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Abstract 
The human gut microbiome is a complex ecosystem that both affects and is affected by its 

host status. Previous analyses of gut microflora revealed associations between specific microbes 
and host health and disease status, genotype and diet. Here, we developed a method of predicting 
biological age of the host based on the microbiological profiles of gut microbiota using a curated 
dataset of 1,165 healthy individuals (3,663 microbiome samples). Our predictive model, a human 
microbiome clock, has an architecture of a deep neural network and achieves the accuracy of 3.94 
years mean absolute error in cross-validation. The performance of the deep microbiome clock was 
also evaluated on several additional populations. We further introduce a platform for biological 
interpretation of individual microbial features used in age models, which relies on permutation 
feature importance and accumulated local effects. This approach has allowed us to define two lists 
of 95 intestinal biomarkers of human aging. We further show that this list can be reduced to 39 
taxa that convey the most information on their host’s aging. Overall, we show that (a) 
microbiological profiles can be used to predict human age; and (b) microbial features selected by 
models are age-related. 

Introduction 
The human gut is colonized by a dense microbial community, calculated to consist of 1014 

cells, which is an order of magnitude higher than the number of cells in the host 1. Gut microbiota 
is a complex ecosystem that carries multiple important functions in the organism. Apart from being 
a core element of the digestive system, microbiota regulates immunity, processes xenobiotics, 
produces important metabolites, and even affects higher neural functions 2–4. The influence, 
however, is not one-sided: microbiota is not simply determining certain host characteristics, as it 
responds to signals from the host via multiple feedback loops 5. Some of these feedback loops were 
found to be reflected in the microbiota composition. 

For example, multiple studies indicate that irritable bowel diseases can develop following 
the intense immune response to an intestinal infection. Microbiota responds to proinflammatory 
milieu with a decreased number of beneficial bacteria that lack mechanisms to survive under such 
hostile conditions. In return, host immunity reacts to suppress the blooming pathogenic 
community, which produces chronic inflammation 6. Such changes constantly happen throughout 
an individual’s life and may be deleterious or beneficial, reflect strictly individual choices or be 
the effects of more widespread factors across populations. 

Metagenomic studies have provided valuable insights into how the gut microflora 
progresses with age. They revealed that gut colonization occurs during birth with the bacteria 
living in the birth canal. The “pioneer microbiome” consists of facultative aerobes (e.g. 
Escherichia, Enterococcus, etc.) that gets replaced during breast feeding with obligate anaerobes 
(e.g. Bifidobacterium infantis) 7. Upon weaning, another community shift happens towards more 
adult-like microbiomes 8. These early stages of colonization are extremely important as normal 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507780doi: bioRxiv preprint 

https://doi.org/10.1101/507780
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

infant microbiota promotes intestinal mucus formation, prevents pathogen blooming, and regulates 
T-cells. The importance of early colonization is further emphasized by studies that indicate higher 
occurrences of eczema and food allergies in children with atypical microbiota 9 development (e.g. 
increased abundance of Clostridium and Escherichia microbes) 10. Factors such as the mode of 
birth delivery (vaginal or cesarean), infant diet (breast milk or formula), and maternal microbiome 
greatly influence microbiome development. 

Although infant microbiome succession is well studied and can be used to assess the risks 
of various health conditions, its transition to adult microbiome is less understood. More so, 
composition variability attributed to geographic location, medical history, diet, and other factors 
make it hard to analyze adult microbiomes as effectively as those of infants. Age-related studies 
of human microbiome have failed to produce a straightforward theory of gut flora aging. Some 
studies indicate decreasing biodiversity in the elderly gut 11,12. However, that is not the case for all 
data sets, and elderly healthy people may have microbiomes as diverse as the younger population 

13,14. Other findings include changes in specific taxa abundance in aging microbiota. Such bacterial 
genera as Bacteroides, Bifidobacterium, Blautia, Lactobacilli, Ruminococcus have been shown to 
decrease in the elderly, while Clostridium, Escherichia, Streptococci, Enterobacteria increase 15,16. 
However, these patterns are not strictly established as results vary greatly across different studies. 
This may be attributed to different methodologies as well as unbalanced data sets that may contain 
people of different lifestyles 17. 

