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Abstract 

Plants communicate with their environment in many ways, using colors and shapes and secreting 

chemicals. Yet, the possibility that plants emit airborne sounds that reveal their condition has not 

been investigated. Here, we develop a novel method for remotely detecting plant sound emission. 

We use it to demonstrate, to our knowledge for the first time, that plants emit sounds that can be 5 

recorded from a distance. We recorded ~65 dBSPL ultrasonic sounds at 10 cm distance from 

tomato and tobacco plants, suggesting that these sounds could be detected by many animals from 

up to several meters.  We further train machine learning algorithms to identify the physiological 

condition of tomato and tobacco plants based solely on the emitted sounds. We successfully 

classified the plant’s condition – dry, cut, or intact – based on its emitted sounds. Our results 10 

suggest that animals, and possibly even other plants, could use sounds emitted by plants to gain 

information about the plant's condition. More investigation on plant bioacoustics in general and 

on sound emission in plants in particular may open new avenues for understanding plants, and 

their interactions with the environment. 

 15 
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Introduction 

Plants are constantly involved in communication (Karban 2008). When flowering plants are 

ready to breed, they attract their pollinators by releasing attractive fragrances and displaying 

bright colors (Raguso 2008, Renoult, Valido et al. 2014, Renoult, Blüthgen et al. 2015). When 

attacked by herbivores, plants can emit volatile organic compounds (VOCs) that attract their 5 

herbivores’ predators, leading to an increase in the plant’s survival and fitness (Takabayashi and 

Dicke 1996, Kessler and Baldwin 2001, Engelberth, Alborn et al. 2004). VOCs can also affect 

neighboring plants, resulting in increased resistance in these plants (Dolch and Tscharntke 2000, 

Heil and Karban 2010). Altogether, plants have been demonstrated to use visual, chemical and 

tactile communication (Karban 2008, Falik, Mordoch et al. 2011, Chamovitz 2012).  10 

Nevertheless, the ability of plants to emit airborne sounds – that could potentially be heard by 

other organisms – has not been explored (Chamovitz 2012, Gagliano, Mancuso et al. 2012, 

Hassanien, HOU et al. 2014). 

 

Plants exposed to drought stress have been shown to experience cavitation – a process where air 15 

bubbles form and explode in the xylem, causing vibrations (Tyree and Sperry 1989, Cochard, 

Badel et al. 2013). Yet, these vibrations have always been recorded by connecting the recording 

device directly to the plant xylem (Cochard, Badel et al. 2013, De Roo, Vergeynst et al. 2016). 

Such contact-based recording does not reveal the extent to which these sound vibrations could be 

sensed at a distance from the plant, if at all (Bailey, Fowler-Finn et al. 2013, ten Cate 2013, De 20 

Roo, Vergeynst et al. 2016). Thus, the question of airborne sound emission by plants remains 

unanswered (Gagliano 2012, De Roo, Vergeynst et al. 2016, Jung, Kim et al. 2018).  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507590doi: bioRxiv preprint 

https://doi.org/10.1101/507590


4 

 

Many animals, including herbivores and their predators, respond to sound (Spangler 1988, Miller 

and Surlykke 2001, Fullard, Dawson et al. 2003) . Recently, plants were also demonstrated to 

respond to sounds (Jeong, Shim et al. 2008, Hassanien, HOU et al. 2014, Ghosh, Mishra et al. 

2016, Mishra, Ghosh et al. 2016), e.g. by changing gene expression of specific genes (Jeong, 

Shim et al. 2008, Ghosh, Mishra et al. 2016).  If plants are capable of emitting informative 5 

airborne sounds, these sounds could have a rapid effect on nearby organisms, including both 

animals and plants. Even if the emission of the sounds is entirely involuntarily, and is merely a 

result of the plant’s physiological condition, nearby organisms that are capable of hearing them 

could eavesdrop for their own benefit. Furthermore, some of these responses may be beneficial 

for the emitting plant, for example if the plant’s sounds induce resistance to drought or disease 10 

(Kwon, Jeong et al. 2012, Jeong, Cho et al. 2014, Choi, Ghosh et al. 2017, López-Ribera and 

Vicient 2017) in neighboring plants – or even in other parts of the same plant. In such cases, 

plant sound emission would be favored by natural selection. Therefore, we hypothesize that 

plants emit informative airborne sounds, which may serve as potential signals to their 

environment. Here we show that plants indeed emit airborne sounds, which can be detected 15 

several meters away. Moreover, we show that the emitted sounds carry information about the 

state of the plant. 

