
 
SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms 

and across species  
 
 

Yuqi Tan1,3 and Patrick Cahan1,2,3 

 
 
 
 
 
 
 
 
1Institute for Cell Engineering 
2Department of Biomedical Engineering 
3Department of Molecular Biology and Genetics 
Johns Hopkins University School of Medicine 
Baltimore, Maryland, 21205 USA  
 
 

 
Correspondence to: patrick.cahan@jhmi.edu 
 
Running head: Classifying single cells 
 
Keywords: single cell RNA-Seq; classification; cell fate engineering; cell atlas 
 
 
Highlight 
 

• SingleCellNet (SCN) enables the classification of scRNA-Seq data across platforms and 

species 

• SCN is open source and extendible 

• We illustrate the utility of SCN with three example applications 
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Summary 
 
Single cell RNA-Seq has emerged as a powerful tool in diverse applications, ranging from 

determining the cell-type composition of tissues to uncovering the regulators of developmental 

programs. A near-universal step in the analysis of single cell RNA-Seq data is to hypothesize 

the identity of each cell. Often, this is achieved by finding cells that express combinations of 

marker genes that had previously been implicated as being cell-type specific, an approach that 

is not quantitative and does not explicitly take advantage of other single cell RNA-Seq studies. 

Here, we describe our tool, SingleCellNet, which addresses these issues and enables the 

classification of query single cell RNA-Seq data in comparison to reference single cell RNA-Seq 

data. SingleCellNet compares favorably to other methods, and it is notably able to make 

sensitive and accurate classifications across platforms and species. We demonstrate how 

SingleCellNet can be used to classify previously undetermined cells, and how it can be used to 

assess the outcome of cell fate engineering experiments.   

   

Introduction 
 
Single cell RNA-Seq (scRNA-Seq) has rapidly emerged as a powerful tool to generate cell 

atlases of organs, tissues, and even complete organisms (Cao et al., 2017; Han et al., 2018; 

Tabula Muris Consortium et al., 2018), to define stages and regulators of lineage commitment 

during development (Kumar et al., 2017), and to determine how perturbations such as age, 

pathology, or genetic variation impact cell composition and cell state (Haber et al., 2017; 

Kowalczyk et al., 2015; Park et al., 2018; Patel et al., 2014). One of the most time-consuming 

aspects of scRNA-Seq investigations is annotating each cell, or in other words, determining 

each cell's 'type'. This often requires further experimentation such as in situ-based methods to 

localize cells within a tissue, or prospective isolation followed by functional assessment. It is 

evident, that a faster method with more quantitative rigor method is needed. One approach 

would be to develop a method that allows the direct comparison of 'query' scRNA-Seq data to 

an existing scRNA-Seq dataset in which the cells have already been identified, such as a cell 

atlas.  

 

Several methods to integrate scRNA-Seq data have been proposed. For example, canonical 

correlation analysis (CCA) (Butler et al., 2018), and MnnCorrect (Haghverdi et al., 2018) have 

proven useful in aggregating scRNA-Seq datasets so as to increase statistical power in 
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differential gene expression analysis and in gene-to-gene correlation analysis. However, these 

approaches require that at least one relatively abundant cell type is present in both datasets. 

Furthermore, the methods do not explicitly provide a means to quantitatively classify query cell 

types in comparison to a reference data set, which is the goal of our method SingleCellNet 

(SCN). MetaNeighbor is another tool that compares cell types across scRNA-Seq datasets, yet 

it addresses the question "to what extent is a group of cells reproducible across scRNA-Seq 

data sets?", which is distinct from our aim (Crow et al., 2018). SCMAP is the method most akin 

to SCN in intent (Kiselev et al., 2018) in that it classifies query cells according to their similarity 

to reference cell types based on various measures of correlation. While SCMAP is fast, it 

ultimately returns a binary cell type assignment for each cell. In many applications, such as in 

cell fate engineering, a quantitative measure of similarity would be more informative than a 

categorical assignment of identity. Here, we present SCN, a method to quantitatively classify 

scRNA-Seq data based on comparison to a reference data set. To make query and reference 

data compatible across platforms and species, we use a simple transformation based on 

comparing expression of pairs of genes within each cell, a method inspired by the top-scoring 

pair classifier (Geman et al., 2004). Here we evaluate the performance of SCN, compare it to 

the intermediate quantitative outputs of SCMAP, and highlight its utility in three realistic use-

cases: a cross-platform identification of previously unclassified cells, the identification of cell 

types resulting from a cell fate engineering experiment, and a cross-species classification of 

hematopoietic cell types.  