Despite these complications, the consensus is that the elderly gut has lower counts of short 
chain fatty acid (SCFA) producers such as Roseburia and Faecalibacterium and an increased 
number of aerotolerant and pathogenic bacteria. Such shifts can lead to dysbiosis, which in turn 
contributes to the onset of multiple age-related diseases 9. The idea that the gut microflora can be 
a major contributor to the aging process is not new. Already in the beginning of the 20th century, 
a Nobel Prize-winning Russian scientist Ilya Metchnikoff proposed that the malicious microbes 
processing undigested food (especially peptolytic bacteria, e.g. Escherichia and Clostridium) lead 
to autointoxication. Treating autointoxication with pro- and pre-biotics (such as Lactobacillus 
preparations) was suggested to alleviate an age-associated decline in organismal function. Recent 
studies have demonstrated promising results in line with this century-old hypothesis 18–20. 

The standard way of separating the gut microbiome into three chronological states - child, 
adult, and elderly microbiomes - lack a clear set of rules. Among them, adult microbiome remains 
the greatest mystery. It has no established succession stages, as in newborns, and does not normally 
reflect gradient detrimental processes typical for an old organism. This poses a question whether 
normal adult microbiome progresses at all or it is in a state of stasis. Considering the aging process 
is gradual and involves accumulation of damage and other deleterious changes 21 (as also indicated 
by a number of biomarkers such as DNA methylation clocks 22,23), it is logical to suppose that gut 
microbiome succession is also gradual 24. However, attempts to use microbiome-derived features 
to predict chronological age have been inconclusive. A support vector machine model trained on 
human metagenomic data to classify samples as young or old was shown to be only 10-15% more 
accurate than random assignment, as indicated by the Area Under the Curve (AUC) score 25. 
Another study attempting to use a co-abundance clustering approach has demonstrated general 
trendlines of microbiota composition for hosts aged 0-100 26. According to the study, specific 
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clades of the gut community significantly differ in abundance among young adults compared to 
the middle aged. However, the lack of dietary and lifestyle data prevents the authors from putting 
together a conclusive theory of gut microflora progression. Compared to the well-established 
DNAm aging clocks that achieve mean absolute error (MAE) <5 years, these results of microflora-
based age prediction suggest much room for improvement 27,28.  

The renaissance of deep learning that started in 2015 resulted in unprecedented machine 
learning performance in image, voice, and text recognition, as well as a range of biomedical 
applications 29 such as drug repurposing 30 and target identification 31. One of the most impactful 
applications of DL in biomedicine was in the applications of generative models to de novo 
molecular design 32–36. In the context of aging research, these new methods can be combined for 
geroprotector discovery 37–41. Indeed, since 2013, many aging clocks have been developed in both 
humans and other model organisms. The published aging clocks utilizing deep learning were 
developed using standard clinical blood tests 42, facial images 43, physical activity data, 44 and 
transcriptomic data 45. These clocks were used to rank the most important features contributing to 
the accuracy of the prediction by using the permutation feature importance (PFI), deep feature 
selection (DFS) and other techniques. These clocks were also used to assess the population-
specificity of the various data types 42.  

The goal of this study was to build a predictor of age with whole genome sequencing 
(WGS) data aggregated from multiple sources and various machine learning techniques and use it 
to examine patterns of incessant microflora succession. Here, we report a method to estimate a 
host’s age based on their microflora taxonomic profile, assess the importance of specific taxa in 
organismal aging, and suggest candidate geroprotective microbiological interventions. 
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Methods 

Data acquisition 

Only publicly available, fully anonymized data sets from WGS human metagenomic 
studies deposited in ENA and SRA were used. The corresponding project IDs are: ERP005534, 
SRP008047, ERP009422, ERP004605, ERP002061, ERP002469, ERP019502, SRP002163, 
ERP003612, ERP008729.46–49 Only healthy individuals with age metadata available were included 
in this study. These individuals were from Austria, China, Denmark, France, Germany, 
Kazakhstan, Spain, Sweden and USA. aged 20-90 years old. In total, 1,165 healthy individuals 
and 3,663 samples from 10 publicly available datasets were aggregated and analyzed (Figure 1). 

 

Figure 1: age distributions for 3’663 runs (A) and 1’165 donors (B) used in this study. 

