].

Qih =
1

m

∑
j

(
Ãij −

kidj
m

)
δ(Ci, h)δ(Cj , h) (2)

Gene Ontology functional category enrichment

We extracted the list of genes within each community in each tissue-specific network, and then used the

R GOstat package [40] to perform a tissue-by-tissue analysis of the over-representation of Gene Ontology

Biological Processes terms within each community enriched for cancer-risk SNPs. Our reference set con-

sisted of all the genes present in the corresponding tissue-specific network. Communities were considered

significantly enriched in a given category if the FDR-adjusted p-value was < 0.05.

Cancer risk SNPs Analysis

We compared the distribution of SNP core scores between cancer-associated SNPs from the NHGRI-EBI

catalog and those not associated with traits or diseases for each tissue-specific network using a likelihood

ratio test (LRT). In our setting, the LRT assess whether a linear model that includes cancer risk status

(Eq. (4)) fits the observed data better than a linear model that doesn’t include this variable (Eq. (3)). As

the distribution of SNP core scores (Qih) is not uniform across communities, we added community identity

as a covariate in the linear regression. In Eqns. 3 and 4, Qih is the core score of SNP i in community h, n

the number of communities in the tissue. I(GWAS = 1) is an indicator function equal to 1 if the SNP is

associated with a higher risk to develop cancer in GWAS and equal to 0 if it’s not associated with any trait

or diseases. SNPs associated with traits or diseases other than risk to develop cancer were filtered out.

I(Ck = 1) is an indicator function equal to 1 if the SNP belongs to community k and equal to 0 otherwise.

Qih ∼
n−1∑
k=1

I(Ck = 1) + ε (3)

Qih ∼ I(cancer = 1) +
n−1∑
k=1

I(Ck = 1) + ε (4)
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To control for linkage disequilibrium between SNPs, we extracted the median of Qih for cancer-risk

SNPs and non-GWAS SNPs for each LD block, and used these values as input in the linear regressions.
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Figure 1: Cancer-risk SNPs are distributed across the network communities and functional roles. A.

Distribution of the number of cancer-risk SNPs in each community in whole blood. B. Gene Ontology

Term enrichment for communities in whole blood that are also enriched for cancer-risk SNPs.
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Figure 2: Network properties of GWAS cancer-risk SNPs. A. Distribution of core scores for SNPs

associated with increased cancer risk in skin by GWAS (in blue) and other skin SNPs (in gray). P-values

were obtained using a likelihood ratio test and pruning for SNPs in linkage disequilibrium. Distributions for

all tissue-specific networks are in Supplementary Figure S2. B. An example of a SNP with high core-score:

rs72699833, in LD with rs11249433, a SNP associated with a higher risk to develop breast cancer. This

SNP belongs to community 147 (top panel) which is enriched for breast cancer-risk SNPs and is associated

with multiple genes involved in epithelium development. LGALS7B is represented here but belongs to

another community (107). Details on the associations are provided in Supplementary Table S6. Dashed

lines indicate association in trans, full line in cis. The thickness of the lines correspond to the strength of

the association. C. Enrichment in Gene Ontology Terms for community 147 in skin.
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Figure 3: Cancer-risk SNPs are located preferentially in promoters of cancer genes. A. Cancer-risk SNPs

are preferentially located in the promoters of oncogenes and tumor suppressor genes relative to other genes.

This figure shows the odds ratio for finding cancer-risk SNPs, rather than other SNPs, in promoters of all

genes’ promoters (top) or oncogenes and tumor suppressor genes’ promoters (bottom). The same analysis

for each tissue-specific eQTL network is presented in Figure S3. B. Cancer risk SNPs preferentially target

oncogenes and tumor suppressor genes across all tissues. Box plots present distributions of number of tumor

suppressor genes and oncogenes targeted by cancer-risk SNPs and other SNPs. The P value was obtained

using 106 resamplings, taking into account global differences in degree distribution between cancer-risk

SNPs and other SNPs. This indicates that cancer genes are likely associated with one or more cancer-risk

SNPs, but not other eQTL SNPs. The same analysis for each tissue-specific network is presented in Figure

S1.
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Tables

Table 1: Communities enriched in cancer-risk SNPs
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