
1 

 

 1 

Synapse propensity of human memory CD8 T cells confers 2 

competitive advantage over naïve counterparts1 3 

 4 

Viveka Mayya#, ¶, Edward Judokusumo||, Enas Abu-Shah#, Willie Neiswanger†, 5 

Lance C Kam||, Michael L Dustin#, ¶, * 6 

 7 

 8 

#Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom 9 

¶Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New 10 

York, United States 11 

||Department of Biological Engineering, Columbia University, New York, United States 12 

†Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States 13 

*Correspondence: michael.dustin@kennedy.ox.ac.uk (Email); +44 (0)1865 612639 (Ph); +44 14 

(0)1865 612601 (Fax) 15 

 16 

Running title: Synapse propensity of T cell subsets 17 

 18 

  19 

                                                      
1 Supported by US National Institutes of Health grants PN2 EY016586 (to MLD and LCK) 

and R37 AI43542 (to MLD), a Cancer Research Institute post-doctoral fellowship (to VM), a 

UCB postdoctoral fellowship (to EAS), a Wellcome Trust Principal Research Fellowship 

100262/Z/12/Z (to MLD), grants from the Kennedy Trust for Rheumatology Research (to 

MLD and KIR Microscopy Facility), a Human Frontiers Science Program research grant (to 

MLD) and an European Research Council grant AdG 670930-SYNECT (to MLD). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 28, 2018. ; https://doi.org/10.1101/507392doi: bioRxiv preprint 

mailto:michael.dustin@kennedy.ox.ac.uk
https://doi.org/10.1101/507392


2 

 

 1 

Abstract 2 

Memory T cells are endowed with multiple functional features that enable them to be more 3 

protective than naïve T cells against infectious threats. It is not known if memory cells have a 4 

higher synapse propensity, i.e. increased probability to form immature immunological 5 

synapses that then provide an entry into different modes of durable interaction with antigen 6 

presenting cells. Here we show that only human memory CD8 T cells have remarkably high 7 

synapse propensity compared to naïve counterparts. Such a dichotomy between naïve and 8 

memory cells is not observed within the human CD4 or murine CD8 T cell population. 9 

Increased surface expression of LFA1 contributes to the higher synapse propensity in human 10 

memory CD8 T cells. Finally, we show that higher synapse propensity in human memory 11 

CD8 T cells allows them to compete out naïve CD8 T cells from getting recruited to the 12 

response. This observation has implications for original antigenic sin and aging of the 13 

immune system in humans.   14 

 15 

Key words: Immunological Synapse, micro-contact printing, memory T cells,  16 

 17 

Abbreviations used: IS, Immunological Synapse; IK, Immunological Kinapse; CD8+ hTm 18 

cells, human memory CD8 T cells; SLB, Supported Lipid Bilayer; TIRF, Total Internal 19 

Reflection Fluorescence; IRM, Interference Reflection Microscopy; cSMAC, central 20 

Supramolecular Activation Cluster;  21 
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Introduction 1 

Memory T cells exhibit functional avidity maturation that enables them to produce more 2 

cytokines, and in some cases also more clonal expansion, than naïve cells at lower dose of 3 

antigen (1, 2). Further, they produce and release cytokines and cytolytic effectors quickly in 4 

response to antigen (3, 4). Memory T cells also have reduced requirement for costimulation 5 

(5) and show multi-functionality typically absent in freshly primed T cells (6). All these 6 

properties contribute to enhanced protective function of memory T cells along with their 7 

increased precursor frequency.  8 

 9 

T-cell intrinsic mechanisms responsible for these enhanced functionalities of memory T cells 10 

have not been clearly established. There are multiple lines of evidence to implicate epigenetic 11 

mechanisms in rapid and increased production of effector molecules (7, 8). Early reports also 12 

implicated enhanced TCR signalling (2), however all of the recent studies in fact point to 13 

diminished output of TCR signalling in memory cells (9-11). Similarly, oligomeric clusters of 14 

TCR seen in antigen-experienced T cells have been implicated in their enhanced production 15 

of cytokines (12). But, recent reports argue that TCR is randomly distributed on the plasma 16 

membrane of antigen-experienced cells in monomeric state (13) and that they exclusively 17 

drive antigen recognition (14). An immediate outcome of antigen recognition and supra-18 

threshold TCR signalling in rapidly migrating, poorly adhesive T cells is the formation of an 19 

immature immunological synapse (IS) (15). The immature IS refers to a phase of interaction 20 

lasting a few minutes characterized by rapid spreading and adhesion (16, 17). This transient 21 

but committed phase further develops into a stable, mature IS lasting over an hour or a motile 22 

immunological kinapse (IK) that can nonetheless result in durable interaction (16, 18, 19). 23 