Abundance calculation 

All acquired sequencing files have been quality trimmed and quality filtered with BBTools 
50. Human sequences have been detected using hg19 genome index. Additionally, specimen 
dilution test has been carried out as specified in 51. Resulting reads have been analyzed with 
Centrifuge and mapped against the collection of bacterial and archaeal genomes 52. In certain cases, 
operational taxonomic units ables have been modified to exclude unreliably detected microbes 
(relative abundance < 1e-5) and minor microbial species (<1.3e-3 prevalence). No sample has lost 
more than 5% of its abundance. After all the modifications, individual taxonomic profiles have 
been renormalized by dividing the vector by the sum of the abundances left. 
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Neural networks training 

Regression 

All deep neural networks (DNNs) were implemented using the Python 3.6 Keras library 
with Tensorflow backend. Feature selection models were trained using a full list of species-level 
features, which includes 1,673 microbial taxa. Training and validation sets were separated to 
contain 90% and 10% of all profiles in all cases. Two regressors were built: one using taxonomic 
profiles derived from individual samples (sample-based model) and a second one using taxonomic 
profiles averaged among all the samples belonging to the same host (host-based model). Models 
were trained as a regressor with five-fold cross-validation. After completing grid search for various 
model configurations, the best performing model was selected based on the maximal R2 score.  

The best performing model architecture was determined in the sample-based setting. It 
contains three hidden layers with 512 nodes in each, with PReLU activation function, Adam 
optimizer, dropout fraction 0.5 at each layer, and 0.001 learning rate (Figure 2). The same 
architecture was applied to within the host-based setting. To verify the importance of features 
derived from the sample-based DNN model, gradient boosting was used, as implemented in 
XGBoost Python library 53. The best performing XGBoost model was trained using the following 
parameters: linear_nthread = 35, max_depth = 6, max_delta_step = 2, lambda= 0, gamma=0.1, 
eta=0.1, alpha = 0.5. The XGBoost models’ performance was evaluated using MAE. 

Classification 

Age classifier models were trained using a subset of either 95 features or 39 features. 
Training and validation were separated to contain 80% and 20% of all donors, respectively. The 
age bracket classifier was implemented with the Python Keras library using Tensorflow backend. 
A weighted F1-score was selected as the target metric to assess model performance. Best 
performing architectures are illustrated in Figure 3. For 95 feature classifier it is: 128, 32 and 8 
nodes respectively in 3 hidden layers, dropout rate of 0.5 , PReLU activation function in hidden 
layers, softmax activation function in the output layer 54. For 39 feature classifier it is: [64, 8] nodes 
in 2 hidden layers, 0.5 dropout rate, PReLU activation function in hidden layers, Softmax 
activation in the output layer. 

Oversampling 

To solve the class imbalance problem while building models for age bracket prediction, we 
used oversampling. Self Organizing Maps (SOMs) based on presence/absence profiles (1 if a taxon 
is detected in a sample, 0 if it is not) have been built for each age bracket with the Python library 
Somoclu. Each SOM consists of 100 cells placed on a toroid lattice. To generate synthetic profiles 
for underrepresented classes, codebook vectors are picked at random with replacement according 
to the number of Best Matching Units (BMUs) mapped to them. Codebook values are used as 
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probabilities for including a taxon into a fake sample. Fake presence/absence profiles are then 
multiplied by a vector of mean abundances of corresponding BMUs and normalized. 

Feature importance 

To assess individual feature importance, we have applied the Permutation Feature 
Importance (PFI) technique. PFI measures the change in prediction quality (measured in R2 score 
decrease) upon permuting a single feature vector. Greater decrease in quality signal greater 
importance of the feature. The features deemed most important have been further assessed with 
the Accumulated Local Effects (ALE) method to determine the change in age prediction upon 
minor changes in a microbial species abundance. ALE has been implemented following the 
algorithm described below. For each of the 95 selected species, a quantile value table (with 5% 
steps) has been composed. Local Effects (LE) for each quantile bin have been calculated by 
measuring the average change in prediction upon substituting observed abundance of a feature, 
with right and left bin border values. ALEs for each quantile are calculated by adding up all the 
previous LEs and centering the result to make the average effect of each taxon zero. 
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Figure 2: The neural network configuration for the best performing DNN regressor. The 
regressor takes in a full species level taxonomic profile and estimates the donor’s exact 
chronological age. The first hidden layer is linear and was used only to assess feature importance 
in accordance with deep feature selection method 55. 
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Figure 3: The best performing DNN configurations for age bracket classification (20-40, 41-60, 
61-90 years) based on short marker sets: 39 taxa (A), 95 taxa (B). 
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Figure 4: Accumulated Local Effects (ALE) method used in this paper to assess specific taxa 
influence on age prediction. Changes in predicted age upon substituting observed taxon 
abundance with quantile values are averaged and recorded for every quantile bin. Then, they are 
summed to produce ALEs, which are additionally centered for convenience. 
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Results 

