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Abstract

The human gut microbiome is a complex ecosystem that both affects and is affected by its
host status. Previous analyses of gut microflora revealed associations between specific microbes
and host health and disease status, genotype and diet. Here, we developed a method of predicting
biological age of the host based on the microbiological profiles of gut microbiota using a curated
dataset of 1,165 healthy individuals (3,663 microbiome samples). Our predictive model, a human
microbiome clock, has an architecture of a deep neural network and achieves the accuracy of 3.94
years mean absolute error in cross-validation. The performance of the deep microbiome clock was
also evaluated on several additional populations. We further introduce a platform for biological
interpretation of individual microbial features used in age models, which relies on permutation
feature importance and accumulated local effects. This approach has allowed us to define two lists
of 95 intestinal biomarkers of human aging. We further show that this list can be reduced to 39
taxa that convey the most information on their host’s aging. Overall, we show that (a)
microbiological profiles can be used to predict human age; and (b) microbial features selected by
models are age-related.

Introduction

The human gut is colonized by a dense microbial community, calculated to consist of 10"
cells, which is an order of magnitude higher than the number of cells in the host '. Gut microbiota
is a complex ecosystem that carries multiple important functions in the organism. Apart from being
a core element of the digestive system, microbiota regulates immunity, processes xenobiotics,
produces important metabolites, and even affects higher neural functions >*. The influence,
however, is not one-sided: microbiota is not simply determining certain host characteristics, as it
responds to signals from the host via multiple feedback loops °. Some of these feedback loops were
found to be reflected in the microbiota composition.

For example, multiple studies indicate that irritable bowel diseases can develop following
the intense immune response to an intestinal infection. Microbiota responds to proinflammatory
milieu with a decreased number of beneficial bacteria that lack mechanisms to survive under such
hostile conditions. In return, host immunity reacts to suppress the blooming pathogenic
community, which produces chronic inflammation °. Such changes constantly happen throughout
an individual’s life and may be deleterious or beneficial, reflect strictly individual choices or be
the effects of more widespread factors across populations.

Metagenomic studies have provided valuable insights into how the gut microflora
progresses with age. They revealed that gut colonization occurs during birth with the bacteria
living in the birth canal. The “pioneer microbiome” consists of facultative aerobes (e.g.
Escherichia, Enterococcus, etc.) that gets replaced during breast feeding with obligate anaerobes
(e.g. Bifidobacterium infantis) ’. Upon weaning, another community shift happens towards more
adult-like microbiomes °. These early stages of colonization are extremely important as normal
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infant microbiota promotes intestinal mucus formation, prevents pathogen blooming, and regulates
T-cells. The importance of early colonization is further emphasized by studies that indicate higher
occurrences of eczema and food allergies in children with atypical microbiota ° development (e.g.
increased abundance of Clostridium and Escherichia microbes) '°. Factors such as the mode of
birth delivery (vaginal or cesarean), infant diet (breast milk or formula), and maternal microbiome
greatly influence microbiome development.

Although infant microbiome succession is well studied and can be used to assess the risks
of various health conditions, its transition to adult microbiome is less understood. More so,
composition variability attributed to geographic location, medical history, diet, and other factors
make it hard to analyze adult microbiomes as effectively as those of infants. Age-related studies
of human microbiome have failed to produce a straightforward theory of gut flora aging. Some
studies indicate decreasing biodiversity in the elderly gut ''>. However, that is not the case for all
data sets, and elderly healthy people may have microbiomes as diverse as the younger population
1314 Other findings include changes in specific taxa abundance in aging microbiota. Such bacterial
genera as Bacteroides, Bifidobacterium, Blautia, Lactobacilli, Ruminococcus have been shown to
decrease in the elderly, while Clostridium, Escherichia, Streptococci, Enterobacteria increase 15,16
However, these patterns are not strictly established as results vary greatly across different studies.
This may be attributed to different methodologies as well as unbalanced data sets that may contain
people of different lifestyles .

