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Abstract 

 

Driver mutations alter cells from normal to cancer through several evolutionary 

epochs: premalignancy, early malignancy, subclonal diversification, metastasis 

and resistance to therapy. Later stages of disease can be explored through 

analyzing multiple samples collected longitudinally, on or between successive 

treatments, and finally at time of autopsy. It is also possible to study earlier stages 

of cancer development through probabilistic reconstruction of developmental 

trajectories based on mutational information preserved in the genome. Here we 

present a suite of tools, called Phylogic N-Dimensional with Timing (PhylogicNDT), 

that statistically model phylogenetic and evolutionary trajectories based on 

mutation and copy-number data representing samples taken at single or multiple 

time points. PhylogicNDT can be used to infer: (i) the order of clonal driver events 

(including in pre-cancerous stages); (ii) subclonal populations of cells and their 

phylogenetic relationships; and (iii) cell population dynamics. We demonstrate the 

use of PhylogicNDT by applying it to whole-exome and whole-genome data of 498 
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lung adenocarcinoma samples (434 previously available and 64 of newly generated 

data). We identify significantly different progression trajectories across subtypes 

of lung adenocarcinoma (EGFR mutant, KRAS mutant, fusion-driven and 

EGFR/KRAS wild type cancers). In addition, we study the progression of fusion-

driven lung cancer in 21 patients by analyzing samples from multiple timepoints 

during treatment with 1st and next generation tyrosine kinase inhibitors. We 

characterize their subclonal diversification, dynamics, selection, and changes in 

mutational signatures and neoantigen load. This methodology will enable a 

systematic study of tumour initiation, progression and resistance across cancer 

types and therapies.  

Introduction 

Studying tumour heterogeneity, clonal structure and dynamics is becoming an increasingly 

important clinical and research topic. Many new and current cancer therapies show efficacy at 

the start of treatment but stop working rapidly, leading to disease progression 1. Understanding 

the processes of acquired and intrinsic resistance to therapy, evasion of the host immune system, 

and metastatic spread is important to advance clinical care.  

 

It is widely understood that tumours arise through successive accumulation of somatic aberrations 

in the genome of individual cells. These aberrations can sometimes confer growth advantage and 

result in clonal expansions, further progressing towards malignancy. The overall order and 

accumulation of acquired events can be described as a developmental trajectory with some clonal 

subpopulations being selected out and thus becoming extinct in the process. During tumour 

progression with and without treatment, cancer cells often undergo successive population 

bottlenecks and evolve to maintain the fittest clones under the current conditions. Multiple sites 

within a tumour will often have distinct subclonal compositions, depending on both genetic and 

micro-environmental factors 2,3. These conditions lead to widespread spatial clonal heterogeneity 

within and between lesions. Over time, these different cancer cell populations can become 

substantially distinct in their genetics and biological behavior even though they are still all 

genetically related.  

 

In several tissue types, there are well-known premalignant or clonally expanded lesions that do 

not necessarily progress to cancer (e.g. Barrett’s esophagus, colorectal polyps etc.). The number 

of people that exhibit such detectable premalignant expansions by far exceed  the number of 

patients that eventually progressed to cancer 4,5. It is possible that that there is a difference in the 

trajectories of these lesions and they might contain events that hinder progression to malignancy 

(i.e., “dead-end” trajectories).      

 

If we were able to follow this progression route with some level of certainty and understand how 

these trajectories control the fate of the developing clone, this could lead to improved methods 

for outcome prediction, new early detection and cancer prevention approaches, as well as inform 

treatment decisions. Recent methodological developments allow exploration of these types of 
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questions using sequencing data to a level of detail not available previously 6,7–11,12,13. Both our 

and others work 6,7,5,11,14,15,16,17,18,19,20,21  explored individual aspects of subclonal diversification and 

tumour progression in several different tumour types 5–7,9,22,23 and developed methods to 

computationally reconstruct absolute copy number 24,25, subclonal structure of cell populations 
5,26,21 and population structure changes between samples 27,28,29,5,26,6 . 