We define the capability to form an immature IS as ‘synapse propensity’ and consider it as an 24 
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intrinsic property of a T cell. Synapse propensity ultimately determines the fraction of 1 

precursor cells participating in the response. Therefore, it is appealing to consider the 2 

possibility that memory T cells have enhanced synapse propensity compared to the naïve 3 

cells. However, diminished output of TCR signalling in memory T cells may also result in 4 

lower synapse propensity. We measured synapse propensity of naïve and memory cells from 5 

different T cell subsets by multiple approaches. Among the subsets that we have examined, 6 

only the human memory CD8 T (CD8+ hTm) cells exhibit appreciably higher synapse 7 

propensity than naïve counterparts. We have explored the consequence of higher synapse 8 

propensity in an ex vivo setting that mimics spatially limiting antigen presentation. We find 9 

that higher synapse propensity of CD8+ hTm cells gives them a competitive advantage at the 10 

expense of naïve T cells.       11 
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Materials and Methods 1 

Most of the experimental and analysis procedures used here have previously been explained 2 

in detail (19). 3 

 4 

Isolation of Resting T cell subsets 5 

Non-clinical and de-identified leukapheresis products from donor blood were used as a 6 

source of resting human T cells. This was exempt from IRB review at the NYU Medical 7 

Center and was approved by National Health Service at the University of Oxford (REC 8 

11/H0711/7). Resting human T cell subsets were isolated using negative selection kits 9 

(Stemcell Technologies). The NYU Medical Center Institutional Animal Care and Use 10 

Committee approved (Protocol 150609-01) experiments involving mice. Naïve (CD44-ve) 11 

and Listeria-specific (CD44+ve) memory CD8 T cells were isolated from spleens of 8-12 12 

week old B6 male mice (from National Cancer Institute, Bethesda, MD) 30-40 days after 13 

infected with 5000 colony forming units of Listeria monocytogenes The relevant populations 14 

were isolated by immunofluorescence flow cytometry sorting (BD FACS Aria).  15 

 16 

Preparation of stimulatory surfaces 17 

Labtek 8-well chambers (Nunc) were used for uniformly coated stimulatory surfaces. CCL21 18 

(3 µg/ml, from Peprotech) was coated first, followed by ICAM1 (2 µg/ml, produced in-19 

house) and OKT3 (varied concentration, from BioXCell) together. Micro-contact printing 20 

technology was used to obtain repeating arrays of circular, stimulatory ‘spots’ with 21 

immobilized OKT3 (or 2C11), essentially as described previously (19). These repeating 22 

‘spot’ patterns spanned the entire length of channel of the sticky-Slide VI0.4 (Ibidi), so that 23 

bulk assays could also be performed from collected cells. The primary difference in this study 24 

is that the coverslips for micro-contact printing were cleaned in 30% 7X Cleaning Solution 25 
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(MP Biomedicals) on a hot plate (set for 205 C) for 30-40 minutes, followed by extensive 1 

rinsing under flowing deionized water. Cleaned and dried coverslips were then baked at 400 2 

C in a furnace for 10 hours, cooled to room temperature and used for stamping within a 3 

week. The stamped coverslips were affixed to the sticky-Slide and the channels were coated 4 

sequentially with CCL21 (13.5 µg/ml) and ICAM1 (3 µg/ml). Supported Lipid Bilayers 5 

(SLBs) presenting fluorescent-dye conjugated ICAM1 (200 molecules/µm2) and UCHT1 6 

Fab` (varied density, produced in-house) were also assembled in sticky-Slide VI0.4 channels.  7 

 8 

Imaging 9 

Cells were imaged using either a Zeiss LSM 510 (40x Plan Neofluar oil immersion objective 10 

with 1.3 NA) or an Olympus FluoView FV1200 (30x Super Apochromat silicone oil 11 

immersion objective with 1.05 NA) confocal microscope that was enclosed in an 12 

environment chamber (at 37 C) and operating under standard settings. Differential 13 

Interference Contrast (DIC) micrographs in time-lapse series were used for detecting and 14 

tracking cells. Interference Reflection Microscopy (IRM) images were used for ascertaining 15 

spreading or attachment based on the dark patches due to destructive interference. In 16 

experiments involving naïve and memory subsets together, the cells were differentially 17 

labelled with CellTracker dyes (Life Technologies). The location of stimulatory spots was 18 

recorded using Alexa Fluor 647 conjugated to the stamped OKT3 or 2C11 antibody. IS 19 

formed on SLBs were imaged in samples fixed with 4% formaldehyde in phosphate buffer 20 

saline. High-resolution images were acquired on Olympus CellTIRF-4 line system using 21 

150x 1.45 NA oil immersion objective in Total Internal Reflection Fluorescence (TIRF) 22 

mode.  23 

 24 

Image analysis  25 
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The time-lapse images were pre-processed in ImageJ as described previously (19). Tracking 1 

from DIC, and quantification of associated information on tracked cells from reflection and 2 

fluorescence channels, was conducted using TIAM, a MATLAB based toolset that we 3 

previously developed (20). Bespoke functions and scripts were written in MATLAB for the 4 

calculation of various correlates of synapse propensity from the output of TIAM. These 5 

functions and scripts and additional information on image processing are made available on 6 