 

Results 

To investigate plants’ ability to emit airborne sound emissions, we constructed a reliable 20 

recording system, in which each plant was recorded simultaneously with two microphones (see 

Fig. 1 for illustration, and Methods for details). We recorded tomato (Solanum lycopersicum) and 
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tobacco (Nicotiana tabacum) plants under different treatments, focusing on the ultrasonic sound 

range (15-250 kHz), where the background noise is weaker. 

  

Figure 1. Experimental setup. In each 

recording, three plants are placed inside an 5 

acoustic box with two directional 

microphones oriented at each plant. Using 

two microphones helps eliminating false 

detections resulting from electrical noise 

clicks of the recording system and cross-10 

plant interference. Two plant species were recorded: Solanum lycopersicum (tomato) and 

Nicotiana tabacum (tobacco). 

 

We found that plants emit sounds, and that drought-stressed plants (see Methods) emit 

significantly more sounds than control plants (p<e-7, Wilcoxon test). The mean number of 15 

sounds emitted by drought-stressed plants during one hour was 35.4±6.1 and 11.0±1.4 sounds for 

tomato and tobacco, respectively (Fig. 2a). In contrast, the mean number of sounds emitted per 

hour by plants from all the well irrigated control groups was lower than 1 (Fig. 2a). Three 

controls were used: recording from the same plant before treatment (self-control), recording from 

an untreated same-species neighbor plant (neighbor-control, see Methods), and recording an 20 

empty pot without a plant (Pot). Our system did not record any sound in the Pot control (Fig. 

2a).  
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How does a dry plant sound? Figs. 2b, c show examples of raw recorded time signals and their 

spectra as recorded from drought-stressed tomato and tobacco plants. The mean peak sound 

intensity recorded from drought-stressed tomato plants was 61.6±0.1 dBSPL at 10 cm, with a 

mean peak frequency of 49.6±0.4 kHz (frequency with maximal energy), and the mean intensity 

recorded from drought-stressed tobacco sounds was 65.6±0.4 dBSPL at 10.0 cm, with a mean 5 

frequency of 54.8±1.1 kHz.  

Similarly to drought-stressed plants, cut plants (see Methods) also emitted significantly more 

sounds than control plants (p<e-7, Wilcoxon test). Cut tomato and tobacco plants emitted 

25.2±3.2 and 15.2±2.6 sounds per hour, respectively (Fig. 2a), while the mean number of sounds 

emitted by control plants was lower than 1 (Fig. 2a). Figs. 2b, c show examples of recorded time 10 

signals and their spectra as recorded from cut tomato and tobacco plants. The mean peak 

intensity of the sounds emitted by cut tomato plants was 65.6±0.2 dBSPL at 10 cm distance with 

a mean peak frequency of 57.3±0.7 kHz (frequency with maximal energy), and the mean 

intensity of the sounds emitted by cut tobacco plants was 63.3±0.2 dBSPL at 10.0 cm distance 

with a mean frequency of 57.8±0.7 kHz. The distributions of sound peak intensity and the 15 

maximum energy frequency of cut and drought-stressed tomato and tobacco plants are shown at 

Fig. 3a. Spectrograms of raw recorded sounds from cut and drought-stressed tomato and tobacco 

plants are shown at Supporting Information Fig. S1.  

 

 20 
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Figure 2. Plants emit remotely-

detectable ultrasounds under stress. 

(a) Mean number of sounds emitted 

during 60 minutes of recording by 

tomato and tobacco plants under two 5 

treatments, drought stress and cutting. 

Three control groups were used – 

empty pots, and two groups of 

untreated plants: self-control – the same 

plants before treatment; and neighbors-10 

control – untreated plants that shared the 

acoustic box with treated plants. All 

treatment groups emitted significantly 

more sounds (p<e-7, Wilcoxon test) than 

all control groups (treated: 15 

MeanTomato−Cut = 15.2 ± 2.6,   

MeanTobacco−Cut = 21.1 ± 3.4 ,  

MeanTomato−Dry = 35.4 ± 6.1 ,  

MeanTobacco−Dry = 11.0 ± 1.4 ), self-

control (Meanself<1 for all) and neighbors 20 

control (Meanneighbors<1 for all). The 

system did not record any sound from pots 

without plants during the experiments 

(Meanpots=0). 20≤n≤30 plants for all 

groups. (b) Examples of time signals of sounds emitted by: a drought stressed tomato, a drought 25 

stressed tobacco, a cut tomato, and a cut tobacco. (c) The spectra of the sounds from (b).  

