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SUMMARY 

The orbitofrontal cortex (OFC) has long been implicated in signaling information about expected 

outcomes to facilitate adaptive or flexible behavior.  Current proposals focus on signaling of expected 

reward values versus the representation of a value-agnostic cognitive map of the task.  While often 

suggested as mutually exclusive, these alternatives may represent two extreme ends of a continuum 

determined by the complexity of the environment and the subjects’ experience in it.  As learning proceeds, 

an initial, detailed cognitive map might be acquired, based largely on external information.  With more 

experience, this hypothesized map can then be tailored to include relevant abstract hidden cognitive 

constructs.  This might default to expected values in situations where other attributes are minimized or 

largely irrelevant, whereas in richer tasks, a more detailed structure might continue to be represented, at 

least where relevant to behavior, and possibly alongside value.  Here we sought to arbitrate between these 

options by recording single unit activity from the OFC in rats navigating an odor sequence task analogous 

to a spatial maze.  The odor sequences provided a clearly mappable state space, with 24 unique “positions” 

defined by sensory information, likelihood of reward, or both.  Consistent with the hypothesis that the 

OFC represents a cognitive map tailored to the subjects’ intentions or plans, we found a close 

correspondence between how subjects’ behavior suggested they were using the sequences, and the neural 

representations of the sequences in OFC ensembles. Multiplexed with this value-invariant representation 

of the task, we also found a representation of the expected value at each location. Thus value and task 

structure are co-existing and potentially dissociable components of the neural code in OFC. 

Keywords:  orbitofrontal, cognitive map, single unit, rat, expected value 
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INTRODUCTION 

It is widely believed that the OFC is part of a neural circuit signaling information about future outcomes 

(Rudebeck and Murray, 2014).  But what is the OFC’s role in that network?  What information does it 

provide exactly?  One proposal is that the OFC compresses information about these future events down 

to their “economic” value (Padoa-Schioppa and Conen, 2017).   Another is that the OFC represents a 

cognitive map of the current state space – a detailed associative model of the causal relationships between 

events, useful for determining (but not synonymous with) value (Schuck et al., 2016; Wilson et al., 2014).   

In favor of the former proposal, neural correlates of value are ubiquitous in OFC, generally dominating 

the neural code in rodents, monkeys and humans (Gottfried et al., 2003; Howard and Kahnt, 2017; 

Kennerley et al., 2011; Kennerley et al., 2009; Levy and Glimcher, 2011; Padoa-Schioppa and Assad, 

2006; Plassmann et al., 2007; Rich and Wallis, 2016; Roesch and Olson, 2004; Roesch et al., 2006; 

Rudebeck et al., 2013; Thorpe et al., 1983; Tremblay and Schultz, 1999; Zhou et al., 2015).  Yet the tasks 

used in recording studies typically employ designs and heavy training to randomize, trivialize or otherwise 

make irrelevant everything but the value available on a given trial; when this is not done, neural correlates 

of value-neutral and even incidental associations are evident (Deikhof et al., 2011; McDannald et al., 2014; 

Sadacca et al., 2018; Wimmer and Shohamy, 2012).  Further, the OFC is generally only necessary for 

value-based behavior when the relevant value depends on the sort of mental simulation that traditionally 

is thought to require a cognitive map (Gallagher et al., 1999; Gardner et al., 2017; Izquierdo et al., 2004; 

Jones et al., 2012; Reber et al., 2017; Schoenbaum et al., 2011).   

One way to reconcile these two seemingly opposing ideas is to view them as extreme ends of a continuum 

determined by the complexity of the environment and the subject’s experience in it.  Clearly a naïve 

subject cannot have much of a cognitive map.  However, learning that happens in a few trial (or even a 

single trial) shows that a cognitive map can be rapidly initialized with potential relevant relationships, and 
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in the initial phase of sensory preconditioning, OFC neurons acquire representations of seemingly 

incidental sensory-sensory associations (Sadacca et al., 2018).  As training proceeds, such a map might be 

pruned or edited down to increasingly abstract cognitive constructs, according to the subject’s 

understanding of the structure of the environment at any particular time. The resultant map might appear 

to represent value in simple situations, while maintaining a great deal of complexity and specificity about 

prior and future events when these are relevant to the desires of subject in more complex settings.  

Here we tested this prediction in rats by recording single unit activity from the OFC during the 

performance of an odor sequence task (Ginther et al., 2011).  The task was based on a standard go/no-go 

discrimination task (Figure 1A), well documented to engage value coding in the OFC (Critchley and Rolls, 

1996a, b; Rolls et al., 1996; Schoenbaum et al., 1998, 1999; Schoenbaum and Eichenbaum, 1995; 

Schoenbaum et al., 2003).  However, rather than presenting the odors pseudorandomly, we presented them 

in 6-trial sequences, intentionally confounding structural information about sequence and value.  There 

were 4 sequences arranged in two pairs.  Each sequence pair was analogous to an inverted T-maze, 

beginning with a pair of unique “arms” in which the odors differed, followed by a single common “arm” 

in which the odors were identical (Figure 1B). Conceptually, this resulted in 24 unique “positions” 

defining the global cognitive map or state space of the task.  Within this state space, some positions were 

defined by external, observable information (unique odors) while others were defined only by reference 

to internal, unobservable information (memory of the prior sequence of odors).  Importantly, in one 

sequence pair (Figure 1B, top), the shared or common odors were associated with the same actions and 

rewards, while in the other sequence pair (Figure 1B, bottom), actions and rewards on two of the odors in 

the middle of the common arm differed depending on which of the unique arms initiated the sequence.  

As a result of this arrangement, maintaining separate representations of the current position in the sequence 

was necessary for task performance in some sequences (and positions), whereas in analogous positions in 
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other sequences information about which sequence the position is in was incidental.  We analyzed 

ensemble activity to assess how well OFC represented the unique positions within each sequence and the 

dependence of any such positional or state representations on external versus internal information and task 

relevance or value. 