Github (https://github.com/uvmayya/synapsePropensity).  7 

 8 

Quantification of fraction of cells forming IS or IK on SLB 9 

Those fixed cells with >50% of the area under attachment as per the IRM channel and having 10 

a ‘circle-like’ attachment footprint were counted as having formed IS or IK. Cells with no or 11 

<50% area under attachment or discontinuous or highly elongated or highly irregular or fan-12 

shaped attachment footprint were disregarded while counting cells with IS or IK. These 13 

criteria rule out highly motile cells in low adhesive state. These criteria also ensure that both 14 

IS and IK are counted together without distinguishing them and thus allow for counting all 15 

cells that have passed through the phase of immature IS. Manual counts were corrected for 16 

less than 100% purity of naïve and memory subsets, as assessed by flow cytometry, and also 17 

for deviation from 1:1 ratio when mixed together after differential labelling. Finally, fraction 18 

of cells is obtained based on the expected number of all cells in the field when introduced at 19 

the same density (1.5 million/ml). This was done to prevent overestimation of fraction of 20 

cells forming IS or IK, as non-attached cells tend to get washed away (or displaced) during 21 

fixation and subsequent washes.  22 

 23 

Quantification of fraction of cells forming IS or IK on coated surfaces 24 
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Attached segments of tracks from live imaging were selected first, for which we calculated 1 

arrest coefficient with the threshold speed of 3 µm/min, implying arrest or deceleration due to 2 

IS or IK formation. Any attached segment with arrest coefficient of >0.4 was selected to have 3 

led to IS or IK formation in the cell for a significant period during the observation. These 4 

relaxed criteria for deceleration allow for inclusion of all cells that have passed through the 5 

phase of immature IS. Average number of all cells in the field over the duration of the time-6 

lapse (typically ~50) was used to get the fraction of cells with IS or IK. 7 

 8 

Calculation of on-rate of attachment, encounter rate and arrest efficiency on stimulatory 9 

spots 10 

DIC images with binary masks, both for attachment and location of spots, were used to select 11 

cells arrested and attached to spots. Plotting number of arrested cells on spots over time gives 12 

the attachment curve. The slope of attachment curve over the first ~40 minutes was used for 13 

naïve cells whereas data for the first ~15 minutes was used for the rate of attachment (on-14 

rate) of memory cells. Many intervening data points were often removed in the case of naïve 15 

cells as there were no additional arrest events and this improved the regression coefficient 16 

(R2) of linear fitting to be >0.85. The slopes were normalized as per the relative number of 17 

cells to spots. The normalization also assumed 1 cell arresting on 10 µm spots and 4 cells 18 

arresting on 20 µm spots, which is the typical scenario. Non-responding cells were manually 19 

identified and disregarded during normalization, based on non-polarized or shrunken 20 

appearance and Brownian motion.  21 

 22 

Portions of tracks wherein a cell is on a spot, based on fluorescence value associated with the 23 

track-positions, are identified as encounter events. Total number of such ‘clipped’ tracks 24 

gives the total number of encounter events. All encounter events during the first 90-120 25 
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minutes for naïve cells and 45-60 minutes for memory cells were tallied and divided by the 1 

duration of time to calculate encounter rate. Arrest efficiency is defined as the number of 2 

separate arrest events on spots over all encounters (transient and durable) with spots for all 3 

the cells in the field within a certain period of time. Apart from the presence of a spot beneath 4 

a cell for at least 4 minutes, additional criterion of attachment is also included to define arrest 5 

events on spots. 6 

  7 

Naïve T cell activation in a competitive setting 8 

Each Ibidi sticky-Slide VI0.4 channel contains ~63,000 spots that are 10 µm wide and 30 µm 9 

apart and ~22,800 spots that are 20 µm wide and 50 µm apart. Typically, one cell arrests on 10 

spots 10 µm in diameter with ~15% of the spots accommodating two cells. Owing to 4-fold 11 

larger area, 4-5 cells arrest on spots 20 µm in diameter. In order to create a competitive 12 

setting we used ~120,000 cells on 10 µm spots and ~180,000 cells on 20 µm spots. This is 13 

referred to as ‘1x’ number of cells in the Results section. After 10-12 hours, the cells were 14 

collected using ice-cold PBS containing 0.5% BSA and 2mM EDTA. Activation was 15 

assessed based on flow cytometry after staining with anti- CD45RO, CD69 and CD62L 16 

antibodies. Our isolation procedure for memory cells removes EMRA (Effector Memory that 17 

are CD45RA+ve) cells but retains central and effector memory cells. This total pool of 18 

memory cells is used in the competition experiments with naïve cells. In the case of humans, 19 

this is physiologically relevant as both spleen and lymph nodes contain central and effector 20 

memory cells at comparable frequency to that in the peripheral blood, with considerably 21 

lower frequency of EMRA cells in lymph nodes (21).  22 

 23 

Statistical analyses 24 
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Statistical tests were performed using Prism (Graphpad). Statistical significance of difference 1 

in values, where in a pair of values represent the T cell subsets of a donor, was calculated by 2 

paired t-test.  P-value from two-tailed tests are denoted as follows in the figures: * for p<0.05, 3 