Several approaches also explored the possibility to time (i.e. order) early events, including ones 

that occurred prior to malignant transformation, by using evidence obtained from the amplification 

of mutated alleles (i.e. mutational multiplicity) 30,31. Several studies 13,30,31,32, proposed a method 

to estimate the relative order of gains and copy-neutral loss-of-heterozygosity events by 

comparing the rates of multiplicity 1 and 2 mutations in whole-genome sequencing data. Other 

groups instead developed aggregate progression models based on assumptions of causality and 

event co-occurrence 33,34. More systematic experimental efforts were accomplished in some 

tumour types by studying data from premalignant lesions and manually compiling these 

progression models 5,35,36. Several recent studies explored intratumour heterogeneity in primary 

and later stage tumours, including in lung and kidney cancer (TRACERx) 23,37,38,39 . 

 

It is important to appreciate that methods that attempt to reconstruct tumour evolutionary history 

based on sequencing data have only a limited view into the actual life history of the tumour. 

Moreover, measurements of copy number, mutation coverage and allele frequency and any other 

redout from next generation sequencing data inherently contain uncertainties that need to be 

properly accounted for and propagated to downstream analyses. These uncertainties, including 

random and systematic biases as well as limited discovery power, affect the modeling of all 

aspects of tumour development, including trajectories, phylogenetic relationships, clonal 

dynamics, growth rates, gene expression and mutational processes. Therefore, all estimations 

need to be performed in a consistent probabilistic manner. As we show below, obtaining multiple 

samples from a patient at different timepoints during tumour progression greatly increases the 

amount of information and resolution of such analyses.     

 

Here, we report and apply a novel comprehensive package of tightly integrated tools, 

PhylogicNDT, for subclonal analysis, subclonal dynamics, event ordering, and timing, with primary 

focus of jointly modeling behavior of many samples from the same patient (both WES and/or WGS 

data). PhylogicNDT, extends our previous approaches 5,7,9,19,26   that were limited to analyzing of 

a single or a pair of samples per patient and enables joint and broader analysis of dozens of 

samples from a single patient, including WES and WGS data, generated from tissue samples, 

blood biopsies, autopsy samples, and cell lines. The package introduces significant algorithmic 

and methodological improvements, including novel tools (e.g. for tree building, clonal kinetics 

analysis and timing of somatic events in individual tumours and patient cohorts) that carefully and 

explicitly account for uncertainties in sequencing data and propagating posterior probabilities 

through the various analysis steps.  

 

We apply the PhylogicNDT package to a cohort of lung adenocarcinomas, including multiple 

tumour samples per patient (up to 13) from 21 patients. Lung adenocarcinoma (LUAD) provides 

a particularly useful clinical scenario to investigate tumour evolution over time, including subclonal 

diversification, dynamics, and selection as well as changes in mutational signatures and 
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neoantigen load associated with targeted therapies (1st and next, 2nd and 3rd, generation TKI 

treatment).  LUADs driven by ALK fusion events are initially highly susceptible to treatment with 

TKIs, but inevitably recur with outgrowth of treatment-resistant cancer cells 40,41 . The recognition 

of this kinase activity offered a new opportunity for drug development and treatment, as these 

cells are highly susceptible and sensitive to tyrosine kinase inhibitors (TKIs) including crizotinib, 

ceritinib, alectinib, brigatinib and lorlatinib 42. The inevitable outgrowth of resistant tumour cells is 

most often due to secondary re-activating mutations in the ALK kinase domain as well as fusion 

gene amplification or other signaling pathways activation 22,43,44. Although analysis of post-

progression biopsy specimens has proven valuable in facilitating a greater understanding of 

molecular mechanisms of crizotinib resistance 22, better characterization of the identity, order, and 

timing of the driver mutations required for acquired resistance is needed in order to develop more 

effective and long-lasting therapies.  

Additionally, we applied PhylogicNDT to study different developmental trajectories (at both the 

individual patient level and cohort level) in the fusion-driven subtype of lung adenocarcinoma and 

other known clinical subtypes, such as KRAS- and EGFR-mutated tumours. 

 

More generally, understanding and mapping the path (trajectory) which a normal cell takes to 

reach the malignant state and advance to resistance could lead to clinical and biological findings, 

explain differences between cancer subtypes, help predict treatment response and progression, 

develop faithful animal cancer models, and devise early detection techniques. This methodology 

can be applied to study tumour initiation, progression and resistance across cancer.  

Results  

Comprehensive analysis of tumour progression on single patient and cohort level 

 

The PhylogicNDT package provides tools for integrated analysis of tumor progression from next-

generation sequencing (NGS) data and contains the following components (Figure 1, Supp. 