 

RESULTS 

Odor sequence task 

Seven rats were trained on the odor sequence task described above, in which knowledge of the position in 

the sequence was relevant to—and sometimes required for—optimal performance (Figure 1). Rats 

sampled one of 16 odors on each trial and made a “go” or “no-go” response to obtain reward or to avoid 

a prolonged inter-trial interval (Figure 1A).  The 16 odors were organized into two pairs of 6-trial odor 

sequences (Figure 1B; sequences S1a/b and S2a/b). S1a and S1b were always followed by S2a or S2b and 

vice versa, and the likelihood of a given transition – such as S1a to S2a versus to S2b - was roughly equal 

(Figure 1B). The sequences were evenly distributed within each session, and their overall order was the 

same for all rats in all sessions.   

Each sequence pair was intended to function like a maze, with the position being defined by the identity 

of current and prior odors in each sequence.  The odors in the first 2 positions of each sequence (P1 and 

P2) were unique, like the different arms of a maze, so that they defined a unique position without reference 

to the identity of the prior odors.  By contrast, the odors in the other 4 positions (P3 - P6) were identical 

in each sequence pair, like the common arm of a maze, so that they defined a sequence-unique position 

only in concert with the prior odor cues.  Critically, in S1a and S1b, these common odors were associated 

with actions and rewards that depended only on the current odor, whereas in S2a and S2b, opposing actions 
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were required for and different rewards were predicted by two of the common odors (in P4 and P5), 

depending on previous odors (that is, these odors predicted reward differently in S2a and S2b).  

  

 

Figure 1. Task design, histology, and behavioral performance  (A) Schematic illustrating a single trial 

from the odor sequence task. Illumination of an overhead light indicated the start of each trial. After poking 

into the odor port and sampling one of 16 odors, rats made a “go” or “no-go” decision based on the current 

odor identity and prior sequence information. Only correct “go” trials led to a liquid reward. (B) The 16 

odors were organized into two pairs of sequences (S1 and S2, each comprised of two subsequences a/b).  

Each sequence consisted of 6 discrete positions marked by the odors (Blue = rewarded, Red = non-

rewarded). The odors defining the first two positions (P1, P2) were unique in each sequence, while the 

odors defining the last four positions (P3-6) were the same across pairs of sequences (S1a/S1b and 

S2a/S2b).  The trial sequence alternated between S1 and S2, with approximately equal transitions between 

the subsequences. (C) Reconstruction of recording locations in the OFC. Red boxes indicate approximate 

location of recording sites. We recorded 1,078 single units from 7 rats. (D) Animals’ performance was 

assessed by percent correct responding (%Correct) on each trial type (n = 73 sessions). At P3, P4, and P5, 

the percent correct was significantly different between S2a and S2b (p = 1.7 × 10-5, 2.2 × 10-16, 8.4 × 10-

13; W = 4472.5, 7386, 3680.5, respectively; two-sided Wilcoxon rank-sum test; n = 73 sessions). (E) 

Reaction time from withdrawing from the odor port (“unpoke”) to the entry of water port (“choice”). 

Reaction time on go/reward trials was significantly lower than that on no-go/no reward trials (p = 1.7 × 

10-25; W = 2701; two-sided Wilcoxon rank sum test). The reaction time was also significantly different 

between S2a and S2b at P3, P4, and P5 (p = 7.8 × 10-5, 1.3 × 10-20, 4.2 × 10-23; W = 4552, 2996, 7883, 

respectively; two-sided Wilcoxon rank-sum test; n = 73 sessions). (F) Poke latency from light onset to 

poking into the odor port measures animals' motivation to initiate a trial (left panel). The poke latencies 
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were significantly different between S2a and S2b at P3, P4, P5, and P6 (p = 2.6 × 10-8, 2.2 × 10-11, 4.1 × 

10-15; 0.013;  W = 3942, 3655, 7372, 6001 repectively; two-sided Wilcoxon rank-sum test; n = 73 sessions). 

Plotting poke latency against time-discounted reward (right panel) showed that poke latency on rewarded 

trials was significantly less than that on no-reward trials, meaning that rats spent much less time initiating 

a “go” trial (p = 6.5 × 10-236;  W = 420567; two-sided Wilcoxon rank sum test; n = 73 sessions). In addition, 

statistical analyses on adjacent bars showed that poke latency was also negatively modulated by future 

reward vs. non-reward (p = 0.16, 1.5 × 10-17, 5.9 × 10-15, 0.64, 6.5 × 10-27, 0.065, 0.57; W = 14490, 83436, 

68957, 86362.5, 92495, 59118, 52978 for consecutive pairs of bars from left to right, respectively; two-

sided Wilcoxon rank-sum test; n = 73 sessions). Further three-way ANOVA analysis revealed that reward 

on current, next, and next + 1 trials significantly affected poke latency (current: F(1, 1745) = 2.8 × 103, p 

= 0; next: F(1, 1745) = 128.1, p = 1.0 × 10-28; next + 1: F(1, 1745) = 10.1, p = 0.0015). There were also 

significant interactions between them (current × next: F(1, 1745) = 84.5, p = 1.0 × 10-19; current × next + 

1: F(1, 1745) = 41, p = 1.9 × 10-10; next × next + 1: F(1, 1745) = 15, p = 1.1 × 10-4).   P1-P6 refers to 

position in the 6-trial sequences; data from sequence-pair 1 is plotted upward and data from sequence-pair 

2 are plotted downward. For panels D-F the error bars are standard errors of the mean across all sessions 

included in the ensemble analyses (SEMs). *p < 0.05, ***p < 0.001 and Blue = rewarded, Red = non-

rewarded. 