** for p < 0.01, *** for p < 0.001, and **** for p< 0.0001. If the pairing itself was found to 4 

be significant (i.e. p < 0.05), the asterisk rating above the plot are given within parentheses.     5 
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Results 1 

Human memory CD8 T cells have high synapse propensity 2 

We first assessed synapse propensity CD8+ hTm and naive cells on SLBs presenting freely 3 

mobile ICAM1 and UCHT1 Fab’. Typically, we use 30 molecules/µm2 of UCHT1 Fab’ for 4 

imaging synapse formation in individual cells at high resolution in TIRF mode. However, we 5 

reasoned that difference in synapse propensity can be appreciated better at very low ligand 6 

density (0.3 molecules/µm2). Fraction of cells that have passed through the phase of 7 

immature IS represents synapse propensity in this context of spatially uniform ligands as this 8 

does not typically result in a competitive setting. Since immature IS represents a transient 9 

phase committed to durable interaction, we relied on identifying cells that have formed IS or 10 

IK after a period of interaction with ligands on SLBs. For unbiased and statistically rigorous 11 

counting of cells with IS or IK, we used differentially labelled mixture of naïve and memory 12 

cells, fixed them after 30 minutes of interaction with ligands on SLBs and imaged multiple 13 

larger fields afforded by lower magnification and lower numerical aperture (Figure 1a). We 14 

used attachment areas recorded by Interference Reflection Microscopy (IRM) to decide 15 

whether a cell has formed a IS or IK, as visualizing formation of central Supramolecular 16 

Activation Cluster (cSMAC) under these settings was not practical. More memory CD8 T 17 

cells had attachment footprints typical of cells with IS or IK (Figure 1a, see Methods for 18 

scoring criteria). In order to ascertain that these cells were indeed forming bona fide IS or IK, 19 

we imaged the same preparations at high resolution in TIRF mode (Figure 1b). cSMAC 20 

formation, as assessed by centralized accumulation of UCHT1 Fab’, happened efficiently 21 

over 100-fold range of ligand density. When examined over many cells, we found that 16 out 22 

of 22 cells that would have been scored as having formed IS or IK based on attachment 23 

footprint had a typical cSMAC even at 0.3 molecules/µm2 of UCHT1 Fab’ (Supplementary 24 

Figure 1). All 22 cells had substantially enriched UCHT1 Fab’ and ICAM1 in the interface 25 
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compared to the surrounding (Figure 1c). This confirmed that all CD8+ hTm cells with 1 

attachment footprint typical of IS had indeed formed IS. We tallied the fraction of cells 2 

forming IS or IK on SLBs and expectedly found that synapse propensity increases with 3 

increasing surface density of UCHT1 Fab’ for all subsets examined (Figure 1d and 1e). 4 

Overall, the memory cells have higher synapse propensity than naïve counterparts. The 5 

difference in synapse propensity between naïve and memory cells is more striking in the CD8 6 

subset and CD8+ hTm cells have appreciably higher synapse propensity than the CD4+ hTm 7 

cells on SLBs presenting freely mobile ligands. 8 

 9 

We next assessed synapse propensity of CD8+ hTm and naïve cells on uniformly coated 10 

surfaces presenting immobilized CCL21, ICAM1 and OKT3. Effector memory cells are 11 

thought of as being negative for expression of CCR7, the receptor for the chemokine CCL21 12 

(22). However, reagents to detect human CCR7 have likely improved in the two decades 13 

since. Therefore, we first compared the expression of CCR7 and responsiveness to CCL21 in 14 

naïve and memory cells (Supplementary Figure 2). We noted that both central and effector 15 

memory CD8 T cells express sufficient CCR7 to show robust chemokinesis on immobilized 16 

CCL21. In fact, the speed of CCL21-induced motility is higher for central and effector 17 

memory cells than naïve cells. Thus, we can rule out the possibility of lack of motility 18 

indirectly promoting synapse propensity in memory cells. We proceeded to score the fraction 19 

of cells forming IS or IK on uniformly coated surfaces by live imaging based both on 20 

attachment and deceleration (or arrest). As in the case of SLBs, synapse propensity reduced 21 

with less OKT3, but the difference between naïve and memory CD8 T cells was more 22 

pronounced with less OKT3 (Figure 1f and 1g and Supplementary Video 1). High synapse 23 

propensity of CD8+ hTm cells was maintained even with costimulation from immobilized 24 

anti-CD28 (9.3) antibody (Figure 1h). No significant difference in synapse propensity was 25 
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observed between naïve and memory human CD4 cells (Figure 1i). Overall, we conclude that 1 

CD8+ hTm cells have high synapse propensity on uniformly presented stimulatory surfaces.  2 

