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Abstract 11 

Biodiversity can be represented by different dimensions. While many diversity 12 

metrics try to capture the variation of these dimensions they also lead to a 13 

‘fragmentation’ of the concept of biodiversity itself. Developing a unified measure 14 

that integrates all the dimensions of biodiversity is a theoretical solution for this 15 

problem, however, it remains operationally impossible. Alternatively, understanding 16 

which dimensions better represent the biodiversity of a set of communities can be a 17 

reliable way to integrate the different diversity metrics. Therefore, to achieve a 18 

holistic understand of biological diversity, we explore the concept of dimensionality. 19 

We define dimensionality of diversity as the number of complementary components 20 

of biodiversity, represented by diversity metrics, needed to describe biodiversity in an 21 

unambiguously and effective way. We provide a solution that joins two components 22 

of dimensionality — correlation and the variation — operationalized through two 23 

metrics, respectively: Evenness of Eigenvalues (EE) and Importance Values (IV). 24 

Through simulation we show that considering EE and IV together can provide 25 

information that is neglected when only EE is considered. We demonstrate how to 26 

apply this framework by investigating the dimensionality of South American small 27 

mammal communities. Our example evidenced that, for some representations of 28 

biological diversity, more attention is needed in the choice of diversity metrics 29 

necessary to effectively characterize biodiversity. We conclude by highlighting that 30 

this integrated framework provides a better understanding of dimensionality than 31 

considering only the correlation component. 32 

Keywords: biodiversity metrics, communities, biodiversity measurement, Importance 33 

Values, Evenness of Eigenvalues.  34 
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Introduction 35 

Biodiversity encompasses all variation present in life, from genetic material to 36 

populations, communities and higher levels of biological organization like entire 37 

ecosystems (Wilson 1997). In addition to its broadness in scale and complexity, the  38 

central position of the concept of  biodiversity in ecological studies justifies efforts to 39 

develop measures that properly operationalize the concept. These efforts are reflected 40 

in the immensurable number of diversity metrics that have appeared as attempts to 41 

encompass all the variation in biodiversity. However, although these diversity metrics 42 

allow the description of different dimensions, as the number of them increases the 43 

concept of biodiversity becomes operationalized in disparate ways that convey no 44 

precise information. This lack of consensus in operationalization of the concept of 45 

biodiversity led Hulrbert (1971) to propose the idea of the non-concept of species 46 

diversity, in which he advocated that the many metrics of biodiversity be summarized 47 

in only a few relevant ones that can be used to express adequately and unambiguously 48 

the concept of biodiversity. 49 

 Long since Hulrbert´s seminal work, there has been a pronounced increase in 50 

the number of metrics that quantify characteristics of biological diversity other than 51 

the traditional taxonomic-based metrics, revealing that patterns of diversity for some 52 

communities can be best described using other components of biological diversity, 53 

such as functional and phylogenetic components (Graham and Fine 2008, Cisneros et 54 

al. 2014). However, these findings are not consensual (e.g Lamb et al. 2009), since 55 

some phylogenetic and functional metrics can be strongly correlated with traditional 56 

metrics (Tucker and Cadotte 2013, Tucker et al. 2018), deepening the question of 57 

which metrics represent the fundamental components of biological diversity 58 

(Hulrbert, 1971). A theoretical approach to searching for fundamental variation in 59 
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biodiversity is to integrate the many sources of information in a unique framework. 60 

This integration can be achieved by investigating the relationships among existing 61 

metrics. A previous work that proposed this integration based it on quantifying a 62 

characteristic of biodiversity known as dimensionality (Stevens and Tello 2014).  63 

Dimensionality can be defined, at the community scale of biological 64 

organization, as the amount of information needed to effectively characterize the 65 

variation presented in a given biodiversity representation, by means of diversity 66 

metrics. Communities with high dimensionality require more dimensions to be 67 

effectively described than communities with low dimensionality (Stevens and Tello 68 

2014). Quantifying the dimensionality of biodiversity currently involves searching for 69 

the degree of complementarity in spatial or temporal variation among multiple metrics 70 

of diversity, which is obtained mainly through a measure denominated Eveness of 71 

Eigenvalues (hereafter EE) (Stevens and Tello 2014). 72 

Stevens and Tello´s EE metric is obtained by Principal Component Analysis 73 

(PCA) of a matrix of diversity metrics (hereafter matrix M, sensu Ricotta 2005) for a 74 

set of communities, and calculating an evenness metric for the eigenvalues of the axes 75 

that represent this fundamental biodiversity space. The logic behind EE is that, if the 76 

diversity metrics used to characterize communities have low complementarity, almost 77 

all of the fundamental variation in biodiversity will be concentered in a few axes, 78 

producing a low EE. On the other hand, if diversity metrics are completely 79 

complementary with each other (variation in biodiversity will be equally distributed 80 

among axes) the EE of the communities will be 1. 81 

The EE metric represents, in a simple way, the degree of complementarity 82 

among the dimensions of biodiversity represented by diversity metrics, which 83 

comprises what we call here the correlation component of dimensionality (see also 84 
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Tucker and Cadotte 2013, Lamb et al. 2006 for uses of correlation component). 85 