Despite these complications, the consensus is that the elderly gut has lower counts of short
chain fatty acid (SCFA) producers such as Roseburia and Faecalibacterium and an increased
number of aerotolerant and pathogenic bacteria. Such shifts can lead to dysbiosis, which in turn
contributes to the onset of multiple age-related diseases ’. The idea that the gut microflora can be
a major contributor to the aging process is not new. Already in the beginning of the 20" century,
a Nobel Prize-winning Russian scientist Ilya Metchnikoff proposed that the malicious microbes
processing undigested food (especially peptolytic bacteria, e.g. Escherichia and Clostridium) lead
to autointoxication. Treating autointoxication with pro- and pre-biotics (such as Lactobacillus
preparations) was suggested to alleviate an age-associated decline in organismal function. Recent
studies have demonstrated promising results in line with this century-old hypothesis '*2°.

The standard way of separating the gut microbiome into three chronological states - child,
adult, and elderly microbiomes - lack a clear set of rules. Among them, adult microbiome remains
the greatest mystery. It has no established succession stages, as in newborns, and does not normally
reflect gradient detrimental processes typical for an old organism. This poses a question whether
normal adult microbiome progresses at all or it is in a state of stasis. Considering the aging process
is gradual and involves accumulation of damage and other deleterious changes *' (as also indicated
by a number of biomarkers such as DNA methylation clocks %), it is logical to suppose that gut
microbiome succession is also gradual **. However, attempts to use microbiome-derived features
to predict chronological age have been inconclusive. A support vector machine model trained on
human metagenomic data to classify samples as young or old was shown to be only 10-15% more
accurate than random assignment, as indicated by the Area Under the Curve (AUC) score .
Another study attempting to use a co-abundance clustering approach has demonstrated general
trendlines of microbiota composition for hosts aged 0-100 **. According to the study, specific
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clades of the gut community significantly differ in abundance among young adults compared to
the middle aged. However, the lack of dietary and lifestyle data prevents the authors from putting
together a conclusive theory of gut microflora progression. Compared to the well-established
DNAm aging clocks that achieve mean absolute error (MAE) <5 years, these results of microflora-
based age prediction suggest much room for improvement *"-**,

The renaissance of deep learning that started in 2015 resulted in unprecedented machine
learning performance in image, voice, and text recognition, as well as a range of biomedical
applications ** such as drug repurposing > and target identification>'. One of the most impactful
applications of DL in biomedicine was in the applications of generative models to de novo
molecular design **°. In the context of aging research, these new methods can be combined for
geroprotector discovery >’ *'. Indeed, since 2013, many aging clocks have been developed in both
humans and other model organisms. The published aging clocks utilizing deep learning were
developed using standard clinical blood tests *, facial images *, physical activity data, ** and
transcriptomic data *°. These clocks were used to rank the most important features contributing to
the accuracy of the prediction by using the permutation feature importance (PFI), deep feature
selection (DFS) and other techniques. These clocks were also used to assess the population-
specificity of the various data types **.

The goal of this study was to build a predictor of age with whole genome sequencing
(WGS) data aggregated from multiple sources and various machine learning techniques and use it
to examine patterns of incessant microflora succession. Here, we report a method to estimate a
host’s age based on their microflora taxonomic profile, assess the importance of specific taxa in
organismal aging, and suggest candidate geroprotective microbiological interventions.
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Methods

Data acquisition

Only publicly available, fully anonymized data sets from WGS human metagenomic
studies deposited in ENA and SRA were used. The corresponding project IDs are: ERP005534,
SRP008047, ERP009422, ERP004605, ERP002061, ERP002469, ERP019502, SRP002163,
ERP003612, ERP008729.* * Only healthy individuals with age metadata available were included
in this study. These individuals were from Austria, China, Denmark, France, Germany,
Kazakhstan, Spain, Sweden and USA. aged 20-90 years old. In total, 1,165 healthy individuals
and 3,663 samples from 10 publicly available datasets were aggregated and analyzed (Figure 1).
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Figure 1: age distributions for 3’663 runs (A) and 1’165 donors (B) used in this study.