 

RESULTS 
 

Building a multi-class scRNA-Seq classifier with top-pair transform and Random Forest  

We previously developed CellNet, a computational method designed to classify populations of 

engineered cells (i.e. those derived by differentiating pluripotent stem cells) (Cahan et al., 2014) 

using Random Forests (Breiman, 2001). With SCN, we have revamped this approach to enable 

classification of scRNA-Seq data generated from different platforms and from different species. 

We do not use gene counts or expression estimates directly in training or in classifying. Rather, 

we transform the data into a binary matrix derived by pairwise comparisons of selected genes 

on a per cell basis, limited to genes that are preferentially expressed in each cell type defined in 

the training data, as well as those genes that are specifically under-expressed in each type (Fig 
1A). Then, to limit the set of predictors for input to training the Random Forest classifier, we use 

template matching (Pavlidis and Noble, 2001) to find the most discriminating sets of gene pairs. 
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After gene-pair selection, the training data is then transformed into a binary matrix and used to 

train a multi-class Random Forest classifier. Our training process also includes a step to 

generate, by random sampling of gene pair values, a set of transformed single cell profiles that 

are unlike any others in the training data. This 'unknown' category can be useful to identify 

query cells to which no class in the training data corresponds. Query scRNA-seq data 

undergoes the same TP transform. To measure the performance of the classifier throughout this 

study, we have used two assessment metrics: Cohen’s kappa (k), which measures agreement 

of categorical variables normalized for chance (Cohen, 1968), and mean area under the 

precision-recall curve (mean AUPR). As ground truth, we used a variety of gold standard data 

sets in which the cell identity is given as our base for comparison. To evaluate the performance 

of existing method SCMAP using mean AUPR, which requires a quantitative score, we used the 

intermediate outputs of Pearson, Spearman, and Cosine correlations. 

 

Performance of the SingleCellNet TP-RF classifier 

We first set out to determine how the number of top pairs, the primary user-tunable parameter of 

our method, impacts classifier performance. In this and the other analyses in this section, we 

used the Tabula Muris 10x scRNA-Seq (TM-10x) dataset. First, we sampled 50 cells from each 

of the 32 defined cell types from this dataset for training top-pair SCN (SCN-TP) across a range 

of top pairs per cell type. Next, we used the 23,337 remaining cells as held-out validation data, 

finding that both k and mean AUPR plateaued when the number of top pairs was 10, 

corresponding to 320 total predictor genes (Supp Fig. 1A).  

 

Next, we determined the effect of adjusting profiles based on stage of cell cycle, as this is 

sometimes considered an uninformative biological confounder of clustering analysis (Barron and 

Li, 2016). We evaluated performance in three scenarios: no cycle adjustment, adjustment of 

both training and validation data, and adjustment of validation data only, where adjustment is 

performed by regression on stage of cell cycle (Wolf et al., 2018). In addition to evaluating SCN-

TP, we also trained and evaluated a version of SCN in which no top-pair transform is performed, 

but rather in which expression estimates of differentially expressed genes are used as 

predictors variables in training the Random Forest. We refer to this method as SCN-Base. In the 

scenario of no adjustments, SCN-TP and SCN-Base performed similarly (k 0.93 vs 0.94 and 

mean AUPR 0.95 vs 0.96). However, in the case of adjusting both the training and the validation 

data, the performance of SCN-TP held steady while that of SCN-Base plummeted (k 0.93 vs 

0.29 and mean AUPR 0.94 vs 0.31). In the case in which only the validation data was adjusted 
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for cell cycle, SCN-Base worsened further while SCN-TP remained stable (k 0.92 vs 0.05, mean 

AUPR 0.93 vs 0.19). This analysis suggests that SCN-TP is resilient to regressing on stage of 

cell cycle whereas other classifiers trained directly on expression levels are prone to 

performance degradation.  