Figure 1): (i) Clustering - used to identify clusters of mutations with consistent cancer cell fractions 

across many samples and determine the cancer cell fraction (CCF) posteriors for each cluster; 

(ii) BuildTree - construction of an ensemble of likely phylogenetic trees and estimation of cancer 

cell population sizes while accounting for uncertainties in cluster identity and membership; (iii) 

GrowthKinetics - modeling  growth dynamics and rates of individual clones while using CCFs, 

trees and overall tumour burden data; (iv) CorrectBias - adjustment of clustered CCF values and 

cluster sizes across multiple samples in subclones with low CCF to correct for detection biases 

(correction of “winner’s curse”-like effects ); (v) SinglePatientTiming - probabilistic reconstruction 

of patient-specific tumour developmental trajectory, using WES or WGS data from multiple/single 

samples, including ordering and relative timing of clonal copy-number events, somatic mutations 

and whole-genome doubling; (iv) SubclonalTiming - timing of events within the subclonal 

branches of the phylogenetic tree; (vi) LeagueModel (Cohort Timing) -  joint modeling of average 

progression trajectories from cohorts of patient tumour samples with probabilistic integration of 

single patient trajectories; (viii) ConditionalTiming - identification of statistically significant 

differences in timing and event trajectories between subsets of samples; (ix) PhylogicSim 

ClonalStructure - simulator of realistic single- and multi-tumour sample data with complex 
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subclonal relationship for evaluating the performance of methods for clustering, tree building, 

modeling of clonal dynamics  and determining fractions of clones in each sample (x) PhylogicSim 

Timing - simulator of cancer progression trajectories and ordering, including realistic single- and 

multi-tumour sample data, that allows validation of methods for predicting   both single-sample 

and cohort-level trajectories and order of events.  

 

Identification of subclonal composition from multiple tumour samples 

 

Cancer cell populations that develop during tumour progression are inhomogeneously spread 

across tumour sites and metastatic lesions, while all are genetically related. This creates a 

variability of abundances of subclones across samples, both in cases when the same lesion is 

sampled multiple times, or when samples are taken from anatomically distinct lesions 23. This 

intra-sample heterogeneity is even more pronounced in cases when different sampling techniques 

are used for collecting tumour material, e.g., slices from large tumour resections, core needle 

biopsy, or sampling of circulating tumour DNA. If sampling occurs along longer time frames - 

clonal selection, competition, and dynamics also lead to significant differences in abundance of 

subclones. By jointly analyzing multiple related tumour samples, we can reconstruct their genetic 

relationships and the evolutionary paths that subclonal populations took to achieve such genetic 

diversity. 

 

DNA sequencing data (e.g. WES or WGS) allows us to detect allele frequencies of specific 

somatic events in a sample and, when adjusted by local copy-number and purity, estimate the 

fraction of tumour cells (CCF) that harbour such a somatic event. Samples can be obtained at 

different time points or from distinct physiological locations. Cell populations across multiple 

tumour samples from the same patient (Figure 1A) harbour shared somatic events, and each 

distinct clone can usually be associated with multiple somatic mutations (both driver and 

passenger events). Analyzing multiple samples from the same patient provides several 

opportunities, and hence greater power, to distinguish sublones, (Figures 1B-D) and, if samples 

are taken at different times, improved ability to monitor their dynamic behavior.  

 

We have developed methods, PhylogicNDT Clustering and BuildTree, to simultaneously analyze 

information provided by all the samples from an individual patient. The method utilizes a multi-

dimensional Dirichlet process (Figures 1A-C) to jointly estimate the cell population structure and 

the genetic phylogeny across all samples. The methods are implemented as a two-step process: 

First, to avoid any bias from artificial or incorrect constraints, we estimate the number of clones 

and the posterior of their cancer cell abundances and in the second step, we add the tree 

constraints to estimate the ensemble of most probable phylogenetic trees. 

 

PhylogicNDT Clustering takes absolute copy number profiles, purity values and joint mutation 

calls (Online Methods) from all tumour samples belonging to a specific individual. The method 

can also utilize posteriors distributions on CCF values associated with each mutation across all 

samples (produced by methods such as ABSOLUTE 24). These non-parametric distributions are 

then subject to a Dirichlet Process (DP) where the distributions over the number of clusters, the  
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Figure 1. Overview of PhylogicNDT analysis of multiple samples from the same patient, and 

clustering and timing results on simulated whole-exome (WES) and whole-genome (WGS) 

sequencing data illustrating functionalities of individual tools. (A) Schematics of the PhylogicNDT 

suite of tools used to estimate order of mutational events, reconstruction of subclones and their 

phylogenetic relationships, and comparison of the developmental trajectories and the timing of 

acquisition of somatic events (early vs. late) across different individuals or subtypes of a disease. 