Age prediction using machine learning 

To examine the relationship between human gut taxonomic profiles and chronological age, 
we prepared a collection of full metagenome sequences for 1,165 healthy individuals (3,663 
samples total) from 10 publicly available datasets. All individuals in our data set were between 20 
and 90 years, with median age of 46 years. After randomly separating the 3,663 samples into 
training (90%) and validation (10%) sets, we trained a deep neural network regressor to predict 
donor's age using a vector of relative abundances for 1,673 microbial species. MAE achieved by 
the best model configuration was 3.94 years, with R2 of 0.81 (Figure 5A). We then divided the 
samples into three age groups (20-39, 40-59 and 60-90 years) and found that the predicted age 
distribution generated by the model closely matched the actual age distribution (Figure 6). 

To verify the results obtained with DNN, we implemented random forest, support vector 
machine and elastic net regressor. All of these methods performed poorly compared  to the DNN 
approach with the mean absolute errors exceeding 11  years. Apart from them, we trained a 
gradient boosting (XGB) regressor with accuracy comparable to the DNN model (MAE = 4.69 
years, R2 = 0.81) (Figure 5B). Both approaches skew the predictions towards the median age — 
46 years (Figure 6).  While there are certain variations within taxonomic profiles due to differences 
in geographical location or diet types, the described predictors can be applied to adult people from 
various populations equally well (see Supplementary). 

Microbiological influence on age prediction 

Using Permutation Feature Importance (PFI), we assessed which taxa abundances play the 
greatest role in microbiological age prediction. We identified 95 features that decrease both XGB 
and DFS models’ R2 score by >0.001 (Figure 7). According to PFI scores, DNN regressor is more 
sensitive to highly abundant species, while XGB regressor contains some minor taxa among its 
most important features. We consider this an indication of DNN’s increased robustness compared 
to other methods. The complete list of 95 taxa with corresponding scores, abundances and 
prevalences can be found in Supplementary Table 1. 

To characterize how these 95 features affect age prediction, we utilized the Accumulated 
Local Effects (ALE) approach (Figure 4). The ALE approach measures the response of a regressor 
to changes in specific taxa abundance. Each feature’s ALE was calculated using only the 
independent profiles where it can be reliably detected (abundance > 1e-5). Some microbes showed 
steadily increasing age prediction with increasing abundance (e.g. [Eubacterium] hallii); other 
microbes were on the opposite, inversely correlating with predicted age (e.g. Bacteroides vulgatus) 
(Figure 8). Interestingly, certain microbes that were previously identified as important by PFI 
showed little influence on predicted age (e.g. [Eubacterium] rectale) (Figure 8). 
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Using ALEs, all features can be classified into seno-positive (monotonically increasing 
ALE plot), seno-negative (monotonically decreasing ALE plot), and more complex groups (not 
monotonic cases) (Figure 9). Among 95 features, only 39 displayed the average change in 
predicted age of more than 1 year within the 5%-95% quantile bracket. Among those, 21 were 
seno-negative, 15 seno-positive and 3 non-monotonic. 

 

 

Figure 5: Age predictions derived from cross-validation of the sample-based DNN model (A) 
and the XGB model (B). Samples are colored by data source, and dashed lines mark the median 
of observed age (46 years). 
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Figure 6: Density distribution for observed (blue) and predicted (orange) ages for two 
regressors: DNN (A) and XGB (B). “N” stands for the total number of samples per class. Dashed 
lines within violins stand for quantile borders. Mean Absolute Error (MAE) (in years) for each 
age group is marked below the graph. 
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Figure 7: Bubble plot of 95 microbial taxa with PFI importance score >0.001 in both regression 
models (average among 5 folds). Bubble size stands for taxon prevalence (fraction of samples 
where the taxon is reliably detected), bubble color stands for taxon abundance (its average 
fraction in the communities where it was detected). 
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Figure 8: Twelve most important features’ effects on age prediction. Plots contain only 5-95% 
quantile segment due to extreme ALE values for extreme quantiles. N is the number of samples 
where a feature is reliably detected (abundance > 1e-05), total number of samples used is 1,165. 
More ALE plots are available in Supplementary Information. 