 3 

In vivo, both under the settings of priming in secondary lymphoid organs and during the early 4 

phase of recall response in peripheral tissues, antigen can be sparse and presented on few 5 

dispersed antigen-presenting cells in a spatially limiting manner (23). We have recapitulated 6 

this scenario ex vivo using the micro-contact printing technology by creating stimulatory 7 

spots of OKT3 with pervasive ICAM1 and CCL21 (Figure 2a) (19). CD8+ hTm cells rapidly 8 

attached and arrested on the stimulatory spots when compared to the naïve CD8 T cells 9 

(Figure 2b and Supplementary Video 2). The rate of arrest is the best measure of synapse 10 

propensity on spatially limiting stimulatory spots, as this represents a competitive setting. For 11 

an accurate measure of on-rate of arrest on the spots, we took the slope of the initial part of 12 

the attachment curve. We found that memory cells were capable of arresting on 10 µm spots 13 

at 7.1-fold and on 20 µm spots at 5.4-fold faster rate than naïve cells (Figure 2c and 2d). 14 

Based on the principles of bimolecular reaction kinetics, on-rate of arrest should be the 15 

product of rate of encounter with spots and arrest efficiency. Encounter rate quantifies the 16 

rate at which cells search and locate the stimulatory spots and arrest efficiency quantifies the 17 

ability to attach and arrest upon locating a spot. Encounter rate of memory cells is ~1.5 fold 18 

higher than that of naïve cells (Figure 2e and 2f). This is in agreement with ~1.6 fold 19 

increased speed of memory cells on immobilized CCL21 (Supplementary Figure 2c). Arrest 20 

efficiency of CD8+ hTm cells is 5.1 fold higher on 10 µm spots and 3.5 fold higher on 20 µm 21 

spots than that of naïve CD8 T cells (Figure 2g and 2h). Roughly one in ten encounters leads 22 

to arrest on the spots in the case of naïve CD8 T cells whereas ~40% of the encounters lead to 23 

arrest in the case of CD8+ hTm cells. As expected, multiplying these two parameters gives 24 

back the same on-rate of attachment as the value initially measured by mathematically 25 
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independent approach. Consistent with the observation on uniform stimulatory surface, there 1 

is no difference in synapse propensity of human CD4 naïve and memory cells on stimulatory 2 

spots, with both having low values (Supplementary Figure 3a-3c). Surprisingly, even the 3 

mouse CD8 naïve and memory cells do not show any significant difference in synapse 4 

propensity on stimulatory spots (Supplementary Figure 3d-3e). Thus, CD8+ hTm cells 5 

uniquely show very high synapse propensity both on uniform stimulatory surface and 6 

spatially limiting stimulatory spots.    7 

 8 

High synapse propensity of human memory CD8 T cells confers competitive advantage in 9 

recruitment to the stimulatory spots and can suppress naïve cell activation 10 

We reasoned that in a competitive setting of both cell types present in equal numbers, CD8+ 11 

hTm cells will prevent naïve cells from arresting on the stimulatory spots. Expectedly, 12 

memory cells rapidly arrested on spots over the first 2 hours leaving the naïve cells to explore 13 

area outside the spots (Supplementary Video 3). The enrichment of CD8+ hTm cells, as per 14 

the relative number of cells on spots after 2 hours, approximately matched their fold-increase 15 

in synapse propensity, i.e. on-rate of attachment, both on 10 and 20 µm spots (Figure 3a and 16 

3b). Again, as predicted by lack of difference in on-rate of attachment (Supplementary Figure 17 

3a), there was equal sharing of spots between naïve and memory human CD4 T cells (Figure 18 

3c). There was a marginal increase in on-rate of murine naïve CD8 T cells (Supplementary 19 

Figure 3d), which explains the slight enrichment of naïve cells over memory cells on spots 20 

deposited with 2C11 (Figure 3d).  21 

 22 

We next investigated how synapse propensity of CD8+ hTm cells impacts activation of naïve 23 

T cells in a competitive setting. We had earlier shown that stimulatory spots with anti-CD3 24 
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can robustly prime human naïve CD8 T cells to undergo full activation and multiple rounds 1 

of cell division (19). Here, we looked at activation after 10-12 hours under a competitive 2 

setting to begin with, as described in the Methods section. Substantial fraction of naïve cells 3 

proteolytically shed CD62L due to continuous TCR signalling (Figure 3e). We have shown 4 

before that naïve cells with low CD62L after 12 hours are activated cells, as indicated by 5 

robust CD69 upregulation. With twice the number of naïve cells, the fraction of activated 6 

cells expectedly reduces (Figure 3e). However, with the presence of equal number of memory 7 