However, EE ignores another source of information in dimensionality — the amount 86 

of variation, or importance, that each diversity metric presents in fundamental 87 

biodiversity space. This comprises what we call here the variation component of 88 

dimensionality. 89 

Suppose a situation in which diversity metrics are highly correlated (Figure 1 90 

A) and each metric accounts for a similar amount of variation in fundamental 91 

biodiversity space (Figure 1B). This situation has low complementarity among 92 

dimensions of biodiversity and high redundancy in the amount of variation that each 93 

metric captures in fundamental biodiversity space (represented as the length of the 94 

arrows in 1B). Consequently, we could rely on any of these diversity metrics to 95 

effectively represent the variation in biodiversity of these communities. On the other 96 

hand, communities with low complementarity may present a situation in which one of 97 

the metrics captures almost all the variation in the fundamental biodiversity space 98 

(Metric 2 in Figure 1C), indicating low redundancy of metrics. Following the current 99 

approach to measuring dimensionality, EE would indicate similar patterns of 100 

dimensionality for communities in 1B and 1C. However, the choice of metric in 1C is 101 

of greater importance than in 1B, in which the metrics are highly redundant regarding 102 

the information captured. Therefore, considering only the correlation component does 103 

not provide enough evidence to support the decision of which diversity metrics to use 104 

to effectively characterize biological diversity for two communities with similar EE, 105 

because it disregards the variation component inherent to dimensionality. 106 

Finding a measure that captures the variation component of dimensionality is 107 

not an impediment for effectively characterizing dimensionality, since it can be 108 

operationalized by the metric Importance Values (hereafter IV) proposed by Wilsey et 109 
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al. (2005). However, since the common way to quantify dimensionality (Stevens and 110 

Tello 2014) is limited to capturing only the correlation component, the development 111 

of a unified framework that combines both correlation and variation components 112 

would provide a way to better represent the dimensionality of biodiversity. 113 

Therefore, our aim was to update the concept of dimensionality of biodiversity 114 

and its operationalization by integrating the correlation and variation components 115 

through EE and IV in a framework for quantification of dimensionality. To do this we 116 

show, through simulation, how EE and IV together can distinguish situations with 117 

different degrees of complementarity of dimensions of diversity and redundancy of 118 

information that each metric captures. We then present an empirical example of the 119 

investigation of dimensionality by applying the integrated framework to communities 120 

of small mammals (cricetids and marsupials). Specifically, we evaluated the level of 121 

complementarity and redundancy for different sets of diversity metrics used to 122 

describe the biodiversity of cricetids and marsupials, highlighting how the proposed 123 

dimensionality framework facilitates the first step of biological assessment — the 124 

choice of metrics to be used for characterizing biodiversity. 125 

 126 

Material and Methods 127 

Investigating the dimensionality of biodiversity: obtaining EE and IV 128 

Our framework for investigating the dimensionality of biodiversity comprises 129 

three steps. The first step is to calculate matrix M, which, for the sake of simplicity, 130 

will contain three metrics of diversity for the simulation analysis: a measure of 131 

functional diversity (FD [Petchey & Gaston 2006)]), a measure of phylogenetic 132 

diversity (PD [Faith 1992]) and richness. We chose a simplistic approach with only 133 

three metrics since our objective with the simulation analysis was to focus on showing 134 
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how IV can reveal patterns that are not detected by using only EE. We were more 135 

interested in the patterns of correlation and variation of diversity metrics in 136 

biodiversity space than the particularity of the metrics themselves. We present a more 137 

realistic exploration of the integrated framework in the section Assessing the 138 

dimensionality of biodiversity in small mammal communities. 139 

The second step involves performing a PCA of matrix M using a standardized 140 

correlation matrix. As will be shown next, the standardization method applied to 141 

matrix M prior to the PCA must differ between the calculation of EE and IV.  142 

The third step is to calculate the dimensionality metrics EE and IV. We 143 

calculate EE using Camargo ś evenness index in Equation 1, following the original 144 

proposition of Stevens and Tello (2014): 145 

�� � 1 � �∑ |��� �������/	


�� ���|	

�   Equation 1 146 

Camargo’s evenness index (Camargo 1993) is calculated using the axes (A) and their 147 

respective eigenvalues (eih and ejh) from a PCA of the standardized matrix M, in 148 

which the metrics were scaled to have a mean of zero and equal variances. The higher 149 

the value of EE, the higher the complementarity the communities have in relation to 150 

the dimensions of biodiversity represented in matrix M. On the other hand, lower EE 151 

values indicate lower complementarity in the dimensions used to characterize the 152 

communities. IV is calculated according to the method proposed by Wilsey et al. 153 