We recorded 1,078 single units from the OFC of rats performing this task (Figure 1C). During recording, 

rats were generally excellent at the task, responding correctly to the cues at each position in each sequence 

(Figures 1D and 1E; see Figure S1 for information on pre-recording training and the performance during 

recording).  Behavior was nearly perfect for the odors whose reward predictions did not change across 

sequences, however the rats also performed well on the odors whose meaning required the rats to use 

information about the sequences of odors (positions P4 and P5 in bottom bars in Figure 1D).  In addition, 

for all cues, the rats were faster to initiate trials when the sequence predicted reward for that trial than 

when it predicted no reward (Figure 1F, left panel; note that this is prior to odor onset, so can only reflect 

past sequence information).  This indicates that even when odors uniquely predicted reward, so sequence 

information was not required for predicting reward, rats were still sensitive to that information and used 

it to influence their behavior.  Indeed, these latencies also showed a significant effect of future reward 

(Figure 1F, right panel).  This general pattern of behavior was exhibited by the group and by each 

individual rat (see Figure S2 for parallel analyses of sessions from each rat). 
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Ensembles in OFC encode both the value and state defining the current trial 

We constructed pseudo-ensembles composed of neurons recorded in different sessions and rats and 

analyzed the ability of the pattern of activity in these populations to correctly identify the position of the 

current trial within the various sequences.  To illustrate the two extreme outcomes of this analysis 

foreshadowed by our introduction, we plotted the results as they would appear if OFC represented only 

expected value, defined by the reward available on the current trial, versus the actual map of states in the 

task, defined by each position in the odor sequences (Figure 2A).  In each plot or “confusion matrix”, the 

Y-axis shows the actual position of a trial in the sequence (P1-P6, and within these, S1a-S1b-S2a-S2b), 

and the X-axis shows how the ensemble would classify that trial, on average, based on the two encoding 

schemes.  If coding in OFC represents each unique location or state in each sequence, this would result in 

classification along the diagonal of the matrix (Figure 2A, right), since each position in each sequence is 

unique due to the odors on the current and/or prior trials.  By contrast, if coding is driven by current value, 

independent of sequence (Figure 2A, left), then trials would frequently classify in other parts of the matrix, 

reflecting the fact that half the positions are associated with reward.  A comparison of these idealized plots 

with the results of the analyses of firing rate data from different epochs in each trial shows relatively poor 

correspondence between the raw data and either extreme alternative (Figure 2B; For single-unit examples 

see Figure S3; For decoding analyses on individual rats see Figure S4).  Even  during the odor presentation 

period, there is substantial classification off the diagonal, indicating that raw firing rates are not encoding 

current location within the sequence with perfect fidelity; on the other hand, even in the actual reward 

period, there is a strong representation along the diagonal, indicating that raw firing rates are also not 

encoding reward or current value independent of sequence. 
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Figure 2. Decoding and clustering of 24 locations. (A) The two confusion matrices represent two 

hypothesized models (“Current Value” and “Current Location”).  The Y-axis represents the ground-truth 

24 trial types, ordered by position (P1-P6) within each sequence (S1a, S1b, S2a, S2b).  The X-axis 

represents how these 24 predicted trial types would be classified according to the hypothesized 

information (e.g. value or location in the sequences). In the left confusion matrix, trial types are 

misclassified into positions with the same current value, resulting in a checkerboard pattern.  By contrast, 

in the right confusion matrix, each trial type has a unique location or state in each sequence, resulting in 

perfect classification along the diagonal. (B) Confusion matrices from decoding of 24 trial types from 

OFC single-unit data in time windows associated with different task events.  (C) Dendrograms show 

hierarchical clustering of 24 locations at 3 different task events (“Poke”, “Odor”, and “Unpoke”) based 

on population neural activities.  The Mahalanobis distance between each pair of trial-type means, which 

reflects representational dissimilarity or distance between locations, was used to construct the hierarchical 

clustering tree with an unweighted average linkage method. Shown in the dendrograms, the clustering 

analyses revealed a detailed relationship between 24 locations represented by the OFC pseudo-ensembles 

beyond decoding analyses. Grey arrows indicate odor 13 at P4 in S2, and black arrows indicate odor 14 

at P5 in S2. Decisions on these odors (4 trial types) require past sequence information. (D) Binarization 

of confusion matrices using different thresholds.  The raw confusion matrix at odor time (shown in B) was 

filtered at different thresholds (0%, 5%, and 20%; anything above the threshold was painted white and the 

rest is black) to extract different patterns of information.  Value was evident at very low thresholds (0%), 

whereas detailed location coding was more prominent at higher thresholds (5% and 20%). Line plot shows 

correlation coefficients comparing the similarity between hypothesized “current value” and “current 

location” matrices and the actual confusion matrices at different filtering thresholds (0% – 40%). The 

dotted horizontal line indicates the correlation coefficient between the two extreme models – correlation 

with either of the models at that level cannot reliably indicate one model rather than the other. 

 

To visualize the underlying structure of the neural activity space that gives rise to the classification patterns 

in the confusion matrices, we constructed dendrograms summarizing the Mahalanobis distance between 

each pair of trial types in the ensemble activity space.  By plotting these distances in a tree-like structure, 

we can see how the trial types are clustered and which neural representations are more similar to each 

other, rather than just the “best match” revealed by the classification in the confusion matrices.  The results, 

shown for the poke, odor, and unpoke periods (Figure 2C), show that current trial value was a major 

determinant of how the trial types clustered, and therefore how the neurons coded the different trial types.  

This was evident in the high degree of dissimilarity between the rewarded trial types, in blue, and the non-

rewarded trial types, in red, in each dendrogram. However, beneath that global structure, the sequential 

structure of the state space is well represented.  In each period, odors at similar positions in the sequences 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507376doi: bioRxiv preprint 

https://doi.org/10.1101/507376
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

(P1, P2, P3…) tended to cluster together, indicating that sequence position influenced the representation 

in the neural activity space.  The exception to this organization were the two odors with sequence-unique 

reward predictions, at P4 and P5 in S2, indicated by the gray and black arrows under the dendrograms, 

which seem to be represented differently from the other odors (and therefore separate at a higher level in 

the hierarchy in the dendrograms).   Importantly, these value and state features characterized the activity 

space during, after, and also before odor presentation.  Representation of information about the trial before 

odor presentation is consistent with behavioral evidence that the rats used sequence information to 

anticipate the upcoming trial, even when this was not necessary (Figure 1E-F).  