CD8 T cells, the fraction of naïve cells activated reduces even further (Figure 3e). The same 8 

effect of suppression of naïve cell activation by CD8+ hTm cells is observed across multiple 9 

donors and both on 10 µm and 20 µm spots (Figure 3f and 3g). However, we do not see any 10 

suppression of naïve cell activation in the presence of memory cells on uniformly stamped 11 

surface wherein immobilized anti-CD3 is available across the entire surface (Figure 3h). This 12 

implies that memory cells do not secrete any suppressive soluble factor nor do they 13 

participate in any contact-dependent mechanisms of suppression. The suppression of naïve 14 

cell activation by memory cells is essentially because of higher synapse propensity of 15 

memory cells preventing access to the stimulatory spots. However, the extent of suppression 16 

seen after 10-12 hours is considerably less than what one would have anticipated based on the 17 

competitive advantage seen after 2 hours (Figure 3a vs. Figure 3f, for example). This is 18 

because of reduced durability (half-life) of interaction of CD8+ hTm cells on the stimulatory 19 

spots (19), allowing naïve cells to gradually get access to the spots over longer periods of 20 

time. In fact, the extent of suppression, when compared against twice the number of naïve 21 

cells, is in agreement with steady state behaviour predicted by the combined effect of on-rate 22 

(i.e. synapse propensity) and off-rate (i.e. inverse of durability). Ultimately, the memory cells 23 

have ~2 fold competitive advantage over naïve CD8 T cells, resulting from ~7 fold higher 24 

synapse propensity (Figure 2) and ~3.5 fold lower durability (19) on the 10 µm stimulatory 25 
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spots. Overall, high synapse propensity of CD8+ hTm cells allows them to compete out naïve 1 

cells from getting activated.      2 

 3 

Higher surface levels of LFA1 contributes to increased synapse propensity of CD8+ hTm 4 

cells 5 

Both CD8+ hTm and naïve cells have the same surface levels of CD3 (Supplementary Figure 6 

4a and 4b), ruling out that being a potential player in increased synapse propensity. However, 7 

memory cells express ~2.5 fold more LFA1 (Figure 4a, Supplementary Figure 4c) (24). We 8 

sought to find out if increased expression of LFA1 contributed to increased synapse 9 

propensity of CD8+ hTm cells. Based on fitting the binding curve for the blocking antibody 10 

TS1/18 with Scatchard equation, one can determine the concentration of antibody needed to 11 

effectively bring down the level of functional LFA1 in memory cells to what is found on 12 

naïve cells (Figure 4b). When the level of LFA1 was brought down to that seen in naïve cells 13 

from the same donor using the blocking antibody TS1/18, memory cells exhibited lower 14 

synapse propensity both on uniformly coated surface (Figure 4c and Supplementary Video 4) 15 

and on stimulatory spots (Figure 4d). Arrest efficiency rather than on-rate of arrest is reported 16 

for stimulatory spots as there was no change in the rate of encounter with the spots due to 17 

reduced levels of functional LFA1 in memory cells. We confirmed the finding by 18 

independent means by using a small molecular antagonist of LFA1, BIRT377. Even with 19 

modest concentration of 0.3 µM BIRT377 (IC50 in adhesion of SKW3 cells to immobilized 20 

ICAM1 was 2.6 µM), synapse propensity of memory CD8 T cells was reduced both on 21 

uniformly coated surface (Figure 4e) and on stimulatory spots (Figure 4f and Supplementary 22 

Video 5). In conclusion, higher surface levels of LFA1 on CD8+ hTm cells contributes to 23 

their high synapse propensity.     24 
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Discussion 1 

CD8+ hTm cells, uniquely, have a ~7-fold higher synapse propensity compared to the naïve 2 

counterparts (Figure 2). This means they have 7-fold higher probability to switch from low-3 

adhesion scanning motility to high-adhesion immature IS when they come in contact with 4 

antigen. In a recent study, we also showed that CD8+ hTm predominantly formed stable 5 

mature synapses, whereas naïve CD8+ T cells predominantly formed motile kinpses that were 6 

~3.5 fold more durable on the stimulatory spots (19).  Synapse propensity, IS vs. IK ratio and 7 

durability are all distinct cell-intrinsic parameters of interaction with antigen. Synapse 8 

propensity and durability determine competition in a linear manner such that CD8+ hTm have 9 

a ~2 fold-advantage over naïve cells while competing for antigen (Figure 3). 10 

 11 

How and why do the CD8+ hTm cells have high synapse propensity? With regard to ‘how’, 12 

we have shown that increased expression of LFA1 contributes to high synapse propensity of 13 

CD8+ hTm cells (Figure 4). LFA1 cannot be sufficient for high synapse propensity as all 14 

murine and human CD4 and CD8 memory cell subsets express more than their naïve 15 

counterparts. We think of LFA1 as more of a handle to access the intrinsic responsiveness of 16 

human memory CD8 T cells in our reductionist ex vivo system. This intrinsic responsiveness 17 

ensures appreciably more number of productive TCR triggering events within a minute thus 18 

increasing the probability of calcium influx and synapse formation (15, 25). What then 19 

determines the intrinsic responsiveness that leads to high synapse propensity? Differential 20 

expression analysis of publicly available microarray datasets did not reveal anything unique 21 

about CD8+ hTm cells when compared against both CD4+ hTm and murine memory CD8 T 22 

cells. This suggests that responsiveness is an emergent property of CD8+ hTm cells.  23 