Representation of (B-C) clustering, (E-F) growth kinetics and (G-I) timing methods in 

PhylogicNDT for both WES and WGS using simulated data.   
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CCF value of each cluster in each sample, and assignment of mutations to clusters are sampled 

via a Markov chain Monte-Carlo (MCMC) Gibbs sampler. Specifically, after initializing a DP with 

priors as previously suggested 26,45, each mutation is first assigned to its own independent cluster. 

Then, at each iteration of the MCMC, the sampler removes one of the mutations from its cluster 

and probabilistically assigns it to an existing or a new cluster according to a multinomial probability 

of joining or creating each cluster. The probabilities are computed across all tumour samples 

(dimensions) according to the expressions provided below. 

 

The probability of joining each of the k clusters: 
 

, 
probability of opening a new cluster: 
 

 
 

where the posterior of the CCFs associated with each cluster at any given iteration are computed 

from the multidimensional non-parametric CCF distributions of mutations that belong to the 

cluster. At the end of a single MCMC round, the 𝛼 parameter, which controls the likelihood of 

opening a new cluster, is resampled from the posterior given the number of clusters and mutation 

assignments. The initial priors on 𝛼 used in the method translate into a soft prior on the number 

of clusters (k), that has a limited impact, if any, on the final result (Online Methods). 

 

After completing the MCMC process and discarding the burn-in iterations, we calculate a posterior 

on both the number of clusters and the N-dimensional CCF distributions of every mutation based 

on the average of the CCF distributions along the MCMC chain. The multidimensional CCF 

posterior distributions for each mutation are then hierarchically clustered based on their 

similarities. If a hard assignment of mutations to clusters is required for downstream analysis, a 

number of clusters is chosen from the posterior that is consistent with the least complex solution 

(i.e., fewer clusters), but has at least 10% posterior probability. Finally, the probability that a 

mutation belongs to a particular cluster is calculated from the CCF posteriors of the cluster and 

the mutation (Online Methods). 

 

Construction of an ensemble of phylogenetic trees 

 

To generate the ensemble of possible trees that represent the phylogenetic relationships of 

individual cancer cell populations in the patient, the results and uncertainties generated in the 

previous PhylogicNDT Clustering step are subject to another probabilistic algorithm, called 

BuildTree. The PhylogicNDT BuildTree method employs an MCMC Gibbs sampler that 

assembles likely tree structures by moving individual tree branches (subclones) within each 

iteration according to a multinomial probability of the tree branch (subclone) being integrated into 

a specific position within the tree. The multinomial probability is calculated based on the pigeon-

hole rule (i.e., the sum of CCFs of sibling clones cannot exceed the parent clone’s CCF), while 
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accounting for the uncertainty in assignment of mutations to sub-clones (Figure 1B-C). 

Specifically, if the new position of the clone implies a parent/child or a sibling relationship, the 

concordance with such relationship can be estimated through a convolution of the posterior CCF 

distributions associated with the respective clusters. The convoluted CCF distribution of all 

children of a specific clone cannot exceed the posterior CCF distribution of the parent clone, and 

thus we use the probabilities of not exceeding the parental clones in all possible positions to guide 

the multinomial sampling. This procedure also orders clones in the more likely parent-child 

relationship based on their CCF distributions (i.e., parent CCF is greater or equal to the child 

CCF).  

 

Since the CCF posterior distributions from the PhylogicNDT Clustering step can partially violate 

the trees generated in this step (although probabilistically penalized), we also allow mutations to 

shift cluster assignments after completing the moves of the clusters within the tree. To ensure 

that the cluster identities and their overall number are stable, we use the CCF posterior from the 

previous step, as priors in this mutation reassignment step. As a result, the assignment of 

mutations and the final CCF distributions of each cluster are also influenced by the likely tree 

structures (Online Methods).  