Age bracket prediction with DNN 

While DNN and XGB regressors displayed acceptable accuracy when trained on full 
taxonomic profiles, decreasing the number of features down to 100 during training produces poorly 
performing models (MAE > 11 years). To estimate the predictive value of 95 and 39 marker taxa 
sets (Figure 9), we applied them to a much easier task of age bracket prediction. All donors were 
separated into three age groups: young (20-39 years, 32% of all donors), middle aged (40-59 years, 
41% of all donors) and elderly (60-90 years, 27% of all donors). Underrepresented classes were 
oversampled (see Methods).  

Within this setting, best performing DNN architectures show significantly higher accuracy 
than either random age group assignment (equiprobable or weighted). While the mean weighted 
F-score for random models do not exceed 38±1%, 95 marker set achieved the F-score of 67±4%. 
Downsizing this marker set using ALEs to 39 taxa reduced the score by 5% (to 62±3%). We have 
additionally compared the classifier constructed using the ALE-defined 39 intestinal marker set to 
classifiers built on relative abundances for 39 randomly selected taxa. Neither of 100 sets has 
produced a classifier as good as ALE-selected features (38±3%). (Figure 10)
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Figure 9: ALE range (maximum ALE minus minimum ALE within 5-95% abundance bracket) for 95 selected 
microbial features. Red are monotonically increasing ALEs, blue are monotonically decreasing ALEs, and 
green are non-monotonic ALEs. Only 39 taxa affect age prediction for more than 1 year within the specified 
abundance bracket.
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Figure 10: F-scores for four age bracket classifiers: three random models and two models built 
with 95 and 39 marker taxa. Equiprobable random classifier assigns a test sample to each age 
group (20-39, 40-59, 60-90 years) with ⅓ probability, weighted random classifier assigns 
samples with probabilities equal to the fraction of a class in the test sample. Models with 
randomly selected markers are built using 39 random taxa abundances as input. N stands for the 
number of cross validation folds. 
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Host-based age prediction 

While the DNN model is highly accurate, during its training all available samples were 
treated as independent due to data scarcity. By averaging the taxonomic profiles obtained from 
samples with a shared host we eliminated remaining data contamination. This reduced the total 
number of features to 1,165 entries. The host-based model was trained using the best performing 
DNN configuration as identified during sample-based training (Figure 2). This model was less 
accurate than a sample-based one: it reached MAE of only 8.56 years (Figure 11). However, the 
model still performed better than baseline age assignment (MAE = 12.47 years). Interestingly, the 
regressorprocesses feamle and male specimen with equal accuracy, and the predicted intestinal age 
positively correlates (r = 0.23) with BMI, which is in line with existing data on connections 
between BMI and biological age 56. However, this correlation is lower than the one between donor 
BMI and observed age:  r = 0.3. 

 

Figure 11: Age predictions derived from cross-validation of the host-based DNN model. 
Average MAE for best performing models in each of the 5 folds is 8.39 years, which is much 
lower than in the case of the sample-based approach (3.96 years). Blue area contains 52% of all 
predictions and corresponds to the trendline ±6 years. 
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Discussion 
To our best knowledge, we present the first method to predict human chronological age 

using gut microbiota abundance profiles. We compare two approaches to age prediction: 
regression and classification. We applied multiple methods to build a regressor that takes in 
profiles containing abundances for all 1,673 taxa reliably detected in at least 0.13% of samples, 
including random forest, support vector machine, elastic net, gradient boosting (XGB) and deep 
neural network (DNN). However, only the latter two models achieved the predictions better than 
random (Figure 5). 

Due to data scarcity, we initially trained our models treating all samples as independent, 
while some of them belonged to the same host. To further demonstrate the applicability of the 
suggested method for age prediction, we trained a DNN model reducing the number of samples to 
only one per host. Not surprisingly, the resulting accuracy of the predictor was significantly lower 
(MAE = 8.56, Figure 11), yet above random. Such factors as study protocols and host country of 
residence (integrating geographic location, genotype and lifestyle) can be expected to affect 
taxonomic profiles. 