Abundance calculation

All acquired sequencing files have been quality trimmed and quality filtered with BBTools
. Human sequences have been detected using hgl9 genome index. Additionally, specimen
dilution test has been carried out as specified in °'. Resulting reads have been analyzed with
Centrifuge and mapped against the collection of bacterial and archaeal genomes 2. In certain cases,
operational taxonomic units ables have been modified to exclude unreliably detected microbes
(relative abundance < 1e-5) and minor microbial species (<1.3e-3 prevalence). No sample has lost
more than 5% of its abundance. After all the modifications, individual taxonomic profiles have
been renormalized by dividing the vector by the sum of the abundances left.
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Neural networks training

Regression

All deep neural networks (DNNs) were implemented using the Python 3.6 Keras library
with Tensorflow backend. Feature selection models were trained using a full list of species-level
features, which includes 1,673 microbial taxa. Training and validation sets were separated to
contain 90% and 10% of all profiles in all cases. Two regressors were built: one using taxonomic
profiles derived from individual samples (sample-based model) and a second one using taxonomic
profiles averaged among all the samples belonging to the same host (host-based model). Models
were trained as a regressor with five-fold cross-validation. After completing grid search for various
model configurations, the best performing model was selected based on the maximal R* score.

The best performing model architecture was determined in the sample-based setting. It
contains three hidden layers with 512 nodes in each, with PReLLU activation function, Adam
optimizer, dropout fraction 0.5 at each layer, and 0.001 learning rate (Figure 2). The same
architecture was applied to within the host-based setting. To verify the importance of features
derived from the sample-based DNN model, gradient boosting was used, as implemented in
XGBoost Python library *. The best performing XGBoost model was trained using the following
parameters: linear nthread = 35, max_depth = 6, max_delta_step = 2, lambda= 0, gamma=0.1,
eta=0.1, alpha = 0.5. The XGBoost models’ performance was evaluated using MAE.

Classification

Age classifier models were trained using a subset of either 95 features or 39 features.
Training and validation were separated to contain 80% and 20% of all donors, respectively. The
age bracket classifier was implemented with the Python Keras library using Tensorflow backend.
A weighted Fl-score was selected as the target metric to assess model performance. Best
performing architectures are illustrated in Figure 3. For 95 feature classifier it is: 128, 32 and 8
nodes respectively in 3 hidden layers, dropout rate of 0.5 , PReLU activation function in hidden
layers, softmax activation function in the output layer >*. For 39 feature classifier it is: [64, 8] nodes
in 2 hidden layers, 0.5 dropout rate, PReLU activation function in hidden layers, Softmax
activation in the output layer.

Oversampling

To solve the class imbalance problem while building models for age bracket prediction, we
used oversampling. Self Organizing Maps (SOMs) based on presence/absence profiles (1 if a taxon
is detected in a sample, O if it is not) have been built for each age bracket with the Python library
Somoclu. Each SOM consists of 100 cells placed on a toroid lattice. To generate synthetic profiles
for underrepresented classes, codebook vectors are picked at random with replacement according
to the number of Best Matching Units (BMUs) mapped to them. Codebook values are used as
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probabilities for including a taxon into a fake sample. Fake presence/absence profiles are then
multiplied by a vector of mean abundances of corresponding BMUs and normalized.

Feature importance

To assess individual feature importance, we have applied the Permutation Feature
Importance (PFI) technique. PFI measures the change in prediction quality (measured in R* score
decrease) upon permuting a single feature vector. Greater decrease in quality signal greater
importance of the feature. The features deemed most important have been further assessed with
the Accumulated Local Effects (ALE) method to determine the change in age prediction upon
minor changes in a microbial species abundance. ALE has been implemented following the
algorithm described below. For each of the 95 selected species, a quantile value table (with 5%
steps) has been composed. Local Effects (LE) for each quantile bin have been calculated by
measuring the average change in prediction upon substituting observed abundance of a feature,
with right and left bin border values. ALEs for each quantile are calculated by adding up all the
previous LEs and centering the result to make the average effect of each taxon zero.
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Figure 2: The neural network configuration for the best performing DNN regressor. The
regressor takes in a full species level taxonomic profile and estimates the donor’s exact
chronological age. The first hidden layer is linear and was used only to assess feature importance
in accordance with deep feature selection method .
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Figure 3: The best performing DNN configurations for age bracket classification (20-40, 41-60,
61-90 years) based on short marker sets: 39 taxa (A), 95 taxa (B).
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Figure 4: Accumulated Local Effects (ALE) method used in this paper to assess specific taxa
influence on age prediction. Changes in predicted age upon substituting observed taxon
abundance with quantile values are averaged and recorded for every quantile bin. Then, they are
summed to produce ALEs, which are additionally centered for convenience.
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Results