 

At the end of the PhylogicNDT BuildTree step the ensemble of probable trees is generated, 

including the most likely tree, posteriors on the abundances of clones in all samples, 

and the structure of the cancer cell populations. The multiple samples from the same patient allow 

for accurate reconstruction from WES or WGS data (Figures 1B-C)  

 

Probabilistic Estimation of Signature Activities and Neoantigen Load in Individual 

Subclones 

 

PhylogicNDT BuildTree provides an ensemble of probable trees and the uncertainty of the 

mutational membership in each of the clones in a selected tree (e.g., the most likely one). This 

probabilistic assignment of mutations to clones can be used to calculate average mutational 

properties of each clone. One example of such a property is the clone-level activity of mutational 

processes.  These can be used to estimate the differences in the activities of the mutational 

process across cell populations. We utilize the output of SignatureAnalyzer 46 that annotates each 

mutation with the probability of belonging to a specific mutational process (based on its mutational 

signature). We therefore can integrate the uncertainties in the tree and the mutational assignment 

to tree branches to calculate the posterior activity of the mutational signature for each clone. 

Similarly, any changes in neoantigen load between clones can also be assessed based on the 

soft assignment of mutations and thus we can calculate the expected ratio of the likely strong 

neoantigens to the number of nonsynonymous mutations (Figures 1A and 3; Online Methods). 

Changes in this ratio may indicate immunoselection of specific clones.  

 

 

Modeling of subclonal growth dynamics of tumour cell populations 

Accurate estimation of the subclonal structure and phylogenetic tree, accompanied by the 

uncertainty of such reconstruction, allows us to estimate the subclonal growth dynamics and rates 
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(and their uncertainties) in studies where estimates of overall tumour burden are available in 

addition to the DNA sequencing data (e.g., white blood cell counts in hematological malignancies, 

volumetric measurements from radiographic data, and potentially circulating tumour DNA yield 

from blood biopsies in case of metastatic solid tumors). PhylogicNDT GrowthKinetics module 

integrates information obtained from the Clustering and BuildTree methods along with the tumour 

burden measurements to model subclone-specific growth kinetics and estimates growth rates 

(e.g., in case of exponential growth patterns). The uncertainty in cluster CCF values within the 

tree is propagated to the estimates of the total number of cells in each of the subclonal 

populations, which are then used to estimate the possible growth patterns (Figure 1E-F). 

Comparing growth dynamics of clones to the parental clones enables us to estimate clone-specific 

fitness.  

 

Correction of detection bias for low CCF subclones 

It is important to appreciate that methods for detecting somatic mutations will not detect a large 

proportion of low-allele fraction somatic variants. Most algorithms cannot reliably identify 

mutations with fewer than 3 supporting reads due to intrinsic error rates associated with next-

generation sequencing. This inherent limitation in detecting low-allele fraction mutations affects 

our ability to correctly estimate the posterior CCF values for clusters with mutations close to the 

detection limit. Thus, often, clusters lying below 15% CCF (depending on purity) in regular WES 

or WGS data would miss a significant portion of their mutations (those that happen to have lower 

allele fraction) and, if not accounted for, the posterior on the cluster CCF could be significantly 

shifted towards higher values.  In multi-sample cases, when joint mutation detection is used 

across all samples, this posterior truncation is not straightforward to estimate given different 

purities, copy-number profiles, coverages, and histories of the samples. Thus, to account for this 

specific detection bias across single or multiple samples from the same patient, we have 

developed a method, PhylogicNDT CorrectBias, that utilizes sample-specific coverage and copy-

number profiles, mutation data, and clonal structure to estimate the effect of this statistical 

truncation and adjust the estimates of the CCF values of low-lying clusters towards their true 

levels. PhylogicNDT CorrectBias uses the above sample-specific data to iteratively generate 

simulated mutations for the cluster, starting with the observed CCF and number of mutations, and 

gradually lowering the CCF and then introducing the necessary undetected mutations, until the 

number of detected simulated mutations and their cluster CCF matches the observed values (see 

Online Methods).  