 24 
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Why do the CD8+ hTm cells have high synapse propensity? High synapse propensity should 1 

naturally increase the fraction of precursors recruited to the response. It should also increase 2 

the synchrony in the response as majority of the cells rapidly form IS. Both of these attributes 3 

enhance the protective functionalities of memory cells. However, it is not clear why the 4 

property is unique to CD8+ hTm cells and absent in other memory subsets examined. The 5 

competitive advantage of CD8+ hTm cells at the expense of naïve CD8 T cells (Figure 3) 6 

provides an important clue to this conundrum. It is known that maintenance of naïve cell pool 7 

is important through the life time of the host, and especially critical to the health of aged 8 

individuals (26). Reduction in naïve cell number and repertoire, and especially that of naïve 9 

CD8 T cells, is a hallmark of human immune aging (27). In mice, thymic output throughout 10 

the lifespan ensures constant supply of naïve cells (28). In humans, thymic output is 11 

negligible to absent in adult life and homeostatic proliferation maintains the naïve cell pool 12 

(28). The CD8+ hTm cells, by competing out the naïve cells during the current response, can 13 

help preserve the repertoire and number of naïve cells for when they are absolutely needed. 14 

Increased cross-reactivity, likely afforded by considerably longer peptides binding to class II 15 

MHC, ensures abundance of pre-existing cross-reactive human memory CD4 cells (29, 30). 16 

Therefore, additional means are not necessary to help preserve the number of naïve CD4 cells 17 

in humans. This also means that high synapse propensity in CD8+ hTm cells can promote 18 

cross-reactivity. Consistent with this corollary, original antigenic sin, a phenomenon wherein 19 

recruitment of naïve cells against new variant epitopes is suppressed by memory cells against 20 

the original epitopes, occurs only in human CD8 T cells (31, 32) but not in mice (33). 21 

Whether this phenomenon is solely driven by the higher synapse propensity or by other 22 

factors remains to be answered.              23 

  24 
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Figure legends 1 

Figure 1: CD8+ hTm cells have high synapse propensity on uniformly presented 2 

stimulatory surfaces. 3 

a) CD8+ hTm (in green) and naïve (in red) cells forming IS or IK on SLBs presenting 0.3 4 

molecules/µm2 of UCHT1 Fab’. The dark patches in the fluorescence micrograph, in fixed 5 

cells captured by confocal microscopy (30x, 1.05 NA), are the result of overlay of the IRM 6 

image signifying attachment of the cell. Attachment along with additional criteria (see 7 

Methods) are used to count cells with IS or IK. Such cells are highlighted with a white 8 

triangle in this example. More CD8+ hTm cells pass through the phase of immature IS 9 

compared to naïve cells and then form IS or IK. b) cSMAC formation by CD8+ hTm cells at 10 

30, 3 and 0.3 molecules/µm2 of UCHT1 Fab’ as visualized in fixed cells by TIRF microscopy 11 

(150x, 1.45 NA). Centralized accumulation of UCHT1 Fab’ is a result of cSMAC formation. 12 

The cells are able to form cSMAC even at very low density of UCHT1 Fab’. c) Enrichment 13 

of ligands due to continued accumulation in the interface of those cells with IRM footprint 14 

that is typical of IS or IK formation. Fold enrichment is the mean signal intensity in the 15 

interface relative to mean signal intensity in the surrounding region outside of the cell (i.e. 16 

background). For enrichment within cSMAC, mean intensity in the most intense region is 17 

expressed relative to that of the entire interface. Each data-point represents a cell. Mean and 18 

standard deviation are shown in red. d and e) Fraction of naïve and memory cells, in the 19 

human CD8 (d) and CD4 (e) subsets, forming IS or IK on SLBs at varying density of UCHT1 20 

Fab’. Due to the use of expected number of cells in the field as the denominator, some data-21 

points have a value of >1. ~30 cells per field would represent 100% of the cells forming 22 

synapse under our experimental condition. 8-10 fields per condition and subset were imaged 23 

and plotted. The data shown is representative of two independent experiments. f to i) Fraction 24 

of human naïve and memory T cells forming IS or IK on uniformly coated surface with 25 
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immobilized CCL21, ICAM1 and OKT3. Note the differences in OKT3 concentration (f vs. 1 

g) used for coating, presence of anti-CD28 antibody 9.3 (in h) and the data for the CD8 vs. 2 

CD4 subset (in i). The cells were motile because of the presence of immobilized CCL21. 3 

Time-lapse data (1.5-2 hours) was used to determine the number of cells forming IS or IK 4 

based on scoring for attachment and deceleration (see Methods). Each data point represents a 5 

separate donor and independent experiment. Mean value is shown in red. See Methods 6 

section for interpreting statistical significance.  7 

 8 

Figure 2: CD8+ hTm cells have high synapse propensity on spatially limiting stimulatory 9 

spots. 10 

a) Schematic of the micro-contact printing procedure. Antibody is first adsorbed to 11 

polydimethylsiloxane (PDMS) casts that have short pillars with flat tops that will generate the 12 

spots. When the cast is laid on the coverglass, some of the antibody gets transferred from the 13 