 

   

Can we identify the condition of a plant based on the acoustics of the sounds it emits? To test 

this, we trained a regularized machine learning classifier. We divided the sounds to four groups 30 
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in a 2X2 design, with two plant types – tomato and tobacco, and two treatments – drought or 

cutting. The treatments were applied to the plants before the beginning of the recording. The 

binary classifier was trained to separate two equal-size groups (“pair”) in each comparison 

(Tomato-Dry vs Tomato-Cut; Tobacco-Dry vs Tobacco-Cut; Tomato-Dry vs Tobacco-Dry; 

Tomato-Cut vs Tobacco-Cut). For cross validation, the model was tested only on plants that were 5 

not a part of the training process (see Methods for more details).  

The classifier achieved ~70% accuracy for each of the four pairs (Fig. 3b red line), significantly 

better than random (p<e-13 for each pair, see methods). The same classifier was trained to 

discriminate between the electrical noise of the system (see Methods) and the sounds emitted by 

either tobacco or tomato plants, and achieved more than 98% accuracy for both (Fig. 3b). We 10 

used Support Vector Machine (SVM) as the classifier and scattering network (Spangler 1988) for 

feature extraction. The results were robust to the dimension of the descriptors and the scattering 

network specific parameters (Fig. S2). The results were also significantly better than random 

when we used MFCC (Ellis 2005) as the input features (p<e-4, see methods ) and even when we 

only used 4 basic acoustic features (Acevedo, Corrada-Bravo et al. 2009, Giannakopoulos and 15 

Pikrakis 2014) the results were significantly better than random for 5 of the pairs  (p< e-4; Fig. 

3b). 
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Figure 3. The plant condition can be detected from a distance just by listening to its sound 

emissions. (a) The recorded sounds intensity peak and the max energy frequency for the four 

groups – drought stressed tomato plants, cut tomato plants, drought stressed tobacco plants and 5 

cut tobacco plants. (b) The accuracy of sound classification achieved by different feature 

extraction methods, with SVM classifier. The best results were obtained using scattering network 

method for feature extraction (red line) – significantly better than when we use MFCC or Basic 

methods for feature extraction for all the pairs (P<0.05, P< e-6 correspondingly, Wilcoxon sign 

rank test). Training set size of the two groups in each pair was equal (400< sounds for each pair, 10 

see Table S2).  

 

 

Discussion 

Our results demonstrate for the first time that plants emit remotely-detectable airborne sounds 15 

and do so particularly under stress (Fig. 2a). The plant emissions that we report, in the ultrasonic 
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range of ~20-100 kHz, could be detected from a distance of 3-5m (see Methods), by many 

mammals and insects (when taking their hearing sensitivity into account, e.g., mice (Heffner and 

Heffner 1985) and moth (Fullard, Dawson et al. 2003)). Moreover, we succeeded in 

differentiating between sounds emitted in two different stress conditions – dry and cut (Fig. 3b) – 

with precision of ~70% using supervised machine learning methods. These findings can alter the 5 

way we think about the Plant Kingdom, which has been considered to be almost silent until now 

(Gagliano 2012). 

 

Our work can be extended in several ways. First, plant sound emissions can be tested outdoors. 

For that, the classifiers would need to separate ‘regular outdoor sounds’ from plant sounds. 10 

However, note that the plants sounds we recorded are all in the ultrasonic range, which is overall 

quieter than the audible range (Brown and Waser 2017). Second, our results can be generalized 

to other species of plants from different families. In a preliminary study we successfully recorded 

sounds from additional plants from different taxonomic families such as Mammillaria 

spinosissima cactus and Henbit deadnettle (Fig. S3). We thus expect that many plants have the 15 

ability to emit sounds, but the exact characteristics of these sounds, and the similarity between 

groups, are yet to be identified. Third, future studies could explore the sounds emitted under 

different plant states, including other stress conditions such as disease, cold, herbivores attack, 

radiation, and light, and other life stages, such as flowering and fruit bearing. Once a large 

library of plant sounds is constructed, it could be analyzed by modern tools to obtain additional 20 

insights.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507590doi: bioRxiv preprint 

https://doi.org/10.1101/507590


11 

 

A possible mechanism that could be generating the sounds we record is cavitation – the process 

whereby air bubbles form and explode in the xylem (Tyree and Sperry 1989, Cochard, Badel et 

al. 2013). Cavitation explosions have been shown to produce vibrations similar to the ones we 

recorded (Tyree and Sperry 1989, Cochard, Badel et al. 2013) , but it has never been tested 

whether these sounds are transmitted through air at intensities that can be sensed by other 5 

organisms. Regardless of the specific mechanism generating them, the sounds we record carry 

information, and can be heard by many organisms. If these sounds serve for communication a 

plant could benefit from, natural selection could have favored traits that would increase their 

transmission. 