 

Classifier performance across platforms and across species  
There is wide diversity in scRNA-Seq methodologies, and the extent to which classifiers trained 

on data from one platform would be applicable to a query dataset from another, is unclear. We 

explored this by training classifiers and assessing their performance when applied to 

independent, well-annotated scRNA-Seq data from other studies of different scRNA-Seq 

platforms (Supp Table 1). We have assessed the classifier performance of all five methods with 

sixteen different pairs of cross-platform training and query data (Supp Fig 1A). As a 

representative analysis, we discuss here the results of using human pancreas cells profiled by 

inDrop as training data (Baron et al., 2016), and human pancreas cells profiled by CEL-Seq2 as 

the query (Muraro et al., 2016). SCN-TP had significantly higher mean AUPR compared to the 

SCMAP correlation methods and compared to SCN-Base (0.98 vs 0.60-0.88 vs 0.93, 

respectively) (Fig 1B left). SCN-TP and SCMAP had similar k, and both methods significantly 

outperformed SCN-Base (0.91 vs 0.89-0.93 vs 0.77). In typical scRNA-Seq studies, the data are 

clustered into groups of cells with similar profiles. If the clusters represent cell states or cell 

types that are robustly detectable across platforms and studies, then cells within the clusters 

should share high classification scores for the same category, and low scores for all other 

categories. To test this idea, we visualized the classification results as violin plots, where the 

major x-axis is the pancreas cell type as annotated in Murano et al, and the y-axis is the 

classification score of the indicated category (Fig 1B, right). Indeed, each cluster of the query 

data had one clear category with a maximal classification score. Interestingly, this analysis also 

illustrated that the SCN methods achieved a starker contrast in classification scores than 

SCMAP correlation methods (Fig 1B right), which may contribute to the lower mean AUPR of 

these methods. The performance results described above held true more generally. SCN 

methods had significantly higher mean AUPRs than SCMAP correlation methods in 16/16 

analyses, whereas SCN had similar or higher k in 12/16 analyses (Supp Fig 1A).  

 

Finally, we determined the performance of the methods when applied across species with five 

datasets: three of the pancreas and two of the central nervous system (Supp Table 2). To train 

these classifiers, we converted query dataset gene symbols to symbols of orthologs as 
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determined by HCOP (Seal et al., 2011). Consistent with prior results, SCN-TP achieved 

significantly higher mean AUPR values, and either similar or higher k values than other methods 

(Fig 1C). The only exception was in one of the pancreas analyses in which SCN-Base achieved 

a similar mean AUPR and moderately higher k than SCN-TP. 

 

Collectively, these analyses show that SCN-TP achieves a high, if not the highest, classifier 

performance across a range of conditions, including correction for cell cycle, differences in 

platforms, and differences in species.  

 

Example applications of SingleCellNet 

Here we briefly describe one example application of SCN in perhaps the simplest use-case in 

which a user has performed a scRNA-Seq experiment and wants assign to the cells a putative 

identity. We used the Baron et al human pancreas data to train SCN-TP, and the Segerstolpe et 

al pancreas data as the query (Fig 2A). The primary visualization in SCN is a classification 

heatmap, in which the cells are represented as columns, the cell types of the classifier are 

represented as rows, and the multi-class classification scores are colored from black (low 

classification score) to yellow (high classification score). In this example, we ordered the query 

cells according to the annotation provided in the corresponding study (Fig 2B top). In addition to 

the fact that all of the previously annotated cells were appropriately classified, SCN also 

provided putative identities for the 43 pancreatic cells that had been previously “unclassified” in 

the original study: two gamma cells, nine alpha cells, three beta cells, three delta cells, one 