(2005), using a matrix (M) standardized by the maximum values of each diversity 154 

metric. This standardization removes the effect that the different units of each 155 

diversity metric have, without modifying their original variation. To obtain IV for 156 

each diversity metric in matrix M we apply Equation 2, in which IVi represents the IV 157 

of diversity metric i, r2
ij is the squared correlation of diversity metric i with PCj, and 158 
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R2
j is the amount of variation that PCj accounts for in ordination space (biodiversity 159 

space).  160 

�
� � ∑ ���	 � ��	  Equation 2 161 

PC varies from 1 to j and corresponds to the number of significant 162 

eigenvectors in the PCA, evaluated by the Kaiser-Gutmann criterion. The greater the 163 

IV the more variation the diversity metric accounts for in biodiversity space. IV 164 

approaches 1 when the diversity metric accounts for almost all the variation and 165 

approaches zero when the metric accounts for little variation. Sets of communities 166 

with highly uneven IV values for diversity metrics possess low redundancy in metric 167 

importance, while communities with highly even IV values possess high redundancy 168 

regarding the amount of information captured by each metric. 169 

Testing the assessment of the dimensionality of diversity using EE and IV 170 

To assess the effectiveness of EE and IV in acquiring  information regarding 171 

correlation and variation of dimensionality in matrix M, the following conditions 172 

must be met: (1) EE values must not differ for set of communites simulated in 173 

scenarios with the same level of correlation among diversity metrics, and must differ 174 

among communities that have different levels of correlation among diversity metrics; 175 

(2) for scenarios with low and high correlation, IV must be similar among metrics that 176 

have similar variation in biodiversity space (e.g. Figure 1B), and differ for scenarios 177 

in which variation in biodiversity space is mainly due to a single metric (e.g. situation 178 

represented Figure 1C, Metric 2 must have a higher IV than Metric 1). We evaluate 179 

whether EE and IV can recover these patterns by simulating communities with 180 

varying degrees of correlation and variation for each metric in biodiversity space 181 

obtained from matrix M. 182 
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The simulations were based on a pattern-oriented procedure, producing 183 

diversity metrics with patterns of correlation and variation that represent four 184 

scenarios with the following characteristics: In the HiC/EqV (High Correlation and 185 

Equal Variation) scenario the diversity metrics are highly correlated and have similar 186 

variation in biodiversity space. The HiC/DifV (High Correlation and Different 187 

Variation) scenario has diversity metrics that are highly correlated and vary in 188 

importance of each metric in biodiversity space. The LoC/EqV (Low Correlation and 189 

Equal Variation) scenario has diversity metrics with low correlation and similar 190 

importance in biodiversity space. Finally, the LoC/DifV (Low Correlation and 191 

Different Variation) scenario has diversity metrics with low correlation and dissimilar 192 

importance in biodiversity space. 193 

We generate scenarios HiC/EqV and HiC/DifV by starting with a phylogeny 194 

that was simulated by a birth-death processes (function sim.bdtree from the package 195 

geiger [Harmon, Weir, Brock, Glor, & Challenger, 2008]) where a species, chosen 196 

randomly, initiates the procedure by colonizing a given community. Subsequent 197 

addition of species to the community depends on the species that are already present 198 

in that community. Communities at one extreme will only contain species that are 199 

phylogenetically closely related to each other (top 10%), with the phylogenetic filter 200 

becoming less restrictive until communities do not have any phylogenetic filter that 201 

restricts coexistence of species (least restrictive condition). Since we simulated a 202 

continuous trait that was conserved over the phylogenetic tree — evolved according 203 

to a Brownian motion model, using the function rTraitCont (Paradis et al. 2004) with 204 

the ρ [rho] parameter set to 3 — with the number of species in each community 205 

gradually increasing (less phylogenetic filter, more species), the procedure created a 206 

gradient of phylogenetic, functional and taxonomic diversity metrics. In order to 207 
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generate differences in variation of the diversity metrics, in scenario HiC/ DifV we 208 

simulated a trait that evolves according to a regime of stabilizing selection (Ornstein-209 

Uhlebeck model with the strength of selection set by the parameter α at 0.8) that 210 

restricts trait variation to within an optimal range (represented by a θ [theta] of 0). 211 