 10 

Figure 4. Who can potentially 

benefit from listening to 

plants? An illustration of the 

potential benefits of listening to 

sounds emitted by a drought 15 

stressed plant: (i) A neighbor 

plant can be alert for drought (ii) A flying moth looking for a host plant can sense plant stress 

and modify its behavior accordingly (iii) A farmer can use this information to update his 

irrigation plan. 

 20 

We have shown that plants sounds can be effectively classified by simple machine learning 

algorithms. We thus suggest that other organisms may have evolved to classify these sounds as 

well, and respond to them (Fig. 4). For instance, many moths – some of them using tomato and 
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tobacco as hosts for their larvae (Liu, Li et al. 2004, Specht, de Paula-Moraes et al. 2015) – can 

hear and react to ultrasound in the frequencies and intensities that we recorded (Spangler 1988, 

Miller and Surlykke 2001, Fullard, Dawson et al. 2003). These moths may potentially benefit 

from avoiding laying their eggs on a plant that had emitted stress sounds. We hypothesize that 

even some predators may use the information about the plant’s state to their benefit. For 5 

example, if plants emit sounds in response to a caterpillar attack, predators such as bats (Wilson 

and Barclay 2006) could use these sounds to detect these plants (Jones 1999) and prey on the 

herbivores, thus assisting the plant. The same sounds may also be perceived by nearby plants. 

Plants were already shown to react to sounds (Jeong, Shim et al. 2008, Hassanien, HOU et al. 

2014, Ghosh, Mishra et al. 2016, Mishra, Ghosh et al. 2016) and specifically to increase their 10 

drought tolerance in response to sounds (Jeong, Cho et al. 2014, López-Ribera and Vicient 

2017). We speculate that plants could potentially hear their drought stressed or injured neighbors 

and react accordingly.  

Finally, plant sound emissions could  offer a novel way for monitoring the crops water state – a 

question of crucial importance in agriculture (Playán and Mateos 2006). More precise irrigation 15 

can save up to 50% of the water expenditure and increase the yield , with dramatic economic 

implications (Sadler, Evans et al. 2005, Playán and Mateos 2006). In times when more and more 

areas are exposed to drought due to climate change (Allen and Breshears 1998), while human 

population and consumption keep increasing (Mueller, Gerber et al. 2012), efficient water use 

becomes even more critical, for both food security and ecology.  20 

 

 

Conclusion 
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We demonstrate for the first time that stressed plants emit remote detectable sounds, similarly to 

many animals, using ultrasound clicks not audible to human ears. We also found that the sounds 

contain information, and can reveal plant state. The results suggest a new modality of signaling 

for plants and imply that other organisms could have evolved to hear, classify and respond to 

these sounds. We believe that more investigation in the plant bioacoustics field, and particularly 5 

in the ability of plants to emit and react to sounds under different conditions and environments, 

will reveal a new pathway of signaling, parallel to VOCs, between plants and their environment.    

 

Materials and Methods 

Plants materials and growth conditions  10 

Tomato – Solanum lycopersicum ‘Hawaii 7981’ (Scott, Jones et al. 1995) – and tobacco – 

Nicotiana tabacum  ‘Samsun NN’ – were used in all the experiments. All the plants were grown 

in a growth room at 25 °C and kept in long-day conditions (16 h day, 8 h night). The plants were 

tested in the experiments 5-7 weeks after germination.  

               15 

Recording protocol 

The recordings were performed in a 50 × 100 × 150𝑐𝑚3 acoustically isolated box tiled with 

acoustic foam on all sides to minimize echoes. Two cable holes, 2 cm radius each, were located 

in two corners of the box and covered with PVC and acoustic foam. Inside the acoustic box were 

only the recorded plants, 6 microphones, and an UltraSoundGate 1216H AD converter (Avisoft). 20 

The PC and all the electricity connections were in the room outside the acoustic box. Two USB 

cables connected the PC to the 1216H device inside the box, through the holes. There was no 

light inside the acoustic box.  
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The recordings were performed using a condenser CM16 ultrasound microphone (Avisoft), 

digitized using an UltraSoundGate 1216H A/D converter (Avisoft), and stored onto a PC. The 

sampling rate was 500 KHz, and we used a high-pass filter of 15 KHz built-in the system. A 

recording started only when triggered with a sound which exceeded 2% of the maximum 

dynamic range of the microphone. Two microphones were directed at each plant stem, from a 5 

distance of 10 cm. Only sounds that were recorded by both microphones were considered as 

“plant sounds” in the analysis afterwards. The frequency responses of the microphones can be 

found in the Avisoft website: http://www.avisoft.com.  