Despite great performance of XGB (MAE = 4.69 years) and DNN models (MAE = 3.94 
years), extracting biologically relevant information from them presents a major challenge. We 
implemented ALEs approach using DNN regressor as a reference and its 95 most important 
features to see how changes in abundance affect the predictions. ALE is a technique that 
theoretically surpasses PFI as it takes into account intrinsic interdependence of microbiological 
features. According to our ALE analysis, only 39/95 features could change the average predicted 
age by more than 1 year (Figure 9). Interestingly, reducing the number of features by 59% caused 
only a 5% drop in F-score for the age bracket classification task. This suggests that the ALEs 
technique succeeded in selecting only the most relevant microbial features. 

Table 1 provides information for each bacterium in the 39 ALE-selected marker set of 
intestinal aging. Interestingly, while it contains both beneficial (e.g. Bifidobacterium) and 
pathogenic (e.g. Pseudomonas aeruginosa) microbes, seno-positive or seno-negative status is not 
determined by the nature of host-microbe interactions (Figure 12). For example, Campylobacter 
jejuni is known to cause campylobacteriosis – a foodborne diarrheal infection–yet it is seno-
negative and can affect the average prediction age by more than 2 years (Figure 9) 57. On the other 
hand, both selected Eubacterium species are seno-positive and increase average predicted age by 
1-3 years (Figure 9), despite having a generally beneficial effect on microbiota composition. 

Although surprising at first glance, bacterial influence on age prediction is not determined 
by whether it is beneficial to the host or not. The proposed method of feature selection does not 
detect microbes that promote longevity or support useful functions of "youthful" microbiota. In 
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the case of C.jejuni, campylobacteriosis affects mostly children. Moreover, exposure to C.jejuni 
can lead to asymptomatic colonization and immunity acquisition 58. Taken together, these facts can 
be used to put together a hypothetical explanation of C.jejuni being a seno-negative feature. Older 
individuals have a lower count of these bacteria, as they are more likely to carry the memory of 
previous C.jejuni exposure (either in their immune system or microbiota composition) and can 
effectively prevent its extensive colonization. Meanwhile, younger individuals have not yet 
tailored the means to oppose C.jejuni and let it multiply to a greater extent. 

Beneficial bacteria that turn out to be seno-positive are, in fact, more intriguing than seno-
negative pathogens. One possible explanation could be that these bacteria are more resilient in the 
context of increasingly detrimental cross-talk with the host. Another possible explanation 
questions the very concept of the microbiological aging clock. Since global dieting and lifestyle 
habits have significantly changed during the last century—increased sedentary time, sugar intake, 
processed foods consumption, etc.—any microbiota changes observed in the elderly may not 
indicate natural progression through age, but reflect generation-specific microflora parameters 59. 
In other words, any features identified today as associated with the youth may become the signature 
of the elderly in 50 years, provided global diet and lifestyle keeps changing. Depending on the 
extent of such microbiological "generation gap," any future intestinal aging clock may need to be 
regularly updated to account for an ever-changing environmental context. Unfortunately, 
metagenomics is an extremely young branch of biology and there is little hope to learn what the 
microflora of the elderly looked like when they were young. However, studies of multiple 
generations of migrants can help us estimate the persistence of microbiota obtained in early years. 
One such study conducted on American immigrants of Asian origin indicates that first generation 
migrants start to lose gut diversity as soon as nine months after relocation. This loss is even more 
pronounced in the second generation 60. A first generation immigrant’s microflora memory may 
be the reason why their microbiota is different from that of their children. Studies in such a setting 
are extremely important to assess the hyper-parameters driving human microbiota progression. 

Another interesting aspect of the ALE-based feature selection is that some features are very 
poorly described within human microbiota context—environmental bacteria, —yet have great 
influence over age prediction. More knowledge on such microorganisms (e.g. Ornithobacterium 
rhinotracheale) may provide useful insights into the functions of human microbiota. 
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Figure 12: Seno-positive/-negative status of a species is not determined by its function within 
the gut community. While some pathogens are associated with increased age prediction (red 
quadrant) and some beneficial bacteria are correlated with lower age prediction (green quadrant), 
many other species are seno-negative pathogens and seno-positive normobiotic species (blue 
quadrants). Moreover, some taxa are scarcely described in literature, yet they have a pronounced 
effect on age prediction (grey area). In the text, we suggest hypothetical explanations as to why 
taxa might be occupying their respective positions in the plane above. 
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Conclusion 
We demonstrated the feasibility of age prediction by application of machine learning 