This allowed us to generate a set of communities in which the diversity metrics were 212 

highly correlated but variation of FD was much lower than that of richness and PD 213 

since the traits that were used in the calculation of FD were restricted by the selection 214 

process. 215 

We generated the scenario LoC/DifV by following the same procedures 216 

described above for scenario HiC/EqV, however, the trait was simulated to have low 217 

phylogenetic signal and the phylogenetic tree used to calculate PD was modified to 218 

simulate a process of evolution in which most speciation occurs near the root (a star-219 

like phylogeny). This procedure resulted in low correlation between PD and FD, since 220 

the relationship between phylogeny and traits was disrupted. Additionally, low 221 

variability for PD and richness metrics was obtained since we set the simulations to 222 

produce communities with the same number of species but with the phylogenetic 223 

filtering acting in community assembly. Consequently, most of the variation in this 224 

scenario is due to the FD metric. Finally, to generate scenario LoC/EqV we simulated 225 

communities in which all species in the phylogenetic tree had an equal probability of 226 

occurring in any community (no phylogenetic filtering acting on the assembly), and 227 

set the richness to be very similar for all communities. This procedure generated 228 

metacommunities with low correlation and similar amounts of variation for all 229 

diversity metrics. 230 

We generated 999 sets of communities for each scenario described above, 231 

with the metacommunities of all scenarios being composed of 50 communities with a 232 
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minimum of 20 and a maximum of 200 species. The phylogenetic filter was set to act 233 

gradually on the communities, increasing by the order of 10% (start by selecting the 234 

top 10% most phylogenetically similar species, followed by the top 20% and so on 235 

until 90% of the species have been selected from the pool). Details and an illustration 236 

of the simulation procedures and scenarios are presented in the supplementary 237 

material Appendix S1, along with a link to an interactive module that we produced to 238 

illustrate the simulation procedure used in this work. 239 

Finally, we tested whether the values of EE and IV met our theoretical 240 

expectations. We checked if EE values differed between scenarios with low 241 

correlation and scenarios with high correlation (scenarios HiC/DifV and HiC/EqV 242 

versus scenarios LoC/EqV and LoC/DifV). To effectively capture the correlation 243 

component of dimensionality EE must be higher in scenarios with low correlation 244 

among diversity metrics than in scenarios with high correlation. To test for 245 

differences among IV values of each metric in the scenarios we used a graphical tool 246 

called profile of importance (Wilsey et al. 2005) and quantified differences in IV of 247 

each metric by calculating F values obtained from a linear model (Equation 3). F 248 

values allow the IV values of the three dimensions (PD, FD and richness) to be 249 

compared and to determine if the IV values of the DifV scenarios (scenarios 250 

HiC/DifV and LoC/DifV) differed more from each than did the IV values calculated 251 

for the EqV scenarios (scenarios HiC/EqV and LoC/EqV). The simulation scenarios 252 

and the theoretical expectations regarding EE and IV follow the schematic 253 

representation present in Figure 2. 254 

Assessing the dimensionality of biodiversity in small mammal communities  255 

We illustrate the application of the dimensionality framework with a database 256 

of small mammal communities (marsupial and cricetid mammals) distributed 257 
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throughout the South American continent. We constructed matrix M for these 258 

communities by calculating eight diversity metrics that represent different dimensions 259 

of taxonomic, functional and phylogenetic components of biological diversity. The 260 

choice of metrics was based on the works of Tucker et al. (2017) and Scheiner (2019), 261 

which together represent the most complete compilation and classification of metrics 262 

of taxonomic, functional (Scheiner, 2019) and phylogenetic diversity (Tucker et al. 263 

2017). We chose at least one metric for each of the richness, divergence and 264 

regularity dimensions of the three components of biodiversity considered here. The 265 

taxonomic component was represented by richness; the functional component by FD 266 

(richness dimenson, Petchey and Gaston 2006b), FEve (regularity dimension) and 267 

FDiv (divergence dimension, Villéger et al. 2008); and the phylogenetic component 268 

by PD (richness dimension, Faith 1992), MNTD (divergence dimension, Webb et al., 269 

2002), PSV (divergence dimension, Helmus et al., 2007) and PEve (regularity 270 

dimension, Villéger et al. 2014).  271 

Traits used to calculate functional metrics comprised life-history attributes — 272 

weight, head-body length, diet and form of locomotion. Species were categorized 273 

according to their diet as insectivores, herbivores, granivores, omnivores, frugivores, 274 

piscivores, seed predators and leaf predators, and according to their modes of 275 

locomotion as terrestrial, semifossorial, semiaquatic, arboreal and scansorial. Some 276 

species were allocated to more than one diet and locomotion category. All calculated 277 

diversity metrics require a distance matrix or a functional dendrogram obtained from 278 

a distance matrix. Therefore, to obtain the functional distance matrix we used Gower 279 

distance (Pavoine et al. 2009) for traits that have different statistical characteristics 280 