Age prediction using machine learning

To examine the relationship between human gut taxonomic profiles and chronological age,
we prepared a collection of full metagenome sequences for 1,165 healthy individuals (3,663
samples total) from 10 publicly available datasets. All individuals in our data set were between 20
and 90 years, with median age of 46 years. After randomly separating the 3,663 samples into
training (90%) and validation (10%) sets, we trained a deep neural network regressor to predict
donor's age using a vector of relative abundances for 1,673 microbial species. MAE achieved by
the best model configuration was 3.94 years, with R* of 0.81 (Figure 5A). We then divided the
samples into three age groups (20-39, 40-59 and 60-90 years) and found that the predicted age
distribution generated by the model closely matched the actual age distribution (Figure 6).

To verify the results obtained with DNN, we implemented random forest, support vector
machine and elastic net regressor. All of these methods performed poorly compared to the DNN
approach with the mean absolute errors exceeding 11 years. Apart from them, we trained a
gradient boosting (XGB) regressor with accuracy comparable to the DNN model (MAE = 4.69
years, R* = 0.81) (Figure 5B). Both approaches skew the predictions towards the median age —
46 years (Figure 6). While there are certain variations within taxonomic profiles due to differences
in geographical location or diet types, the described predictors can be applied to adult people from
various populations equally well (see Supplementary).

Microbiological influence on age prediction

Using Permutation Feature Importance (PFI), we assessed which taxa abundances play the
greatest role in microbiological age prediction. We identified 95 features that decrease both XGB
and DFS models’ R? score by >0.001 (Figure 7). According to PFI scores, DNN regressor is more
sensitive to highly abundant species, while XGB regressor contains some minor taxa among its
most important features. We consider this an indication of DNN’s increased robustness compared
to other methods. The complete list of 95 taxa with corresponding scores, abundances and
prevalences can be found in Supplementary Table 1.

To characterize how these 95 features affect age prediction, we utilized the Accumulated
Local Effects (ALE) approach (Figure 4). The ALE approach measures the response of a regressor
to changes in specific taxa abundance. Each feature’s ALE was calculated using only the
independent profiles where it can be reliably detected (abundance > 1e-5). Some microbes showed
steadily increasing age prediction with increasing abundance (e.g. [Eubacterium] hallii); other
microbes were on the opposite, inversely correlating with predicted age (e.g. Bacteroides vulgatus)
(Figure 8). Interestingly, certain microbes that were previously identified as important by PFI
showed little influence on predicted age (e.g. [Eubacterium] rectale) (Figure 8).
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Using ALEs, all features can be classified into seno-positive (monotonically increasing
ALE plot), seno-negative (monotonically decreasing ALE plot), and more complex groups (not
monotonic cases) (Figure 9). Among 95 features, only 39 displayed the average change in
predicted age of more than 1 year within the 5%-95% quantile bracket. Among those, 21 were
seno-negative, 15 seno-positive and 3 non-monotonic.
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Figure 5: Age predictions derived from cross-validation of the sample-based DNN model (A)
and the XGB model (B). Samples are colored by data source, and dashed lines mark the median
of observed age (46 years).
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Figure 8: Twelve most important features’ effects on age prediction. Plots contain only 5-95%
quantile segment due to extreme ALE values for extreme quantiles. N is the number of samples
where a feature is reliably detected (abundance > 1e-05), total number of samples used is 1,165.
More ALE plots are available in Supplementary Information.

Age bracket prediction with DNN

While DNN and XGB regressors displayed acceptable accuracy when trained on full
taxonomic profiles, decreasing the number of features down to 100 during training produces poorly
performing models (MAE > 11 years). To estimate the predictive value of 95 and 39 marker taxa
sets (Figure 9), we applied them to a much easier task of age bracket prediction. All donors were
separated into three age groups: young (20-39 years, 32% of all donors), middle aged (40-59 years,
41% of all donors) and elderly (60-90 years, 27% of all donors). Underrepresented classes were
oversampled (see Methods).