The different levels of information available in the neural activity space, evident in the dendrograms, can 

also be revealed by filtering the results of the confusion matrices at different thresholds. In this analysis, 

we set a threshold, say, 5% confusion, and painted as similar (white) states that were confusable at that 

threshold or above (that is, states that would be classified as identical in more than 5% of cases).  A simple 

value pattern dominated at very low thresholds (Figure 2D, 0%) indicating that if we consider as identical 

any states that are sometimes confused with others, states become grouped by whether they are rewarded 

or not. Conversely, a pattern more consistent with sequence dominated at higher thresholds (Figure 2D, 

5% and 20%), suggesting that the more fine-grained differences between neural representations of 

different states were able to separate states according to their sequence and location, even when odors 

were identical, and despite the reward value of these states being similar.   A formal analysis tracking the 

correlation coefficient between the filtered patterns and the two iconic exemplars (Figure 2A) at different 

levels of filtering confirmed this impression, showing that information about value was available only at 

the lowest filtering levels, declining precipitously even at a threshold of 2-3%, whereas information about 

structure increased quickly, overtaking value and remaining high through a large range of filtering 

thresholds (10-40%; Figures 2D and S5). 
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Figure 3. Value and state representations are dissociable at the neural ensemble level. (A) The firing 

rates of all single neurons on each trial constituted a high-dimensional vector (360 vectors or data points 

in a 1078-dimentional space). The firing rates of all neurons at the odor time were linearly projected to a 

principal component subspace with 80% variance explained, then to an LDA space with labels about the 

current reward. Each LDA component combined a weighted sum of inputs from all the neurons. The LDA 

transformation was supervised by trial-type labels that only separated current value (reward vs. non-

reward), so that the LDA could find components that best separated the two classes. Comp., Component. 

(B) The first but not the second LDA component perfectly separated the two trial types (p = 1.0 × 10-3 and 

1.0, respectively; two-sided permutation test, 1000 bootstrap samples). (C) An ROC-based value-
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selectivity index (2 × |AUC – 0.5|) ranging from 0 (low selectivity) to 1 (high selectivity) was used to test 

current value selectivity for each individual LDA component. The first LDA component showed perfect 

value selectivity (1.0; p = 1.0 × 10-3; permutation test; 1000 bootstrap samples). But, none of the remaining 

150 LDA components were selective for the current value (< 0.05; p = 1.0 for all components; two-sided 

permutation test; 1000 bootstrap samples). (D) Value discriminability was used to test whether value was 

distributed across components (0 – 1 indicates the level of value discriminability by population 

components). The true discriminability was compared with that from the label-shuffled data. The first 

LDA component showed significantly higher value discriminability than the shuffled data (1.0 vs. 0.05; p 

= 1.0 × 10-3; one-sided permutation test; 1000 bootstrap samples), but the remaining LDA components 

did not show significant higher value discriminability than the shuffled data (0.13 vs. 0.1; p = 1.0; one-

sided permutation test; 1000 bootstrap samples). Curr. Val. Discrim., Current Value Discriminability. 

Error bars are standard deviations (SDs). (E) A Dendrogram using all different LDA components 

contained both value and state information (left). A dendrogram that only used the first LDA component 

only contained value information without detailed state information (center), while a dendrogram that only 

used the remaining LDA components contained state information without current value (right). (F) 

Decoding of 24 states with the first LDA component (reconstructed to 151 PCs before the decoding 

analysis). (G) Comparison of decoding accuracy for each state (represented by each dot) between all LDA 

components and the first LDA component being used. Dec. Decoding; LCs, LDA Components. (H) 

Confusion matrix at odor time was binarized at thresholds 0%, 5%, and 20%. (I) Correlation coefficients 

compare the similarity between hypothesized “current value” and “current location” matrices and the 

actual confusion matrices (obtained by using the first LDA component) at different filtering thresholds. 

(J) Decoding of 24 states with the remaining 150 LDA components (reconstructed to 151 PCs). (K) 

Comparison of decoding accuracy for each state between all LDA components and the remaining LDA 

components (the first one was left out) being used. (L) Confusion matrix at odor time was binarized at 

thresholds 0%, 5%, and 20%. (M) Correlation coefficients compare the similarity between hypothesized 

“current value” and “current location” matrices and the actual confusion matrices (obtained by using the 

remaining LDA components) at different filtering thresholds.  

 

Representations of current trial value and state in OFC are dissociable 

The analysis presented above shows that the OFC contains information relevant to value but that this 

information is embedded within a rich representation of task structure.  To test whether the neural codes 

for value and task structure were dissociable, we utilized a linear discriminant analysis (LDA) to isolate 

different components explaining the variance across the pseudo-ensembles. First, the firing rates of 1078 

recorded neurons on each trial, constituting a 1078-dimensional vector (360 trials in total; 24 trial types;15 

correct trials for each trial type), were reduced to a 151-dimensional space though principle component 

analysis (PCA; the first 151 principal components explained 80% variance). The LDA analysis then 
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transformed these principal components to an equal number of orthogonal LDA components (Figure 3A), 

ordered by how much of the reward variance they explained.   The resultant first LDA component perfectly 

separated the trial types based on current trial value (Figure 3B), while the other 150 components exhibited 

no selectivity for current value at either the level of the individual components (Figure 3C) or in the 

aggregate (Figure 3D).   

This suggests that the representation of value in the population could be orthogonal to the representation 

of the sequence structure – not at the level of individual single units but rather in the overall pattern of 

their firing – and therefore the two representations are effectively multiplexed in the neural signal.  Such 

orthogonalized representations may be utilized downstream, allowing different brain areas to easily access 

different aspects of the information output by OFC.  To assess this, we repeated the analyses done on the 

raw data in Figure 2, isolating firing rates derived from the first LDA component versus the remaining 

value-neutral LDA components.  These analyses cleanly dissociated the value and structure encoding that 

was confounded in the analysis of the raw data.  Thus a dendrogram produced using neural data 

transformed by the first LDA component retained the separation based on current trial value but lost nearly 

all of the underlying structure (Figure 3E, left vs. center), whereas a dendrogram produced using neural 

data transformed by the remaining components retained the sequence structure but lost all information 

reflecting current trial value (Figure 3E, left vs. right).  Further, the confusion matrices produced by the 

two transformed data sets hewed closely to the iconic patterns at the top of Figure 2; filtering of these 

patterns revealed value encoding in analyses of the first LDA component with no information about 

structure (Figure 3F-I), and structure encoding in analysis of the remaining components with no 

information about value (Figure 3J-M).   
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Figure 4. Cross-positional decoding of sequence information. (A) Cross-positional decoding of 

sequence S1a vs. S1b. A classifier to discriminate S1a vs. S1b at odor time was trained at each position 

(P1 – P6) and tested at other positions (P1 – P6). Decoding accuracy on the diagonal was reproduced and 

plotted to its upper-left. A bar graph on the left summarized the data in the diagonal and showed how well 

S1a vs. S1b was decoded at each position (P1 – P6; statistical significance was determined by the mean 

decoding accuracy being outside the 95% CIs estimated by the same decoding process with label-shuffled 

data). On the right side, two rows (classifiers trained at P4 or P5, but tested at P1 – P6) were highlighted 

in the heatmap and summarized as bar graphs (P1 – P6; significance was determined by 95% CIs).  (B) 

Cross-positional decoding of 2a vs. 2b. The data are displayed in the same format as in (A). Error bars are 

SDs. 