approaches to taxonomic microflora profiles. Our most accurate DNN regressor achieved the MAE 
of 3.94 years. This performance is comparable with the 1.9 MAE of the PhotoAgeClock, 2.7  of 
the state of art methylation aging clock, 7.8 MAE transcriptomic aging clock and 5.5 MAE of  the 
hematological aging clock published previously. We also developed a method for microbiological 
feature selection and annotation. It combines two-fold feature importance assessment using PFI 
and ALE approaches upon training a DNN. This technique allows both selecting the most relevant 
features as biomarkers and quantifying their influence on the target variable, i.e. age. Using this 
method, we identified 95 and 39 prokaryote taxa as the biomarkers of intestinal aging. Despite the 
reduced predictive power of this set when compared to the whole taxonomic profiles, it let us to 
assign individuals to three age groups (young, middle aged and old) 86% more accurately than 
random classification (0.71 versus 0.34 F-score).  

The identified biomarkers include species whose abundance is positively or negatively 
correlated with predicted age. These species may be further investigated deeply by the community 
to improve our understanding of human aging and its relationship with the gut microbiome. 
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Table 1: 39 ALE-selected biomarkers for microbiological age prediction. Median abundance for a microbe is calculated excluding the 
samples where it is not detected. Total number of samples: 1,165 
 

Species 
 

Preva-
lence, 

% 

Median 
abun-
dance, 

% 

Literature Status Ref 

Acidaminococcus 
fermentans 42.49 0.004 

Anaerobe. 
A. can use amino acids (predominantly 
glutamate) as their sole energy source, while 
producing butyrate 

Seno-
positive 

61 

Alistipes finegoldii 99.14 0.86 

Anaerobe 
Alistipes are considered to be signatures of 
pediatric IBS. Although, it can be a part of 
healthy microbiome core. 

Seno-
negative 

62,63 

Bacteroides 
caecimuris 99.4 0.506 Anaerobes 

Bacteroides are of the earliest bacteria to 
colonize human guts. They metabolize 
polysaccharides (including host produced). 
Various studies indicate that Bacteroides-host 
crosstalk prevents GI infections. Bacteroides 
are more abundant in individuals with diets 
high in saturated fat and animal proteins. 
 

Seno-
negative 

64,65 
 
 
 
 

Bacteroides dorei 99.91 15.107 Mixed 

Bacteroides ovatus 100 1.55 Seno-
negative 

Bacteroides 
thetaiotaomicron 99.91 3.013 Seno-

negative 
Bacteroides 

vulgatus 99.91 2.433 Seno-
negative 

Bifidobacterium 
bifidum 97.08 0.053 

Aerotolerant 
Although Bifidobacterium is considered to be 
anaerobic, these two species are tolerant to 
high O2 concentrations. Bifidobacterium are 

Seno-
negative 

66,67 
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Bifidobacterium 
longum 99.31 0.603 

among lactate producing bacteria group and 
are considered beneficial to the host as 
indicated by multiple studies of obesity, 
colorectal cancer and IBD. B. derived 
probiotics and B. centered prebiotics are 
widely accepted as useful dietary 
supplements. 
 

Seno-
negative 

Campylobacter 
jejuni 95.45 0.012 

Microaerophile 
C.jejuni is a major cause of diarheal infections 
in the world. Poultry being C. main reservoir 
the infection is mostly foodborne. However, 
C. colonization may also be asymptomatic. 

Seno-
negative 

57,68 

Christensenella 
massiliensis 99.14 0.271 Anaerobe 

Poorly described in literature. Mixed  

Chryseobacterium 
gallinarum 67.21 0.02 Aerobes 

Poorly described in literature. 
C.gallinarum is known for its keratin 
degrading properties. 
 

Seno-
negative 69 

 Chryseobacterium 
taklimakanense 44.12 0.01 Seno-

positive 

[Clostridium] 
bolteae 99.74 2.278 

Anaerobes 
These non-pathogenic spore forming 
microorganisms are deemed important for 
fecal transplantation success in C. difficile 
treatment. They produce short chain fatty 
acids (SCFAs), including butyrate. Some 
studies point out that metabolites produced 
by Clostridium have neurotoxic properties 
and may contribute to autism spectrum 
disorder development. 