Within this setting, best performing DNN architectures show significantly higher accuracy
than either random age group assignment (equiprobable or weighted). While the mean weighted
F-score for random models do not exceed 38+1%, 95 marker set achieved the F-score of 67+4%.
Downsizing this marker set using ALEs to 39 taxa reduced the score by 5% (to 62+3%). We have
additionally compared the classifier constructed using the ALE-defined 39 intestinal marker set to
classifiers built on relative abundances for 39 randomly selected taxa. Neither of 100 sets has
produced a classifier as good as ALE-selected features (38+3%,). (Figure 10)
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Figure 9: ALE range (maximum ALE minus minimum ALE within 5-95% abundance bracket) for 95 selected
microbial features. Red are monotonically increasing ALEs, blue are monotonically decreasing ALEs, and
green are non-monotonic ALEs. Only 39 taxa affect age prediction for more than 1 year within the specified
abundance bracket.
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Figure 10: F-scores for four age bracket classifiers: three random models and two models built
with 95 and 39 marker taxa. Equiprobable random classifier assigns a test sample to each age
group (20-39, 40-59, 60-90 years) with '5 probability, weighted random classifier assigns
samples with probabilities equal to the fraction of a class in the test sample. Models with
randomly selected markers are built using 39 random taxa abundances as input. N stands for the
number of cross validation folds.
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Host-based age prediction

While the DNN model is highly accurate, during its training all available samples were
treated as independent due to data scarcity. By averaging the taxonomic profiles obtained from
samples with a shared host we eliminated remaining data contamination. This reduced the total
number of features to 1,165 entries. The host-based model was trained using the best performing
DNN configuration as identified during sample-based training (Figure 2). This model was less
accurate than a sample-based one: it reached MAE of only 8.56 years (Figure 11). However, the
model still performed better than baseline age assignment (MAE = 12.47 years). Interestingly, the
regressorprocesses feamle and male specimen with equal accuracy, and the predicted intestinal age
positively correlates (r = 0.23) with BMI, which is in line with existing data on connections
between BMI and biological age *°. However, this correlation is lower than the one between donor
BMI and observed age: r=0.3.

® Male ° o
o - ® remale . +6 yrs
N = 544 ° So 00

Predicted age, yrs

Actual age, yrs

Figure 11: Age predictions derived from cross-validation of the host-based DNN model.
Average MAE for best performing models in each of the 5 folds is 8.39 years, which is much
lower than in the case of the sample-based approach (3.96 years). Blue area contains 52% of all
predictions and corresponds to the trendline +6 years.
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Discussion

To our best knowledge, we present the first method to predict human chronological age
using gut microbiota abundance profiles. We compare two approaches to age prediction:
regression and classification. We applied multiple methods to build a regressor that takes in
profiles containing abundances for all 1,673 taxa reliably detected in at least 0.13% of samples,
including random forest, support vector machine, elastic net, gradient boosting (XGB) and deep
neural network (DNN). However, only the latter two models achieved the predictions better than
random (Figure 5).

Due to data scarcity, we initially trained our models treating all samples as independent,
while some of them belonged to the same host. To further demonstrate the applicability of the
suggested method for age prediction, we trained a DNN model reducing the number of samples to
only one per host. Not surprisingly, the resulting accuracy of the predictor was significantly lower
(MAE = 8.56, Figure 11), yet above random. Such factors as study protocols and host country of
residence (integrating geographic location, genotype and lifestyle) can be expected to affect
taxonomic profiles.

Despite great performance of XGB (MAE = 4.69 years) and DNN models (MAE = 3.94
years), extracting biologically relevant information from them presents a major challenge. We
implemented ALEs approach using DNN regressor as a reference and its 95 most important
features to see how changes in abundance affect the predictions. ALE is a technique that
theoretically surpasses PFI as it takes into account intrinsic interdependence of microbiological
features. According to our ALE analysis, only 39/95 features could change the average predicted
age by more than 1 year (Figure 9). Interestingly, reducing the number of features by 59% caused
only a 5% drop in F-score for the age bracket classification task. This suggests that the ALEs
technique succeeded in selecting only the most relevant microbial features.