 

 

Ensembles in OFC encode sequence information across trials when task relevant 

In addition to representing current position in the sequence, the OFC also maintained sequence 

information across positions, depending on task relevance. To show this, we trained a classifier using 

neural activity excluding the first LDA component at each position (P1 – P6), and then used it to decode 

activity from trials at other positions (P1 – P6) (Stokes et al., 2013).  The results of this cross-positional 

decoding are illustrated in matrices for sequence S1 (Figure 4A; center) and S2 (Figure 4B; center). The 

diagonals of the two matrices show how well each position can be decoded using training data from itself 

(Figure 4A and B; upper-left).  These plots confirm the results of the earlier analyses, showing that activity 

in OFC is able to distinguish positions well when prompted by either external information (P1 or P2 in 

both sequences) or task relevance (P3, P4, P5 in sequence 2). However, the off-diagonal cross-positional 

decoding also shows that the representation of information about sequence extended across trials in the 

sequence.  That is, for some positions, the classifier built upon the data from one position in the sequence 

could be used to correctly decode data from other positions earlier or later in the same sequence.  Cross-

positional decoding was particularly prominent when remembering position was necessary for correct 

performance in S2 at the transition point into the common arm, at P2 – P4 (Figure 4B; center and right).  

Notably, there was no such cross-positional decoding at the transition point and in the common arm of S1 
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(Figure 4A; center and right).  This difference is particularly evident if one focuses on the two rows in 

which the classifier was trained with data from P4 or P5 and used to decode sequence at the prior positions 

(Figures 4A and B, right).  This analysis revealed above-chance decoding at earlier positions in S2, 

whereas not a single position was decoded above chance in S1.  Interestingly, the classifier trained at P4 

did a poor job decoding at P5 and vice versa; but both P4 and P5 showed good cross-positional decoding 

at P3.  This suggests the existence of two orthogonal persistent codes at P3 (shared with P4 and P5, 

respectively), which together help rats keep track of different outcomes or rules in the sequence. 

 

Ensembles in OFC miscode sequence when the rat miscodes sequence 

The analyses to this point suggest that neural activity in the OFC is shaped by the task.  Although current 

trial value is a major determinant of this activity pattern, when information about the trial structure or 

sequence is important for correct performance, this information is also maintained.  If this is true, then 

one might expect activity on error trials – when the rats make a mistake in deciding whether to go or not 

go – to reveal miscoding in the activity space.  In our task, mistakes were almost completely restricted to 

P4 and P5 in S2, which required rats to recall the sequence of prior trials to respond correctly (Figure 1D).  

Errors of commission on P4 trials are particularly useful for this analysis, since unlike P5, there was no 

information available for several prior trials regarding whether the rat was in S2a or S2b.  Thus it is 

possible to ask whether sequence was miscoded on the error trial as well as on the preceding trial, without 

any interference from outside input.   Further, the nosepoke latencies at P4 in S2 suggested that mistakes 

at P4 typically occurred because the rat believed it was in one sequence when it was actually in the other.  

Thus the rat would initiate an error trial in one sequence with a latency appropriate for the correct trial in 

the other (Figure 5A).   
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These error trials and their behavioral similarity to correct trials on the opposite sequence in a pair give us 

a unique opportunity to ask whether encoding of information about sequence in the OFC is mere 

happenstance or if it is directly related to what information the rat is acting on versus what it is 

experiencing – that is, does it reflect the hidden variable of state?   To test this, we compared how well 

ensembles recorded in individual sessions performed at decoding sequence on correct versus error trials 

in S2 (Figure 5). We focused on decoding on correct and error trials at S2b4-, which is best positioned to 

address this question, and restricted the analyses to individual sessions in which simultaneously recorded 

ensembles exhibited above-chance decoding on correct trials (Figure 5B and C). Results showed that while 

these OFC ensembles represented a trial as belonging to the S2b4- when the rat responded correctly, they 

represented the trial as belonging to the opposite sequence (S2a4+) when the rat responded incorrectly.  

Further the miscoding was present both on the actual error trial (P4; S2a4+ vs. S2b4-) and also on the trial 

preceding the error trial (P3; S2a3+ vs. S2b3-).  Similar miscoding was also observed on a substantial 

number of such runs of trials involving errors at the other positions (Figure 5D and E).  

 

Figure 5. Decoding of sequences at current and prior positions on current correct versus error trials. 

(A) Poke latencies on 2b4- correct and error trials were significantly different (p = 0.003; W = 1524; 
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paired, two-sided Wilcoxon rank sum test; n = 65 sessions), but those on 2a4+ correct and error trials were 

not significantly different (p = 0.15; W = 100; paired, two-sided Wilcoxon rank sum test; n = 24 sessions). 

Two-way ANOVA analysis revealed an interaction effect between sequence (2a4+ vs. 2b4-) and 

performance (correct vs. error; F(1, 174) = 6.37, p = 0.013). Error bars are SEMs. (B) Classifiers were 

trained with only correct trials and tested with correct trials (X-axis) or error trials (Y-axis). The decoding 

analyses were carried out on both current error trials (2b4-) and on trials that prior to error trials (2b3-). 

Only sessions that had error trials on 2b4- and also showed above-chance decoding of 2a vs. 2b at P3 or 

P4 (mean chance level: 50%; significance was determined by 95% CIs) were selected for further analyses. 