ductal cell, and two possible Schwann cells. The remaining cells have seemingly dual identities 

cells of either alpha and beta cells or alpha and gamma cells (Fig 2B bottom). In the online 

documentation for SCN and in the supplemental figures, we have included several other 

example applications, including a classification of fibroblasts reprogrammed to a neural-like 

identity (Supp Fig 2) (Tsunemoto et al., 2018), and a cross-species classification of peripheral 

blood mononuclear cells (Supp Fig 3) (Zheng et al., 2017). In these applications we have 

described additional ways to visualize the results, including violin classification plots, attribution 

plots, and dimensionality reduction based on classification results with UMAP.   

 

Discussion 
    

The demand for a robust method to quantify cell identity will grow as technologies to generate 

scRNA-Seq data proliferate and become more accessible. Here, we have shown that SCN 
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quantifies cell identity in a manner that is robust to varying scRNA-Seq platforms and that is 

capable of classifying cells across species. To aid in the community’s use and improvement of 

SCN, we have made it available under an Open Source software license, and the code is 

accessible at Github: (http://github.com/pcahan1/singleCellNet/). Our documentation includes 

sections on training new classifiers, troubleshooting, expected computation time, and step-by-

step procedures to reproduce the examples described here. 

 

In contrast to other scRNA-Seq integration and comparison methods, we expect that SCN will 

be especially useful when a quantitative, rather than a binary, metric of identity is informative, or 

when the presence of shared cell types across datasets is unclear. One such application is the 

classification of engineered cell types (i.e. those derived through directed differentiation or direct 

conversion) in comparison to a reference dataset of in vivo-derived cells. As more data across 

developmental time points are accrued, we anticipate that SCN will provide a means to quantify 

not only the identity but also the stage of development and maturation of engineered cells.  

 

Figure Legends 

 
Figure 1. SingleCellNet (SCN) schematic and performance comparisons (A) SCN takes in 

scRNA-Seq with annotation as training data. SCN selects the best classifying gene pairs from 

the training data using an approach similar to the Top-scoring-pair algorithm and pair-transforms 

it into a binary matrix. A multi-class Random forest classifier is then trained with the transformed 

training data. The query scRNA-Seq data will also be pair-transformed, and a classification 

score is generated for each query cell. (B) A representative example of the sixteen pairs of 

cross-platform scRNA-Seq training-query performance analyses. The Baron human pancreas 

scRNA-Seq dataset is the training and Murano human pancreas scRNA-Seq dataset is the 

query, were used to benchmark the performance of the five methods: SCN-TP, SCN-Base, 

SCMAP-cosine, SCMAP-pearson and SCMAP-spearman, using two quantitative metrics: mean 

AUPR and k. The training for each pair of the cross-platform comparisons was k-fold cross-

validated for ten times. Left: The barplot shows the mean and standard deviation of the classifier 

performance. Right: The classification scores are displayed with violin plot, where the x axis 

shows the true cell annotation, and the y axis label on the right-hand side shows the classifier 

category. (C) Mean and standard deviation of the classifier performance (Left: Kappa, right: 

mean AUPR) of cross-platform and cross-species scRNA-Seq classifiers.  
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Figure 2. Application of SCN across scRNA-Seq platforms to determine the identity of unknown 

cells. (A) Baron adult human pancreatic scRNA-Seq data and its annotation provided by the 

authors are used to train SCN-TP classifier. Segerstolpe et al profiled adult human pancreatic 

scRNA-Seq data with a different scRNA-Seq technique was used as query data. (B) A 

classification heatmap is used to visualize the classification result of the Segerstolpe data on the 

Baron-based SCN-TP classifier. The annotated columns are labeled according the provided 

label from the Segerstolpe group. The row names indicate the cell-type specific classifier trained 

with the Baron data. The classification score for each column/cell sums up to 1, with a range 

from 0 (black) to 1 (yellow). 