Table 1 provides information for each bacterium in the 39 ALE-selected marker set of
intestinal aging. Interestingly, while it contains both beneficial (e.g. Bifidobacterium) and
pathogenic (e.g. Pseudomonas aeruginosa) microbes, seno-positive or seno-negative status is not
determined by the nature of host-microbe interactions (Figure 12). For example, Campylobacter
jejuni is known to cause campylobacteriosis — a foodborne diarrheal infection—yet it is seno-
negative and can affect the average prediction age by more than 2 years (Figure 9) °’. On the other
hand, both selected Eubacterium species are seno-positive and increase average predicted age by
1-3 years (Figure 9), despite having a generally beneficial effect on microbiota composition.

Although surprising at first glance, bacterial influence on age prediction is not determined
by whether it is beneficial to the host or not. The proposed method of feature selection does not
detect microbes that promote longevity or support useful functions of "youthful" microbiota. In
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the case of C.jejuni, campylobacteriosis affects mostly children. Moreover, exposure to C.jejuni
can lead to asymptomatic colonization and immunity acquisition >*. Taken together, these facts can
be used to put together a hypothetical explanation of C.jejuni being a seno-negative feature. Older
individuals have a lower count of these bacteria, as they are more likely to carry the memory of
previous C.jejuni exposure (either in their immune system or microbiota composition) and can
effectively prevent its extensive colonization. Meanwhile, younger individuals have not yet
tailored the means to oppose C.jejuni and let it multiply to a greater extent.

Beneficial bacteria that turn out to be seno-positive are, in fact, more intriguing than seno-
negative pathogens. One possible explanation could be that these bacteria are more resilient in the
context of increasingly detrimental cross-talk with the host. Another possible explanation
questions the very concept of the microbiological aging clock. Since global dieting and lifestyle
habits have significantly changed during the last century—increased sedentary time, sugar intake,
processed foods consumption, etc.—any microbiota changes observed in the elderly may not
indicate natural progression through age, but reflect generation-specific microflora parameters .
In other words, any features identified today as associated with the youth may become the signature
of the elderly in 50 years, provided global diet and lifestyle keeps changing. Depending on the
extent of such microbiological "generation gap," any future intestinal aging clock may need to be
regularly updated to account for an ever-changing environmental context. Unfortunately,
metagenomics is an extremely young branch of biology and there is little hope to learn what the
microflora of the elderly looked like when they were young. However, studies of multiple
generations of migrants can help us estimate the persistence of microbiota obtained in early years.
One such study conducted on American immigrants of Asian origin indicates that first generation
migrants start to lose gut diversity as soon as nine months after relocation. This loss is even more
pronounced in the second generation ®*. A first generation immigrant’s microflora memory may
be the reason why their microbiota is different from that of their children. Studies in such a setting
are extremely important to assess the hyper-parameters driving human microbiota progression.

Another interesting aspect of the ALE-based feature selection is that some features are very
poorly described within human microbiota context—environmental bacteria, —yet have great
influence over age prediction. More knowledge on such microorganisms (e.g. Ornithobacterium
rhinotracheale) may provide useful insights into the functions of human microbiota.
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Figure 12: Seno-positive/-negative status of a species is not determined by its function within
the gut community. While some pathogens are associated with increased age prediction (red
quadrant) and some beneficial bacteria are correlated with lower age prediction (green quadrant),
many other species are seno-negative pathogens and seno-positive normobiotic species (blue
quadrants). Moreover, some taxa are scarcely described in literature, yet they have a pronounced
effect on age prediction (grey area). In the text, we suggest hypothetical explanations as to why
taxa might be occupying their respective positions in the plane above.
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Conclusion