The total number of sessions is indicated in plots. Blue dots indicate significantly above-chance decoding 

of 2a vs. 2b for error trials (mean chance level: 50%; significance was determined by the right side of 95% 

CIs). Red dots indicate significantly below-chance decoding of 2a vs. 2b for error trials (mean chance 

level: 50%; significance was determined by the left side of 5% CIs). Gray indicate non-significance 

(within 95% CIs). (C) Percentage of sessions that show significantly below- (red), above- (blue), or non- 

(gray) significant decoding of 2a vs. 2b prior to error trials (dependence between behavioral and decoding 

performance: χ2 = 10.5; p =  0.0052; chi-squared test) and on error trials (χ2 = 46.0; p =  1.0 × 10-10; chi-

squared test). (D) Summary of decoding analyses on four error trials (2a4+, 2b4-, 2a5-, and 2b5+). 

Decoding of 2a vs. 2b at prior position with correct (X-axis) or error trials (Y-axis) in the current trials 

(left panel). Decoding of 2a vs. 2b at current position with correct (X-axis) or error trials (Y-axis) in the 

current trials (right panel). (E) Percentage of sessions that show significantly below- (red), above- (blue), 

or non- (gray) significant decoding of 2a vs. 2b prior to error trials (χ2 = 56.3; p =  6.1 × 10-13; chi-squared 

test) and on error trials (χ2 = 98.4; p =  4.3 × 10-22; chi-squared test). Incorr. Dec., Incorrect Decoding; 

Corr. Dec., Correct Decoding; Not Sig., Not Significance. 

 

DISCUSSION 

Historically, the OFC has been implicated in signaling information about expected outcomes relevant to 

ongoing adaptive behavior (Jones and Mishkin, 1972; Rolls, 1996).  Current proposals contrast signaling 

of expected value with representing a cognitive map of the task (Padoa-Schioppa and Conen, 2017; Wilson 

et al., 2014).  However, these two proposals are not mutually exclusive.  Beliefs regarding the associative 

structure of a task are critical to determining the value of the current trial, while the value of the current 

trial is a critical component of the underlying task structure. In a well-trained subject, the externally 

available information should reflect the abstract task-relevant cognitive constructs – underlying hidden 

states – formed with experience.  This would result in a cognitive map suitable to the subject’s decision-

making needs in a given task.  That is, states of a task should be compressed or represented separately in 

OFC based on whether distinguishing them is important for current behavior. In simple tasks, in which 
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individual trials and their outcomes are isolated, like those generally used for single-unit recording, the 

final product might appear to only represent value, but in more complex situations in which choices are 

made in the context of ongoing behavior, the representation should maintain a complexity that matches 

the behavioral strategy of the subject and the causal relationships in the task.  

Here we tested this prediction by recording single unit activity from the OFC in rats performing an odor 

sequence task that provided a complex but mappable state space spanning sequences of trials.  These 

sequences could be thought of as analogous to a spatial maze, with individual trial types reflecting distinct 

locations in the maze. Consistent with the above hypothesis, we found a close correspondence between 

how the subjects’ behavior suggested they were mapping the sequences and the neural representations of 

the sequences in OFC ensembles.  Specifically, neural ensembles distinguished positions in the sequences 

in the complete absence of any externally distinguishing information when such discrimination was 

necessary for the behavior of the rat on the current or subsequent trials (S2 common arm); similar positions 

were not distinguished when there was no behavioral relevance to their distinction (S1 common arm).  

This was true for the current position in the sequence and also for decoding of other nearby positions, and 

the representations were faithful to the rats’ internal classification of which sequence they were in, such 

that when the rats’ behavior seemed to miscode the sequence, the ensembles in OFC miscoded the 

sequence as well.  Interestingly, the ensembles also distinguished positions when external information was 

sufficient to do so (unique arms), and even when doing so was seemingly irrelevant to the rats’ current or 

future behavior (S1, unique arms).  This suggests that some external information may be too salient to 

fully compress and ignore, or that the rats are using this information in ways we cannot appreciate with 

our response measures.  However, the general pattern of neural activity was largely consistent with the 

idea that OFC represents the cognitive map of the trial structure necessary for the behavior or actions of 

the subject. 
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Our results also show that information about current position in the sequence could be formally dissociated 

from information about current value, not in the raw data but in a linearly-transformed neural activity 

space. This analysis reduced a ~1000-neuron population to a much smaller number of components, and 

within these, a single component encompassed the bit of information relevant to the value of the current 

trial, while the remaining components contained the much more detailed information about the sequence 

of trials in which the value was embedded.  While value is often found to co-occur with encoding of other 

information in OFC at the level of single units or populations (Howard and Kahnt, 2017; Kennerley et al., 

2011; Kennerley et al., 2009; Padoa-Schioppa and Assad, 2006; Roesch et al., 2006; Rudebeck et al., 2013; 

Thorpe et al., 1983; Tremblay and Schultz, 1999), this is rarely highlighted (but see Farovik et al., 2015;  

and Yang and Murray, 2018).  Showing this co-occurance clearly and in a complex setting, and showing 

that the two codes are dissociable has important implications.  First and foremost, this result shows how 

overwhelming value information is, even in the context of an informationally complex task.  Value 

accounted for the largest amount of variance across our population of neurons.   In a simpler task, without 

the trial-spanning structure in our design, value might appear to be the only information of any importance 

at the ensemble level.  However, as value becomes increasingly embedded within a complex associative 

structure, it may become a smaller component of the activity in the OFC.  Second, the representation of 

task or associative structure was dissociable from value.  It is not secondary to or dependent on value; 

rather it exists in OFC even when value is formally irrelevant or entirely absent (McDannald et al., 2014; 

Sadacca et al., 2018; Schuck et al., 2016).  If the information is dissociable in principle, by such a simple 

linear analysis, then downstream brain regions could also dissociate these multiplexed signals.  Thus 

output from the OFC could be important not only for providing value predictions to some downstream 

operator but also for providing a more detailed accounting of the reason why that value was assigned – 

that is, passing on a picture of the activity space invariant to the distortion of value – to other regions.  In 
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this regard, the potential dissociation of these signals provides a simple solution to reconcile the 

dichotomous views of this area. 