(numerical and categorical). 281 
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The phylogenetic hypothesis used to calculate phylogenetic indices was 282 

obtained from the mammalian phylogenies of Bininda-Emonds et al. (2007) and 283 

Fabre et al. (2012), the latter of which was used to improve the phylogenetic 284 

resolution to species level. Seven species present in our data were not included in the 285 

phylogeny Fabre et al. (2012), so we included these species as polytomies within their 286 

respective genera. Divergence times for our phylogeny were estimated in millions of 287 

years by equally distributing the ages of undated nodes, based on the know ages 288 

present in Bininda-Emonds et al. (2007) and Fabre et al. (2012), using the BLADJ 289 

algorithm of Phylocom software (Webb et al. 2008). The phylogenetic hypothesis and 290 

the original references compiled to assemble the community data used in this work  291 

are provided in Figure S2 and Table S1 of Appendix 2 of the supplementary material. 292 

The metrics EE and IV were calculated as previously described, with the 293 

number of axes used in IV calculation being determined by the Kaiser-Gutmann stop 294 

criterion. We also compared the observed values of EE with a null distribution of 999 295 

EE values generated by a null model that randomizes a species incidence matrix while 296 

preserving differences in richness among sites and mixing species frequency 297 

(performed with the sim3 function from the EcoSimR package [Gotelli and Ellison 298 

2013a]). Using this null model we tested the null hypothesis that observed EE values 299 

do not differ from expected EE values according to variation in richness. We 300 

implemented a function called dimensionality to calculate EE values from matrix M. 301 

The function allows the user to choose the evenness method that will be used in the 302 

calculation. It can be accessed at 303 

https://github.com/GabrielNakamura/dimensionality_function. 304 

We calculated IV for the small-mammal metacommunities according to 305 

Equation 2, applying ImportanceVal — the R code for the IV function (the function 306 
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can be accessed at https://github.com/GabrielNakamura/IV_function). We used the 307 

Kaiser-Gutmann stop criterion and a bootstrap procedure that re-sampled matrix M 308 

999 times and recalculated IV for each metric so that we generated confidence 309 

intervals for the IV value of each diversity metric. We performed all calculations with 310 

a standardized matrix M (scaled to a mean of zero and unit variance for the 311 

calculation of EE values and standardized by the maximum values of each metric for 312 

the calculation of IV values). Bootstrapped IV values were submitted to an Ordinary 313 

Least Square (OLS) linear model to test for differences in the importance of the 314 

components of diversity that assemble matrix M:  315 

�
� �  � �  � � ���������� �  �� , Equation 3 316 

Equation 3 represents the effects parametrization model in which IVi represents the 317 

predicted value of IV for the diversity metric i, � the effect of a given dimension over 318 

another and εi the error term associated with the residuals, which follow a Gaussian 319 

distribution. Each value of IV was classified as belonging to the phylogenetic (PD, 320 

PEve, PSV and mntd), the functional (FD, FDis and FDiv) or the taxonomic 321 

(richness) dimension. Through this model we aimed to determine if any of the 322 

components of diversity (functional, phylogenetic or taxonomic) captures a greater 323 

amount of information from biodiversity space. Additionally, we performed another 324 

linear OLS model using the same set of data but considering each metric as the 325 

explanatory variable, in order to assess differences in importance among diversity 326 

metrics. For both models we performed a Tukey test to assess pairwise differences in 327 

importance among dimensions and metrics. 328 

 The dimensionality framework was applied to four different configurations of 329 

matrix M: all metrics; a combination of phylogenetic metrics and richness; a 330 

combination of functional metrics and richness; and a combination of functional and 331 
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phylogenetic metrics. We performed these analyses to show how dimensionality can 332 

change depending on the components of diversity used in matrix M, and what the 333 

implications of different values of EE and different similarities among metrics IV 334 

(represented as Camargo´s evenness of IV metrics) are on the choice of diversity 335 

metrics to be used to represent the biodiversity. For these analysis we also computed 336 