We demonstrated the feasibility of age prediction by application of machine learning
approaches to taxonomic microflora profiles. Our most accurate DNN regressor achieved the MAE
of 3.94 years. This performance is comparable with the 1.9 MAE of the PhotoAgeClock, 2.7 of
the state of art methylation aging clock, 7.8 MAE transcriptomic aging clock and 5.5 MAE of the
hematological aging clock published previously. We also developed a method for microbiological
feature selection and annotation. It combines two-fold feature importance assessment using PFI
and ALE approaches upon training a DNN. This technique allows both selecting the most relevant
features as biomarkers and quantifying their influence on the target variable, i.e. age. Using this
method, we identified 95 and 39 prokaryote taxa as the biomarkers of intestinal aging. Despite the
reduced predictive power of this set when compared to the whole taxonomic profiles, it let us to
assign individuals to three age groups (young, middle aged and old) 86% more accurately than
random classification (0.71 versus 0.34 F-score).

The identified biomarkers include species whose abundance is positively or negatively
correlated with predicted age. These species may be further investigated deeply by the community
to improve our understanding of human aging and its relationship with the gut microbiome.
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Table 1: 39 ALE-selected biomarkers for microbiological age prediction. Median abundance for a microbe is calculated excluding the
samples where it is not detected. Total number of samples: 1,165

Median
Species Preva- | o bun- _
lence, dance, Literature Status Ref
%o %
Anaerobe.
Acidaminococcus 42 .49 0.004 A. can use amino acids (predominantly Seno- 61
fermentans ' ’ glutamate) as their sole energy source, while positive
producing butyrate
Anaerobe
- . . Alistipes are considered to be signatures of Seno- 62,63
Alistipes finegoldir 29.14 0.86 pediatric IBS. Although, it can be a part of | negative
healthy microbiome core.
Bacteroides 99.4 0.506 Anaerobes Seno-
caecimuris ] | Bacteroides are of the earliest bacteria to negative
Bacteroides dorei | 99.91 | 15.107 |colonize human guts. They metabolize | . oy | 6465
polysaccharides (including host produced).
: Various studies indicate that Bacteroides-host Seno-
Bacteroides ovatus 100 1.55 crosstalk prevents GI infections. Bacteroides | negative
Bacteroides 99.91 3.013 are more abundant in individuals with diets Seno-
thetaiotaomicron ] ] high in saturated fat and animal proteins. negative
Bacteroides 99.91 2.433 Seno_—
vulgatus negative
Aerotolerant
Bifidobacterium Although Bifidobacterium is considered to be Seno- 66,67
bifidum 97.08 | 0.053  [anaerobic, these two species are tolerant to | pegative

high O2 concentrations. Bifidobacterium are
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among lactate producing bacteria group and
are considered beneficial to the host as
indicated by multiple studies of obesity,

Bifidobacterium 99.31 0.603 colorectal cancer and IBD. B. derived Seno-
longum ' ’ probiotics and B. centered prebiotics are negative
widely accepted as useful dietary
supplements.
Microaerophile
Campylobacter _C.jejuni is a major cause ofdiarhegl infection_s Seno- o e
jejuni 95.45 0.012 in the world. Poultry being C. main reservoir negative ’
the infection is mostly foodborne. However,
C. colonization may also be asymptomatic.
Christensenella Anaerobe .
massiliensis 29.14 0.271 Poorly described in literature. Mixed
Chryseobacterium Aerobes Seno-
. 67.21 0.02 . - .
gallinarum Poorly described in literature. negative 69
Chryseobacterium C.gal/in_arum is _known for its keratin Seno-
taklimakanense 44,12 0.01 degrading properties. positive
.. Anaerobes
[Clgzt;glecggm] 99.74 2.278 |These non-pathogenic spore forming Seno
. . . positive
microorganisms are deemed important for
[Clostridium] 85 67 0.014 fecal transplantation success in C. difficile Seno- 67,70
saccharolyticum ' : treatment. They produce short chain fatty positive
acids (SCFAs), including butyrate. Some
o studies point out that metabolites produced
Clostridium sp. 97.68 0.046 |by Clostridium have neurotoxic properties Seno-
5Y8519 ' ' and may contribute to autism spectrum | Positive

disorder development.
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Comamonf-)s 13.56 0.003 Aerobe _ _ Seno_— 71
kerstersii Normally environmental bacterium negative
Anaerobe
This species belongs to the group of sulfate
reducing bacteria in human gut. ~50% of

Desulfovibrio 24.38 0.002 human guts are colonized by sulfate reducers. Seno- 72,73

fairfieldensis ' ' They produce H,S, which has both pro- and negative
anti-inflammatory  properties  described.