 

EXPERIMENTAL PROCEDURES 

Subjects 

Male Long-Evans rats (Charles River, 175 – 200 g, ~3-month-old) were housed individually on a 12-h 

light/dark cycle with ad libidum access to food in an animal facility that was accredited by the Association 

for Assessment and Accreditation of Laboratory Animal Care (AAALAC). Water restriction was used to 

motivate rats to perform the task.  After training or recording sessions, each rat received 10 min free access 

to water in their home cages. All testing was conducted at the NIDA-IRP.  Animal care and experimental 

procedures complied with US National Institutes of Health (NIH) guidelines and were approved by 

National Institutes on Drug Abuse Intramural Research Program (NIDA-IRP) Animal Care and Use 

Committee (ACUC). 

Surgery 

Rats were implanted with drivable bundle of 16 nickel-chromium wires (25 µm in diameter; AM Systems) 

that targeted the left lateral OFC (AP: 3 mm. ML: 3.2 mm). Wire bundles were housed in a thin cannula 

and cut with surgical scissors to extend 1.5 – 2 mm beyond the cannula. The tips of wires were initially 

placed at 4 mm ventral from brain surface, and then driven down 40 µm or 80 µm after each recording 

session to search for new units. After surgery, rats were give Cephalexin (15 mg/kg po qd) for two weeks 

to prevent any infection. At the end of testing, rats were euthanized by overdose of isoflurane. The final 
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positions of electrodes were marked by passing a small constant current through the wires, and the brains 

were processed for histological examination using standard techniques. 

Behavioral testing 

Rats were placed in aluminum chambers (~18” on a side), which were equipped with an odor port and a 

well for fluid delivery.  Behavior was controlled by custom software written in C++ that could monitor 

responses at the port and well via infrared beam sensors and deliver odors and water by gating a custom-

designed system of solenoids.  Trial availability was signaled by the illumination of paired house lights 

above the odor panel, after which the rat had 5 s to initiate a trial by nosepoking at the odor port.  If a 

nosepoke was detected then, after a 500 ms delay, odor was delivered to the port as long as their noses 

were in the odor port.  If the rat left the port in less than 500 ms, the trial was aborted, and the house lights 

were extinguished.  Otherwise, at the end of the odor delivery, the rat had a 2-second time window to 

respond at the fluid well.  On rewarded trials, responding at the fluid well led to delivery of  50 µL of 10% 

sucrose solution after a delay of 400 – 1500 ms.  After the rat consumed the reward and left the well, the 

house lights were extinguished to end the trial, beginning the ITI.  If the rat failed to respond in the 2 s 

window, the house lights were extinguished at the end of the 2 s period.  If the rat responded in the 2 s 

window on a non-rewarded trial, an exceptionally rare event in recording, the house lights were 

extinguished, ending the trial, and no reward was delivered.  The ITI was 4 s following correct go or no-

go trials, and 8 s following trials on which the rat made an error. 

One of 16 odors was presented on each trial, and the trials were organized into two pairs of sequences 

(S1a, S1b, S2a, and S2b). Odors used in each sequence and their associated valence is listed as below. 

 S1a: 0+ 1- 4- 5+ 6- 7+ 

 S1a: 2+ 3- 4- 5+ 6- 7+ 
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 S2a: 8+ 9- 12- 13+ 14- 15+ 

 S2b: 10+ 11- 12- 13- 14+ 15+ 

Before training on the full sequence task, rats were first shaped to nosepoke at the odor port and then 

respond at the well for reward.  After this, they were trained to discriminate a single odor pair (one 

rewarded and one non-rewarded odor) from sequence 1a or 1b.  Sessions consisted of a maximum of 480 

trials. After rats reached a high criterion in performance (> 90% correct ratio), additional odor pairs were 

added until the rats were able to perform well in a session containing sequences 1a and 1b. After learning 

sequences 1a and1b, rats were trained to discriminate between odors 13/14 from sequence 2, including 

several reversals of the valence of the pair.  After the third reversal, additional odor pairs were added from 

sequence 2 if the rats were able to maintain accurate performance (> 75% correct) on each trial type.  Once 

sequence 2 had been fully introduced in this manner, the rats began sessions containing both pairs of 

sequences (1a, 1b, 2a, and 2b).  

In this final phase, each sequence (or each of the 24 trial types) was repeated for 20 times to make up 480 

trials in total. Sequences 1a and 1b were always followed by 2a or 2b with roughly equal probability (0.55 

and 0.45, respectively). Sequence 2a and 2b were always followed by 1a or 1b also with slightly more 

dissymmetry in probability (0.67 and 0.37, respectively).  The overall sequence was repeated from start 

to finish in each session. 

1b 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2a 1b

 2b 1a 2a 1a 2b 1a 2a 1a 2b 1b 2a 1b 2a

 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a 1a

 2b 1a 2a 1b 2a 1b 2a 1a 2b 1a 2a 1a 2a

 1a 2b 1b 2b 1b 2b 1b 2b 1b 2a 1a 2a 1a

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507376doi: bioRxiv preprint 

https://doi.org/10.1101/507376
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

 2b 1b 2b 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b

 1a 2a 

Before electrode implantation, animals were kept training on the full sequence for at least three weeks 

until they were able to perform well (> 75% correct) on every trial type.  

Single-unit recording and analyses 

Spiking activity was recorded using the Plexon Multichannel Acquisition Processor (MAP) system 

(Plexon, Dallas, TX). Analog signals from electrodes were amplified (headstage: 20×, differential 

preamplifier: 50×, acquisition processor: 1 – 32×) and filtered (250 – 8, 000 Hz) following standard 

procedures. A pre-set threshold was used for each active channel to capture unsorted spikes. Timestamps 

for behavioral events from the behavioral program were sent to the Plexon system, synchronized and 

recorded alongside the neural activity. Spikes were sorted to identify single units offline using Offline 

Sorter (Plexon, Dallas, TX) with a template matching algorithm. Sorted files were opened in 

NeuroExplorer (Nex Technologies, Colorado Springs, CO) to extract unit and behavioral event 

timestamps, which were then exported as MATLAB (MathWorks, Natick, MA) formatted files for further 

analysis. Sample sizes (number of rats and number of neurons) were not predetermined by any statistical 

methods but are comparable to those reported in previous publications from our lab. All data were 

analyzed using MATLAB (MathWorks, Natick, MA).  