EE as the mean value calculated from a bootstrap procedure equivalent to that used 337 

for the IV metric, in order to generate confidence intervals. 338 

Results 339 

Simulated data 340 

Our simulation revealed that EE and IV, when used together, acquire information 341 

regarding two aspects of dimensionality: correlation among metrics and the variation 342 

that each metric accounts for in biodiversity space. This complementary information 343 

that IV brings to the analysis of dimensionality is evidenced in Figure 3. Thus, 344 

different patterns of redundancy in information captured by the metrics can be 345 

obtained for a given level of correlation, with greater differences among IV values in 346 

scenarios HiC/DifV and LoC/DifV (right side of Figure 3) than in HiC/EqV and 347 

LoC/EqV (left side of Figure 3). 348 

The differences in EE between scenarios of high and low correlation (Figure 349 

1, comparison between EE of upper and lower graphics), but not between scenarios of 350 

different and equal variation (Figure 1, comparison between EE bars in the same row) 351 

support our argument that this metric captures only the correlation component of 352 

dimensionality.  353 

The ability of IV to capture the degree of redundancy in biodiversity 354 

information of the metrics was clear mainly for the HiC/DifV scenario, in which the 355 

attribute used to generate communities exhibited low variation (OU model) and, 356 
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consequently, the FD metric presented lower IV than richness and PD metrics. It is 357 

worth noting that differences among the IV of metrics was greater in scenario 358 

LoC/EqV than in scenario HiC/EqV (Figure 1, lower right graphic), since it is not 359 

possible to obtain high redundancy in metric information (indicated by similar IV 360 

values among metrics) along with high values of complementarity (indicated by high 361 

EE). High redundancy in the importance of metrics is only possible for communities 362 

with low EE (low complementarity of dimensions), as demonstrated by scenario 363 

HiC/EqV. The magnitude of the differences in IV among metrics for each scenario is 364 

shown in Figure S3 of Appendix S3 of the supplementary material. 365 

Small mammal communities 366 

We obtained a moderate value for complementarity for the small mammal 367 

communities, as indicated by an EE of 0.49 for matrix M calculated with all eight 368 

diversity metrics. The correlation component of dimensionality, at least for the three 369 

analyzed components of diversity (functional, phylogenetic and taxonomic), may be a 370 

consequence of spatial gradients of species richness, as evidenced by comparing 371 

observed EE with that expected by the null model distribution of EE (Figure S4 in 372 

Appendix 3 of the supplementary material). 373 

Only two axes of the PCA were significant according Kaiser-Guttman criterion 374 

(representing 70% of all the variation in matrix M), and composed the fundamental 375 

biodiversity space in which IV was calculated. Observed IV values for the eight 376 

diversity metrics ranged from 0.19 for PSV (27% of all the variation in biodiversity 377 

space) to 0.003 to FDiv (0.3% of all the variation in biodiversity space). Bootstrap 378 

means and confidence intervals for IV for all metrics are illustrated in Figure 4 379 

through the IV profile (sensu Willig and Hollander 1995), evidencing PSV as the 380 

metric capturing most of the variation in biodiversity space, followed by richness. 381 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/508002doi: bioRxiv preprint 

https://doi.org/10.1101/508002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

The linear OLS model showed significant variation in IV among diversity metrics 382 

(F-value= 3.428; p<0.05), while the Tukey test revealed that the greatest difference in 383 

importance was between taxonomic and functional components of biodiversity 384 

followed by the difference between phylogenetic and functional components 385 

(difference between observed means of 0.092 and 0.064, respectively; Figure S5 of 386 

Appendix 3). This finding highlights the importance of considering the taxonomic and 387 

phylogenetic dimensions in characterizing the biodiversity of communities of 388 

cricetids and marsupials. 389 

Analysis of dimensionality for matrix M containing functional metrics and 390 

richness had the highest complementarity (highest EE) and lowest redundancy in 391 

metric importance (biodiversity representation with similar values of IV, as indicated 392 

by a lower evenness of IV than obtained for other sets of metrics) (Figure 5). PSV 393 

was the metric that captured the most information in matrix M containing 394 

phylogenetic metrics and richness (30% of all the variation in biodiversity space) and 395 

phylogenetic and functional metrics (31% of all the variation in biodiversity space), as 396 

well as for matrix M containing all metrics (24% and of all the variation in 397 

biodiversity space). For matrix M that considered only functional metrics and 398 

richness, richness captured most of variation (47% of all the variation in biodiversity 399 

space). Despite the high variability, as indicated by the confidence intervals of IV and 400 