Seno-
positive 

67,70 
 
 

[Clostridium] 
saccharolyticum 85.67 0.014 Seno-

positive 

Clostridium sp. 
SY8519 97.68 0.046 Seno-

positive 
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Comamonas 
kerstersii 13.56 0.003 Aerobe 

Normally environmental bacterium 
Seno-

negative 
71 

Desulfovibrio 
fairfieldensis 24.38 0.002 

Anaerobe 
This species belongs to the group of sulfate 
reducing bacteria in human gut. ~50% of 
human guts are colonized by sulfate reducers. 
They produce H2S, which has both pro- and 
anti-inflammatory properties described. 
Meanwhile, D.fairfieldensis has controversial 
pathogenic status. 

Seno-
negative 

72,73 

Eggerthella lenta 97.68 0.063 Anaerobes 
Scarce literature. E.lenta is known for 
deactivating cardiac medication – digoxin. 
 

Seno-
positive 74 

 Eggerthella sp. 
YY7918 82.83 0.009 Seno-

positive 
[Eubacterium] 

eligens 99.66 1.201 
Anaerobes 
Eubacterium produce butyrate and 
propionate from various substrates 
contributing to normobiotic community. 
Eubacterium, however, fail to metabolize 
polysaccharide effectively. 
 

Seno-
positive 

75,76 
 

[Eubacterium] hallii 99.74 0.158 Seno-
positive 

Faecalibacterium 
prausnitzii 99.83 2.288 

Anaerobe 
F.prausnitzii is a bacterium most widely 
known for its butyrate producing abilities. 
Butyrate regulates gut immunity and has 
multiple effects on other organs upon 
absorption. It is generally recognized as a 
beneficial bacterium within multiple studies 
on IBD, colorectal cancer and diabetes. 

Mixed 77 

Flavonifractor 
plautii 99.74 0.198 Anaerobe Seno-

negative 
78 
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Normal microbiota species, able to converse 
flavonoids. 

Haemophilus 
parainfluenzae 70.64 0.009 

Facultative anaerobe 
Initially identified as respiratory tract 
pathogen. Opportunistic pathogen of GI tract 

Seno-
negative 

79 

Hafnia sp. 
CBA7124 10.64 0.004 Anaerobe 

Commensal 
Seno-

positive 
80 

Intestinimonas 
butyriciproducens 99.57 0.169 Anaerobe Seno-

positive 
81 

Lactobacillus 
reuteri 14.16 0.001 

Facultative anaerobe 
Probiotic bacterium able to suppress 
pathogenic bacteria and modulate host 
immunity. 

Seno-
positive 

82 

Lactococcus lactis 71.59 0.009 

Facultative anaerobe 
Bacterium used in dairy product 
fermentation. Proposed as a probiotic due to 
its immunity regulating potential. 

Seno-
positive 

83 

Odoribacter 
splanchnicus 99.31 1.561 

Anaerobe 
Produces butyrate and other SCFAs. Reduced 
in IBD patients. 

Seno-
negative 

84 

Ornithobacterium 
rhinotracheale 93.3 0.084 

Aerotolerant 
Environmental bacterium, not described in 
human context 

Seno-
negative 

85,86 

Oxalobacter 
formigenes 32.02 0.002 

Anaerobe 
Uses oxalate as both energy and carbon 
source, reduces risk of oxalate kidney stones. 

Seno-
negative 

87 

Parabacteroides sp. 
CT06 99.74 0.786 

Anaerobe 
Commensal. Associated with high-fiber diets, 
inversely correlated with gut inflammation 
status. 

Seno-
negative 

88,89 
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Prevotella jejuni 43.26 0.015 Anaerobes 
Commensal, associated with high 
carbohydrate diet. 
 

Seno-
negative 90 

 Prevotella 
melaninogenica 43.95 0.008 Seno-

negative 

Propionibacterium 
freudenreichii 18.03 0.004 

Facultative anaerobe 
Probiotic bacterium used in dairy 
fermentation. Possesses bifidobacterium-
stimulating and immunomodulatory 
properties. 

Seno-
positive 

91 

Pseudomonas 
aeruginosa 7.55 0.001 

Aerobe 
Antibiotic resistant pathogen associated with 
severe infections. Express a variety of 
proteases. 

Seno-
positive 

92,93 

Rhodococcus sp. 
YL-1 4.29 0.004 Aerobe 

Not described in human context 
Seno-

negative 
94 

Streptococcus 
salivarius 95.28 0.059 

Facultative anaerobe 
Colonizes human oral cavity hours after birth. 
Possesses antimicrobial properties and is 
used as an oral probiotic. Closely related to S. 
thermophilus used in yogurt production. 

Seno-
negative 

95 
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