Task events for each trial were synchronized and recorded alongside the neural signals. For neural analyses, 

each trial was segmented into 6 epochs associated with different trial events: “light”, “poke”, “odor”, 

“unpoke”, “choice”, and “outcome”. On trials where the rat did not respond, and/or the water reward was 

not delivered, we used the end of the 2-second window for responding as the “choice” event and a time 

point 1.5s after the “choice” as the “outcome”.  Behavioral performance was quantified as the percent of 
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trials on which the rats responded correctly, their reaction time from the odor port to the fluid well, and 

the latency with which they initiated a trial after light onset. The data analysis only included sessions in 

which the percent correct was above 75% for each individual trial type. Error trials were removed in the 

main figures except Figure 5 in which error trials were used as test sets for classification.  The spike train 

for each isolated single unit was aligned to the onset of each task event. Pre-event time was set to be 200 

ms, and post-event time was set to be 600 ms. Spike number was counted with a bin = 100 ms. A gaussian 

kernel (σ = 50 ms) was used to smooth the spike train on each trial. 

Classification analyses 

We trained a linear discriminant analysis (LDA) algorithm (MATLAB function: fitcdiscr) to classify 24 

trial types or locations for each one of six task events. Neurons that were recorded from different sessions 

were aligned together as pseudo-ensembles. Firing rates on each trial 100 – 600 ms after task events (500 

ms) for each individual neuron were used for classification. Each trial was an observation that contained 

firing rates from 1, 078 neurons (480 trials in total with error trials; 360 trials in total without error trials; 

only correct trials were used to build classifiers). The classification accuracy was assessed by leave-one-

out cross-validation. Specifically, one trial from each trial type was left out for future testing, and all other 

trials were used for the training. Principal component analysis (PCA) was used for feature extraction and 

dimension reduction in the training set. The classifier was trained on the first a few principal components 

(PCs) that explained 80% variance. The same PCA transformation from the training set was applied to the 

test set. Trial order for each neuron was shuffled to remove the temporal structure and correlation between 

neurons within the same trial type. The trial-order shuffling was repeated for 100 times. For each time of 

trial-order shuffling, the leave-one-out cross-validation was repeated for 500 times. The mean decoding 

accuracy for each trial type as shown in the confusion matrix was the mean from all runs. The statistical 

significance of the mean decoding accuracy was determined by 95% confidence interval estimated by 
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running the same decoding process with label-shuffled data. Because of trial order shuffling, the number 

of PCs being used in classifiers varied for each run. The mean number of PCs being used for each run was 

151.2 ± 0.4 (mean ± SD). It was for simplicity when we said 151 PCs were used. To better visualize and 

potentially extract different aspects of information from the confusion matrices, we binarized the 

confusion matrices with different thresholds (0% – 40%). For each threshold (e.g. 5%), any value in a 

confusion matrix that was below or equal to this threshold was set to be 0%, and other places were set to 

be 100%. 

For the classification of all trial types with different LDA components (the first LDA component or the 

remaining LDA components), we first did PCA on all the trials and neurons (without splitting the data 

into training sets and test sets) with 80% variance retained (151 PCs). The LDA was run on these PCs, 

supervised by the value of the current trial (reward vs. non-reward).  Thus, each LDA component was a 

linear combination of original firing rates from all the neurons.  Importantly, only the first LDA component 

showed the ability to discriminate the current value. We reconstructed two sets of PCs from the first LDA 

component and the other LDA components, respectively.  We then used the two sets of PCs to decode the 

current value (reward vs. non-reward) and 24 trial types (locations or states) with a leave-one-out cross-

validation procedure as described above (without further PCA for dimension reduction). 

We removed the first LDA components and used others (150 components) for the cross-positional 

decoding. PCA was used for dimension reduction (with 80% variance retained). We trained binary 

classifiers at one position (P1 – P5; S1a vs. S1b or S2a vs. S2b) as described above, and tested them on 

other positions (P1 – P5). The trial orders for both the training and test sets were shuffled. Leve-one-out 

cross-validation was used for the estimation of the mean decoding accuracy (500 repeats). For each repeat, 

trials that were left-out for the test set would not be in the training set. Statistical significance was  

determined by 95% confidence interval estimated from label-shuffled decoding processes. 
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For the decoding of sequences on error trials in each session, we built classifiers with 15 correct trials and 

used the error trials as the test set. The trial order was shuffled within each trial type for each repeat. Cross-

validation followed the above procedure. The 95% confidence interval was estimated by decoding of 

sequences on correct trials with shuffled labels in the training set. The mean decoding accuracy was the 

mean across 500 runs.  Chi-squared test was used to test whether there was dependence between 

behavioral (correct or error trials) and decoding performance (significantly above-chance, below-chance, 

or not significant). 

Hierarchical clustering analyses 

The hierarchical agglomerative clustering was performed on data that was projected onto the LDA space. 

Each trial was organized as a vector with firing rates of 1, 078 neurons as 1, 078 dimensions. The original 

data was transformed to PCA space with 80% variance retained (151 PCs), then transformed to LDA space 

guided by 24 trial-type labels. A dissimilarity matrix was computed by measuring the Mahalanobis 

distances between each pair of location means. Based on the dissimilarity matrix, an agglomerative 

hierarchical cluster tree was generated with the unweighted average distance method.  

Discriminability analyses 

We used a ROC-based metric to measure how well neural activity components, that were transformed 

from single unit, can discriminate two different value conditions (i.e. to test whether discrimination of 

value was distributed across components). The population activity was organized as a matrix of 

component activity with each row represented one trial (observation) and each column represented a 

component (dimension). Each trial was labeled with “reward” or “non-reward”. The first three PCs were 

used for the LDA transformation. We projected all the data points (trials) with value labels onto the first 

LDA dimension, which was supposed to be the best component to separate value. An ROC curve was 
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constructed to compare the distributions of the neural responses to the two value conditions on the chosen 

LDA dimension. We used the area under the ROC curve (AUC) to compute the final discriminability 

metric: 2 × |AUC-0.5|.  In addition, we used the same procedure to calculate discriminability of the 

ensembles on value with shuffled labels, which gave us an estimated baseline discriminability. One-sided 

permutation test with 1000 bootstrap samples was used to test statistical significance in mean difference 

between the actual and baseline discriminability (*p < 0.05).  
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