EE evenness , it is worth noting that IV evenness remains constant for different mean 401 

values of EE, with the greatest IV evenness being for the set of metrics that had the 402 

lowest EE value (matrix M with phylogenetic metrics and richness). 403 

Discussion 404 

Our results with simulated data evidence the need for a dimensionality framework 405 

that integrates both EE and IV in order to effectively characterize dimensionality by 406 

considering its two components —correlation and variation in biodiversity space. 407 
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Operationalizing these two components through EE and IV reveals their 408 

complementarity (by means of EE) and, given some level of complementarity, the 409 

degree of redundancy in information captured by the metrics used to express these 410 

dimensions (through IV). Therefore, our proposed dimensionality framework 411 

represents a step beyond the current approach to operationalizing dimensionality, as 412 

proposed by Stevens and Tello (2014) by distinguishing the degree of redundancy in 413 

information that each diversity metric captures. 414 

 Our integrated dimensionality framework joins other propositions in helping 415 

to choose metrics for the biological characterization of communities. We are aware 416 

that the main guide for choosing diversity metrics must be the objectives of the work. 417 

However, regardless of the objective, it is desirable to use diversity metrics that 418 

encompass complementary components of biological diversity and account for a 419 

satisfactory amount of the information present in the biodiversity component being 420 

investigated (Ricotta 2005b). In this respect, Saito et al. (2015) showed that 421 

phylogenetic, functional and traditional taxonomic indices present complementary 422 

information and should be used to adequately characterize and monitor biodiversity of 423 

stream macroinvertebrate communities. Ouchi-Melo et al. (2018) performed an 424 

integrated assessment to identify areas of conservation interest in the Cerrado biome, 425 

and evidenced the importance of considering traditional together with functional and 426 

phylogenetic metrics. Although both of these works considered the complementarity 427 

component by accounting for correlation among metrics, they did not account for 428 

redundancy in the amount of variation that each metric captures in biodiversity space, 429 

thus facing the same problem presented by using the EE metric alone. The 430 

dimensionality framework presented here, therefore, represents the most general and 431 

complete framework to date for guiding researchers in their choice of metrics to be 432 
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used for biological assessment by considering both complementarity among 433 

biological dimensions and the amount of information that metrics can capture. 434 

It is worth pointing out that the dimensionality of diversity can be investigated 435 

at any spatial and temporal scale, and using any configuration of matrix M. Even for 436 

works that focus on only one component of biodiversity, the investigation of 437 

dimensionality can be important for knowing which aspects of biodiversity are worthy 438 

of being included in biological assessment. Tucker et al. (2017) identified three 439 

complementary components of the phylogenetic component: richness, divergence and 440 

regularity. Thus, research focused on phylogenetic diversity can address whether 441 

these three components are complementary dimensions in the analyzed communities 442 

and which metrics are the most important to measure in order to best represent 443 

variation in these dimensions. As we showed in our empirical example with small 444 

mammal communities, dimensionality will depend on the representation of biological 445 

diversity used in matrix M, which influences practical decisions regarding which 446 

metrics are the most important for characterizing biodiversity.  447 

At least for the cricetid and marsupial communities analyzed here, 448 

characterizing diversity through functional and taxonomic components requires great 449 

care in the choice of diversity metrics to be used. This is because this situation has the 450 

highest complementarity regarding diversity dimensions (highest EE value), 451 

indicating the need to rely on different components of diversity to effectively describe 452 

biodiversity, and a moderate level of redundancy in metrics, indicating that some 453 

metrics account for disproportionately more information than others. In this example, 454 

richness accounted for more information than the other metrics, but consideration of 455 

other components that represent functional information is also important for 456 

effectively characterizing biological diversity. This functional component can be 457 
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represented by FDiv or FEve, which are very redundant in information. On the other 458 

hand, if the characterization of small mammal communities was focused on 459 

phylogenetic and taxonomic components, the choice of metrics to be used would 460 

require less caution since complementarity among dimensions is lower and 461 

redundancy of information is greater, indicating that all the metrics capture similar 462 

amounts of information of biodiversity space. 463 

When considering matrix M with all eight diversity metrics, applying the 464 

dimensionality framework to small mammal communities revealed that cricetids and 465 

marsupials possess intermediate to low levels of complementarity (mean EE of 0.51 466 

±0.025). Together with low complementarity, low levels of redundancy among the 467 

metrics was found when considering the three components of biodiversity together 468 

(mean IV evenness of 0.63 ±0.082). Consequently, we suggest that the choice of 469 

diversity metrics to effectively represent these communities must encompass the three 470 

components of diversity — choosing the PSV metric, which accounts for the highest 471 