PDMS surface onto the coverglass. However, this only happens at the top of the pillars. 14 

CCL21 and ICAM1 are then adsorbed uniformly across the surface from solution. b) Number 15 

of CD8+ hTm and naive cells arresting on 10 µm spots that are 30 µm apart over 90 minutes. 16 

64 spots and typically at least the same number of cells were present in the field in such 17 

experiments. c and d) Rate of attachment and arrest (on-rate) of human CD8 T cells on 10 µm 18 

spots that are 30 µm apart (in c) and 20 µm spots that are 50 µm apart (in d). The on-rate 19 

represents the values for the imaging field that is 225 µm by 225 µm in size, hence the 20 

absence of mm-2 in the unit. e and f) Rate of encounter of human CD8 T cells with 10 µm (in 21 

e) and 20 µm (in f) spots. Again, the values given are for the specific imaging field. g and h) 22 

Arrest efficiency of human CD8 T cells on 10 µm (in g) or 20 µm (in h) spots. Both 23 

encounter rate and arrest efficiency contribute to very high on-rate of attachment of CD8+ 24 

hTm compared to the naïve cells. Each data point represents a separate donor and 25 
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independent experiment in each plot. Mean value is shown in red. See Methods section for 1 

interpreting statistical significance.    2 

 3 

Figure 3: CD8+ hTm cells compete out naïve T cells by preventing access to stimulatory 4 

spots due to their high synapse propensity. 5 

a to d) 1x number (see Methods for details) of differentially labelled naïve and memory cells 6 

were pooled and introduced into the channel with stimulatory spots. After 2 hours, multiple 7 

fields along the channel were imaged for multiple donors. Mean number of cells arrested per 8 

spot in the field is plotted for each field imaged. Type of spot configuration and T cell subset 9 

examined is denoted at the top and in category names of the dot plots (Human CD8 T cells in 10 

a and b, Human CD4 T cells in c, and Murine CD8 T cells in d). Mean value is shown in red. 11 

e) Activation of human naïve CD8 T cells assessed after 10-12 hours of interaction with 10 12 

µm wide stimulatory spots in a competitive setting by staining for CD62L. Activated cells 13 

have lower levels of CD62L due to gradual proteolytic shedding during continuous TCR 14 

signalling. Note that the histograms have the same number of naïve cells represented. Having 15 

2x number of naïve cells is a ‘control’ case (blue) to compare against the scenario wherein 16 

memory cells are also present (orange). Note that the presence of memory cells reduces not 17 

only the % of naïve cells that get activated but also the extent of shedding of CD62L. This 18 

implies that memory cells reduce TCR signalling even among the activated naïve T cells. f to 19 

h) % of activated naïve CD8 T cells, as measured by the % of cells with lower CD62L, under 20 

different competitive settings on 10 µm spots (in f), 20 µm spots (in g), and on uniformly 21 

stamped surface (in h). Lines that join the dots for each competitive setting represent the 22 

same donor. Data points for each competitive setting are color-coded (see top of panel g). 1x 23 

number of cells on 20 µm spots is considerably higher (see Methods). Channels with 24 
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uniformly stamped surface received the same number of cells as the channels with 10 µm 1 

spots under the corresponding competitive settings. See Methods section for interpreting 2 

statistical significance. 3 

 4 

Figure 4: Higher surface expression of LFA1 in CD8+ hTm cells contributes to high 5 

synapse propensity.  6 

a) CD8+ hTm cells have more surface LFA1 than naïve cells. Surface expression of LFA1 7 

was estimated by labelling the cells with TS1/18, a blocking antibody against the β subunit of 8 

LFA1, under saturating conditions (10 µg/ml) such that virtually all LFA1 is bound. Absolute 9 

numbers of antibody molecules comes from the use of standardized beads with known 10 

number of fluorochrome equivalents in flow cytometry measurements. b) Binding of TS1/18 11 

to memory cells as a function of concentration. Based on the estimate of Kd (dissociation 12 

constant) of binding from curve fitting (Scatchard equation, on top), it is possible to 13 

determine the concentration of TS1/18 needed to block the excess number of LFA1 14 

molecules and thereby bring down the effective number of functional LFA1 molecules to 15 

what is seen in naïve cells. The plot is a representative example for illustration. c and d) 16 

Synapse propensity of CD8+ hTm cells is reduced after blocking excess LFA1 molecules 17 

with TS1/18, both on uniformly coated surface (c) and on 10 µm-wide stimulatory spots (d). 18 

e and f)  Synapse propensity of CD8+ hTm cells is reduced after inhibiting LFA1 with 19 

BIRT377 both on uniformly coated surface (e) and on 10 µm-wide stimulatory spots (f). The 20 

synapse propensity measurements were carried out as described in earlier figures. Cells were 21 

treated with TS1/18 or BIRT377 for 10-20 minutes before initiating imaging. Each data point 22 

represents a separate donor and independent experiment in each plot, except in b. Mean value 23 

is shown in red. See Methods section for interpreting statistical significance. 24 
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