 

Data processing 10 

Data processing was performed off-line using a matlab code we developed (MATLAB 8.3, The 

MathWork Inc.), with the following steps: 1. Identifying the microphone that had recorded the 

highest intensity peak at the moment recording started. 2. Selecting the sounds that were detected 

by two microphones oriented at the same plant at the same time, and saving them for further 

analysis. Throughout the experiments, not a single detection of a sound was observed 15 

simultaneously at different plants. “Noise” sounds were obtained when the box included only 

acoustic equipment without plants or pots, and each “noise” was detected by one microphone 

only. These noises probably resulted from electrical noise of the acoustic equipment.  

 

 20 

Drought stress experiment 

Each plant was recorded twice: first before drought treatment (“self-control”), and again after it. 

In the first recording, all the plants were healthy and their soil was moist. Then, for 4-6 days, half 

of the plants were watered while the other half were not, until the soil moisture in the pots of un-
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watered plants decreased below 5%. Then, the plants were recorded again at the same order. In 

each recording session three plants were recorded simultaneously for one hour and each triplet of 

plants included at least one watered and one un-watered plant to allow “neighbors-control” – 

watered plants that were recorded while sharing the acoustic box with un-watered plants. Soil 

moisture content was recorded using a hand‐held digital soil moisture meter ‐ Lutron PMS‐714.  5 

 

Cut stress experiment 

The experiment followed the experimental design of the drought stress experiment described 

above, but drought stress was replaced with cutting of the plant. Here the pot soil was kept moist 

for all the plants throughout the experiment. The plants included in the treatment group were cut 10 

with scissors close to the ground right before the recording started. The severed part of the plant, 

disconnected from the roots, was recorded. We used the same controls of the drought stress 

experiment. 

 

 15 

Classifying sounds 

Our classification method was composed of two main stages. First, we extracted various acoustic 

features from the raw recorded signals. Second, we trained a model to classify plant sounds into 

classes based on the feature representation obtained in the first stage. We used three methods of 

feature extraction: (a) Deep scattering Network, as described in Andén and Mallat (Andén and 20 

Mallat 2014), red dotted line in Fig. 3b. This method extends MFCC while minimizing 

information loss. We used the implementation  by ScatNet (Sifre, Kapoko et al. 2013), with 

Morlet wavelets. The results were robust to the dimension of descriptors and the scattering 

network specific parameters: number of layers used; time support of low pass filter; and Q-
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Factor (Fig. S2). The values of the specific parameters used in this work are shown at Table S1. 

(b) MFCC feature extraction (dashed black line in Fig. 3b). We used the Ellis Dan 

implementation (Ellis 2005). (c) Basic features. The basic features we used were energy, energy 

entropy, spectral entropy, and maximum frequency (gray line in Fig. 3b) (Acevedo, Corrada-

Bravo et al. 2009, Giannakopoulos and Pikrakis 2014).  We used SVM with Radial kernel with 5 

the LIBSVM implementation as classifier. We used Z-score for normalization and PCA to 

reduce the dimensionality of the problem. We used only the training set to choose the number of 

components.  

During the training process we leave all the emitted sounds of one plant out for cross validation. 

Then we constructed the training set such that the two compared groups would be at the same 10 

size. We repeated the process so that each plant constructed the testing group exactly one time. 

The accuracy of the classification was defined as the percentage of correct labeling over the total 

size of the testing set (Huang, Yang et al. 2009, Noda, Travieso et al. 2017). The numbers of 

plants in each group are shown at the Table S3. 

 15 

Statistical analysis 

For statistical analysis of the number of sound emissions for the treatment and the control groups 

(Fig. 2a) we used the Wilcoxon rank-sum test. 

To compare our classifier to random result (Fig. 3b), we used the binomial probability 

distribution function (PDF) and calculate the probability to get the classifier accuracy or higher 20 

randomly for each group. 
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To compare the results obtained when using scattering network for feature extraction to the 

results obtained when using MFCC or basic feature extraction methods (Fig. 3b), we used 

Wilcoxon sign rank test. 

 

 5 
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Supporting Information  

Fig. S1 Examples for spectrograms of sounds which emitted by stressed plants. 

 

Fig. S2 Comparison of different scattering network configurations. 30 

 

Fig. S3 Recorded sounds from different plants. 
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Table S1 Parameters used in the feature extraction phase. 

 

Table S2 Pairs total sizes. 

 

Table S3 Groups sizes. 5 
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