 

 
STAR Methods 

Key Resources Table 

REAGENT or RESOURCE Source Identifier 

Tabula Muris scRNA-Seq 

data 

(Tabula Muris 

Consortium et al., 2018) 

https://figshare.com/projects/Tabula

_Muris_Transcriptomic_characteriza

tion_of_20_organs_and_tissues_fro

m_Mus_musculus_at_single_cell_re

solution/27733 

Microwell-Seq scRNA-Seq 

data 

(Han et al., 2018) https://figshare.com/articles/MCA_D

GE_Data/5435866 

Baron pancreas scRNA-

Seq data 

(Baron et al., 2016) https://hemberg-

lab.github.io/scRNA.seq.datasets/hu

man/pancreas/ 

Xin pancreas scRNA-Seq 

data 

(Xin et al., 2016) https://hemberg-

lab.github.io/scRNA.seq.datasets/hu

man/pancreas/ 

Segerstolpe pancreas 

scRNA-Seq data 

(Segerstolpe et al., 

2016) 

https://hemberg-

lab.github.io/scRNA.seq.datasets/hu

man/pancreas/ 

Murano pancreas scRNA-

Seq data 

(Muraro et al., 2016) https://hemberg-

lab.github.io/scRNA.seq.datasets/hu

man/pancreas/ 
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Zheng pbmc scRNA-Seq 

data 

(Zheng et al., 2017) https://support.10xgenomics.com/si

ngle-cell-gene-expression/datasets 

Darminis brain scRNA-Seq 

data 

(Darmanis et al., 2015) https://www.ncbi.nlm.nih.gov/geo/qu

ery/acc.cgi?acc=GSE67835 

Software and Algorithms 

R version 3.5.1 R Foundation for 

Statistical Computing 

https://www.r-project.org/ 

SingleCellNet This study http://github.com/pcahan1/singleCell

Net/ 

Methods 

Building and assessing the classifier 
Building a classifier begins with a preprocessed gene expression matrix and a pre-annotated 

metadata where each cell the gene expression matrix is annotated (Supp Fig 4). We 

demonstrate how to use the SCN pipeline with the example provided in our online README 

(http://github.com/pcahan1/singleCellNet/), where the Tabula Muris 10X dataset was used as 

training and the Park et al dataset was used as query (Park et al., 2018). First, we found the 

intersection of genes between the training data and the query data prior to training the SCN-TP 

classifier. Then, we randomly selected 100 cells (ncell = 100) per cell type from the entire 

training data to train the SCN-TP classifier and reserved the remaining cells to measure the 

classifier’s performance (Step 1). The subsetted training data was then down-sampled to 1500 

counts per cell (total = 1.5e3), scaled up such that the total expression per cell was 10000 

(xFact=1e4), and log-transformed. Based on the annotation (dLevel = “newAnn”), we found the 

top ten (topX = 10) most differentially expressed genes per cell type (Step 2a), then we ranked 

top ten gene-pair per cell type (topX = 10) from those genes (Step 2b). To optimize memory 

usage, we have parallelized the ranking process, where we examined sets of gene pairs in 

chunks of 5000 (sliceSize=5000) (Step 2b). The preprocessed training data was then 

transformed according to the selected gene pairs (Step 3), and was used to build a multi-class 

SCN-TP classifier of 1000 trees (ntrees = 1000) (Step 4). Additionally, we created 100 

randomized cell expression profiles (nrand = 100) to train up a “rand” category in the SCN-TP 

classifier, which can help in cases where some cell types that are present in the query data are 

not included in the training data (Step 2b). After the SCN-TP classifier was built, we 
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transformed the remaining held-out data according to the top gene pairs selected (Step 5a), 

along with another 100 randomized cells (numRand = 100). To assess the performance of the 

classifier, we applied it to the transformed held-out data (Step 5b) using Precision-Recall 

curves, k, and mean AUPR (Step 5c-e). This is a crucial quality control step as it will indicate 

the optimal performance that can be expected from the classifier. If the classifier performs 

poorly on held out data, then the user should troubleshoot the training procedure beginning with 

the scRNA-Seq data annotation.  