Meanwhile, D.fairfieldensis has controversial

pathogenic status.

Anaerobes Seno-
Eggerthella lenta 97.68 0.063 Scarce literature. E.lenta is known for positive 74

Eggerthella sp. deactivating cardiac medication - digoxin. Seno-

YY7918 82.83 0.009 positive

Eubacterium Anaerobes Seno-

d eligens / 99.66 1.201 | Fypacterium produce butyrate and positive
propionate from various substrates 75,76
contributing to normobiotic community.

[Eubacterium] hallii | 99.74 0.158 | Eubacterium, however, fail to metabolize Seno-
polysaccharide effectively. positive
Anaerobe
F.prausnitzii is a bacterium most widely
known for its butyrate producing abilities.
Faeca/ibac?er_l_'um 99.83 2788 Buty_rate regulates gut immunity and has Mixed 77
prausnitzii multiple effects on other organs upon
absorption. It is generally recognized as a
beneficial bacterium within multiple studies
on IBD, colorectal cancer and diabetes.

Flavonifre_v_ctor 99.74 0.198 Anaerobe Seno_— 78

plautii negative
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Normal microbiota species, able to converse
flavonoids.

Facultative anaerobe

p’;f:gggggg:e 70.64 0.009 |Initially identified as respiratory tract nsgegtoi\_/e 79
pathogen. Opportunistic pathogen of GI tract
Hafnia sp. Anaerobe Seno- 80
CBA7124 10.64 0.004 Commensal positive
Intestinimonas Anaerobe Seno- 81
butyriciproducens 99.57 0.169 positive
Facultative anaerobe
Lactobacillus 14.16 0.001 Probiotic bacterium able to suppress Seno- 82
reuteri ' ' pathogenic bacteria and modulate host positive
immunity.
Facultative anaerobe
. Bacterium used in dairy product Seno- 83
Lactococcus lactis 71.59 0.009 fermentation. Proposed as a probiotic due to positive
its immunity regulating potential.
Odoribacter Anaerobe Seno- 84
splanchnicus 99.31 1.561 Produces t_)utyrate and other SCFAs. Reduced negative
in IBD patients.
. . Aerotolerant
O;Z;fvf;il::ccfig/im 93.3 0.084 | Environmental bacterium, not described in nsgee?toive 85,86
human context
Anaerobe
Oxalobacter 32.02 0.002 |Uses oxalate as both energy and carbon Seno- 87
formigenes ' ' source, reduces risk of oxalate kidney stones. | negative
Anaerobe
Parabacteroides sp. Commensal. Associated with high-fiber diets, Seno- 88.89
99.74 0.786 |. . . i . '
CT06 inversely correlated with gut inflammation negative

status.
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. Anaerobes Seno-
Prevotella jejuni 43.26 0.015 Commensal, associated with high | negative 90
Pre\_/ote//a_ 43.95 0.008 carbohydrate diet. Seno_—
melaninogenica negative
Facultative anaerobe
Propionibacterium Probiotic ~ bacterium  used in  dairy Seno-
p L 18.03 0.004 |fermentation. Possesses bifidobacterium- oy o1
freudenreichii : . : positive
stimulating and immunomodulatory
properties.
Aerobe
Pseudomonas Antibiotic resistant pathogen associated with Seno- 92,93
. 7.55 0.001 : : : " '
aeruginosa severe infections. Express a variety of positive
proteases.
Rhodococcus sp. 4.29 0.004 Aerobe Seno- 94
YL-1 ' ' Not described in human context negative
Facultative anaerobe
Streptococcus Colonizes human oral cavity hours after birth. Seno-
ptoco 95.28 0.059 Possesses antimicrobial properties and is . 95
salivarius negative

used as an oral probiotic. Closely related to S.
thermophilus used in yogurt production.
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