IV, and two other complementary metrics to represent taxonomic (richness) and 472 

functional components (FD that has the highest IV among functional metrics, as 473 

shown in Figure 6). 474 

The patterns of IV values for small mammal communities contrasted with the 475 

findings of Wilsey et al. (2005) and Lyashevska and Farnsworth (2012), who 476 

concluded that richness was the least important diversity metric for representing 477 

variation in community structure (grassland and marine benthic communities, 478 

respectively). Although we did not considered abundance-based metrics, as these 479 

studies did, we point out that patterns of complementarity and redundancy can differ 480 

depending on the taxonomic group being investigated and the metrics being used (as 481 

already emphasized by our empirical application of the IV framework with different 482 
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configurations of matrix M). This finding highlights the need to understand 483 

contingencies in the correlation and variation components of the dimensionality of 484 

different communities. 485 

We only used metrics that capture three sources of information from 486 

biodiversity (phylogenetic, functional and taxonomic), since they are the main 487 

assessed components of diversity and represent important metrics for capturing 488 

different dimensions of these components (Tucker et al. 2017). Despite the limited 489 

number of metrics presented in this work, the dimensionality framework used here is 490 

highly flexible in the sense that it can be applied to a matrix M that contains many 491 

more dimensions (Ricotta 2005). Therefore, we could represent diversity in a much 492 

more complete manner, with metrics that capture other quantifiable components such 493 

as genomic (e.g. Nei 1978), proteomic (e.g. Gotelli et al. 2013b) or any other 494 

dimension that can be quantified. 495 

Conclusion and future directions 496 

This work represents an upgrade of the operationalization of the concept of 497 

dimensionality presented by previous works. We demonstrate that including the 498 

correlation component of dimensionality with the variation component, through the 499 

use of EE and IV, in the same framework more effectively characterizes the 500 

dimensionality of biodiversity.  501 

Besides conceptual and operational advances, the dimensionality framework 502 

proposed here provides evidence regarding practical situations in which the choice of 503 

diversity metrics is more critical for effectively characterizing biodiversity. The use of 504 

this dimensionality framework can help identify these different situations and assist in 505 

choosing metrics. 506 
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Since the evidence presented in the literature regarding characterization of 507 

dimensionality is limited (Lyashevska and Farnsworth 2012, Stevens and Tello 2014, 508 

2018, Stevens and Gavilanez 2015), and based only on specific groups of organisms, 509 

some questions still need to be addressed to provide a more complete understanding 510 

and generalization of the role that some factors play in the dimensionality of 511 

ecological communities. For instance, one might wonder if some dimensions of 512 

diversity are consistently more informative than others when describing diversity 513 

patterns among different taxa, or if distinct factors (historical, evolutionary and/or 514 

ecological) generate predictably higher or lower levels of dimensionality across 515 

communities. 516 
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Figure legends 607 

Figure 1: A) A set of communities described by two diversity metrics (Metric 1 and 608 

Metric 2) that are highly correlated. This pattern of correlation can be related to two 609 

diversity metrics that account for similar amounts of variation in the reduced 610 

biodiversity space (B, high redundancy), or be a situation in which one metric has 611 

disproportional importance for capturing variation in biodiversity space (C, low 612 

redundancy). 613 

Figure 2: Schematic representation of simulated scenarios and expected outcomes for 614 

EE and IV. The abscissa represents the variation component of dimensionality. 615 

Metacommunities were simulated to show similar values of variation among metrics 616 

(lower left quadrant) or different values of variation among metrics (lower right 617 

quadrant), so that, respectively, similar and different IV values among diversity 618 

metrics are expected. The ordinate represents the correlation component of 619 

dimensionality. Metacommunities were simulated that had metrics with high (upper 620 

right panel) and low correlation, so that, respectively, low and high EE values are 621 

expected. 622 

Figure 3: Bar plots showing IV and EE calculated for metacommunities simulated 623 

according different scenarios (HiC/EqV, HiC/DifV, LoC/EqV and LoC/DifV) using 624 

PD, FD and richness metrics in matrix M. For each of these scenarios situations were 625 

presented in which the metrics contribute similarly or unequally in biodiversity space 626 

( variation in ordinate axis) and are highly or lowly correlated (variation in abscissa 627 

axis). 628 

Figure 4: IV profile for marsupial and cricetid mammal communities from South 629 

America calculated using matrix M containing eight diversity metrics. Bar height 630 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/508002doi: bioRxiv preprint 

https://doi.org/10.1101/508002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

corresponds to the mean IV for each diversity metric while lines represent 95% 631 

confidence intervals, both calculated via a bootstrap procedure. 632 

Figure 5: Values of EE and evenness of IV calculated for four different 633 

configurations of matrix M. Symbols represent mean values for each matrix 634 

configuration while lines represent confidence intervals. Bar graphics represent 635 

IV profiles calculated for matrix M with all metrics of diversity; functional 636 

metrics and richness; phylogenetic metrics and richness; and functional and 637 

phylogenetic metrics. Bars represent means while lines represent confidence 638 

intervals obtained via a bootstrap procedure applied to each matrix M. 639 
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