 

Classifying query data 
 

Once we determined that the classifier performed well, then we applied to the transformed 

external query data (Park et al., 2018) with top-pairs selected from the optimized training data 

(Step 6), and classified it with the SCN-TP classifier (Step 7). We displayed the results by i) 

classification heatmap, ii) UMAP, iii) attribution plot, and iv) classification violin plot (Step 8). To 

facilitate the visualization of the classification result, we created a named vector with each cell’s 

true identity (sla), and appended to it the randomized cells (slaRand), which we had created 

earlier. The attribution plot was generated with classification output (ct_score = 

classRes_val_all), metadata for the held-out data (stTest), number of random cells created 

when querying (nRand = 100), the column in metadata that stored the true identity of the held-

out cells (dLevel = “newAnn”), and sample/cell names (sid = “cell”). Similar to the input for 

generating the attribution plot, we visualized the classification result with UMAP using the top 5 

principal components based on the classification results (topPC = 5).   

 

 

Notes to users 
 
The quality and annotation of the training data are critical to building reliable classifiers. We 

recommend to start training a classifier with 10-20 distinct cell types, and to iteratively add more 

cell types and assess classifier performance. Obviously, the user should not attempt to assess a 

classifier with the query data as the true identity of the query data is unknown. 
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Supplementary Information 

Supplementary Figure 1 SCN parameter and performance correlation. (A) Sixteen pairs of 

cross-platform scRNA-Seq training-query datasets were used to benchmark the performance of 

the five methods: SCN-TP, SCN-Base, SCMAP-cosine, SCMAP-pearson and SCMAP-

spearman, using two quantitative metrics: mean AUPR and k. The training for each pair of the 

cross-platform comparisons was bootstrapped ten times. The barplot exhibits the classifier 

performance of all ten training by displaying the average AUPR and standard deviation as error 

bar. (B) The Tabula Muris 10x dataset cross-validation was used to test how the number of top–

pairs used in SCN can influence its performance. We have tested 1 top pair per cell type (32 

genes in total), 5 top pairs per cell type (160 genes in total), 10 top pairs per cell type (320 

genes in total), and 15 top pair per cell type (480 genes in total). The performance of SCN 

plateaus at 10 top-pairs per cell type for both mean AUPR and k. (C) How cell cycle regression 

may affect SCN performance. We have examined four conditions where 1) both training and 

query data have not been regressed for cell cycle, 2) both training and query data have 

regressed out cell cycle effect regressed out, 3) only training data has cell cycle effect 

regressed out. 4) only query data has cell cycle effect regressed out. 

 

Supplementary Figure 2 Application of SCN in quantitative assessment of direct 

reprogramming protocols. (A) We used a subset of adult Microwell-Seq scRNA-Seq data and its 

annotations to train a cell-type specific classifier. The Tsunemoto’s screening experiment, 

profiling scRNA-Seq of induced neurons (iNs) by application of transcription factor 

combinations, is used as query data. (B) The columns annotate the five different transcription 
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factor pairs used to generate each iN profile, namely Neurog3/Pou5f1 (N3O4), Neurog3/Pou3f4 

(N3B4), Neurog1/Pou4f1 (N1B3a), Ascl2/Nr4a2(A1NR1) and Nuerog3/Pou1f1(N3P1). (C) The 

classification score can also be visualized with UMAP, where each cell is colored by its category 

or classification result of the highest score. (D) To obtain a more comprehensive understanding 

of the composition of cells in each reprogramming experiment, an attribution plot can be used 

with the row showing the experimental conditions and the column denoting the percentage 

count. Each cell is colored by its category or classification result of the highest score. (E) The 

classification score is visualized with violin plot, where x-axis displays the transcription factor 

pair combinations and y-axis is the range of classification score in that combination, and the plot 

is faceted by the classifier categories. 

 

Supplementary Figure 3 Application of SCN in cross-platform and cross-species analysis (A) 

The hematopoietic-lineage related subset of the Tabula Muris 10x scRNA-Seq data and its 

annotations are used as training data. The bead-purified 10x sequencing of the human 

hematopoietic lineage cells are used as query. (B) The classification heatmap shows that 

human B cells, monocytes, nature killer cells, CD4 T cells and CD8 T cells are well-classified by 

the mouse TP-RF classifier. (C) This cross-platform and cross-species analysis can also be 

summarized with an attribution plot, showing that despite some cross-classification signals due 

to the similarity, most human hematopoietic cells are accurately classified. (D) A side-by-side 

comparison of UMAP plots displaying the SCN-determined classification of the highest score 

versus the original annotation from bead-purified methods. (E) The classification score is 

visualized with violin plot, where x-axis shows the annotation of the query cells provided in the 

original studies, and y-axis is the range of classification score in that combination, and the plot is 

then faceted by the classifier categories.  

 

Supplementary Table 1: scRNA-Seq training and query datasets used for cross-platform 

comparison 

 

Supplementary Table 2: scRNA-Seq training and query datasets used for cross-species 

comparison 
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Step	2
Pair	transform

a. findClassyGenes()
b. ptGetTop()

Step	3
Template	matching

a. query_transform()

I. Building	the	classifier
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Step	6

Template	matching
a. query_transform()

II. Classifying	query	data

Step	4
Train	classifier

a. sc_makeClassifier() Step	7
Classifying	query

a. rf_classPredict()

Step	5
assess

a. query_transform()
b. rf_classPredict()
c. assess_comm()
d. plot_PRs()
e. plot_metrics()

Step	8
visualization

a. sc_hmClass()
b. plot_umap()
c. plot_attr()
d. skylineClass()
e. sc_violinClass()

R	Functions
Step	1

Subset	training	data
a. splitCommon()

R	Functions
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Tan	and	Cahan.	SingleCellNet

Cross-platform	
same	species

analysis

Training Data Query	Data

1

baron
8596	human	pancreatic

cells,	inDrop

murano, 2120	adult human	pancreatic	
cells,	CEL-Seq2	

2 segerstolpe, 2209	adult human	
pancreatic	cells,	Smart-Seq2

3 xin,	1492 human	pancreatic	cells,	C1

6	- 7
tm_10x,

1599	adult	mouse	cells	
across	32	cell	types,	10x

mws	|	mws (raw),	6477	mouse	cells	
across	125	cell	types,	Microwell-seq

8 - 9 tm_c1	|	tm_c1 (raw) tabula	muris facs
data,	40620	adult	mouse	cells	across	69	
cell	types,	c1

10 - 11
tm_c1,

3182	adult	mouse	cells	
across	69	cell	types,	c1

tm_10x	|	tm_10x	(raw)	(tabula muris
10x	data), 24936	adult	mouse	cells	
across	32	cell	types,	10x

11 - 12 mws	|	mws	(raw),	6477 adult	mouse	
cells	across	125	cell	types,	Microwell-
Seq

13 - 14
mws,		

6477	adult mouse	cells	
across	125	cell	types,	

Microwell-seq

tm_10x	|	tm_10x	(raw) tabula muris
10x	data, 24936	adult	mouse	cells	
across	32	cell	types,	10x

15 – 16 tm_c1	|	tm_c1	(raw) tabula	muris facs
data,	40620	adult	mouse	cells	across	69	
cell	types,	c1

Supplementary	Table	1

*(raw)	indicates	the	query	expression	matrix	was	used	in	raw	count	form
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Tan	and	Cahan.	SingleCellNetSupplementary	Table	2

Cross-platform	
cross-species	

analysis
Training Data Query	Data

1
baron

1886	adult mouse	
pancreatic cells,	inDrop

murano, 2120	adult human	pancreatic	
cells,	CEL-Seq2	

2 segerstolpe, 2209	adult human	
pancreatic	cells,	Smart-Seq2

3 xin,	1492 human	pancreatic	cells,	C1

4	- 5
mws

4038	adult mouse	brain
cells,	Microwell-Seq

darminis | darminis (raw), 331	adult
human	brain	cells,	C1

*(raw)	indicates	the	query	expression	matrix	was	used	in	raw	count	form
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