 

Simulation of realistic tumour heterogeneity data and validation of clonal reconstruction 

algorithms 

To evaluate the efficiency and accuracy of methods for reconstructing the subclonal architecture 

and building phylogenetic trees, it is important to have access to high quality truth data. While 

obtaining extensive experimentally validated data can be challenging, accurate subclonal sample 

simulations are possible given well-defined principles of how DNA from individual cell populations 

would be mixed during bulk DNA extraction and sequencing. We have developed a 

comprehensive method to simulate whole-exome and whole-genome sequencing data on the 

mutation level that can be used to evaluate methods for subclonal reconstruction, tree building, 

and estimating subclonal kinetics (Figure 1B-D, Online Methods). PhylogicSim ClonalStructure 
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method utilizes purity distributions and coverage profiles obtained from large cohorts of real 

samples to simulate clonal trees and mutation data for multiple tumour samples from the same 

patient. Individual samples can have distinct coverage values, purity, and subclonal abundances 

to represent real-life multi-sample sequencing experiments. This method also allows to encode 

various growth patterns from individual clones that could then be used to evaluate the 

performance of tools estimating clonal dynamics and kinetics, such as the PhylogicNDT 

GrowthKinetics method. 

 

Molecular time ordering of mutational events within a single patient’s cancer  

 

As discussed above, individual patient’s cancer develops on a specific trajectory, i.e. it 

accumulates somatic events in a defined order that over time leads to malignancy and eventually 

to broader metastatic spread. If one had an ability to observe the mutations as they occur, thus 

obtaining a deterministic order and timing of individual events, these trajectories would be well-

defined for each cancer cell in a patient, and the trajectory of all clonal events would be shared 

across all cancer cells. Unfortunately, in the majority of cases, tumours are only detected at a 

later stage when most of the transforming events have already occurred. By using computational 

trajectory reconstruction methods that attempt to estimate the most likely order of events from 

sequencing data, we have a limited probabilistic view into these earlier stages of tumour 

development. Even though each tumour undoubtedly has its own specific developmental 

trajectory, it is possible that a large fraction of tumours share a similar path to cancer, reflected in 

the average or typical trajectory. To explore the trajectories of individual patients and similarities 

across patient cohorts, we developed a method, PhylogicNDT SinglePatientTiming, that uses 

whole genome or whole exome data from single or multiple biopsies to estimate the order and 

relative timing of the patient’s somatic events in a probabilistic manner.  

 

As mentioned before, we can use copy number and mutation data together to infer the relative 

ordering of somatic events in the pre-malignant and early stages of disease in the following ways. 

When a chromosomal segment is gained, it inherently co-amplifies all somatic mutations acquired 

within the segment up to that point in time, and thus the relative timing of genomic gains, including 

whole genome duplication (WGD) events, can be inferred by comparing frequencies of these co-

amplified somatic mutations. Using the timing of gains and WGD, small somatic events (e.g., 

indels and SNVs) and structural variants, can also be timed relative to other events across the 

genome according to their multiplicity status (the number of chromosome copies that harbor the 

mutation). WGDs present a unique opportunity to time events across physically disconnected 

regions of the genome, and provide the ability to compare the timing of mutations, copy number 

losses, and gains relative to a shared genomic event. Furthermore, subclonal somatic events 

obviously occur after all clonal events. Indeed, it is possible to infer (with uncertainty) the order of 

genetic events (i.e., the genetic trajectory) from a normal cell to the sampled tumour state by 

combining the above information.  

 

The availability of multiple samples from the same patient allows for more accurate timing of 

events within the patient’s tumour developmental history. For events that are detected across 

multiple samples, the timing estimate is more accurate due to the multiple measurements of the 
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multiplicity of the detected somatic mutations. For events that are present only in a subset of 

samples, such information allows to place events accurately in the overall developmental 

trajectory or, in specific cases, time the occurrence of an event relative to other events within the 

same subclonal expansion period.  

 

We utilize a relative timing measure, 𝜋, as defined for every copy-gain in Purdom et al.31 , which 

represents the proportion of mutations per unit length of DNA that occurred before the event 

relative to the total number of mutations on the same DNA interval. Since mutations accumulate 

over time, this measure can be used to evaluate the “timing” of a mutational event in a hypothetical 

molecular “clock”. To estimate 𝜋 for any single event, such as a chromosomal gain, we calculate 

the posterior given a uniform prior on 𝜋. Effectively, we need to calculate the ratio of mutations 

that happened before the gain to all mutations that happened before and after the gain 

(normalization to the amount of DNA at risk for mutations), but also correct the value for any 

effects associated with the power to detect mutations along the genome and across samples 

(which depends on purity, coverage and copy-number along the genome).  Practically, we can 

detect individual SNV events along a gained region, and these mutations can either be present 

after the event, on a single copy of DNA spanning the region (i.e. multiplicity = 1) or after, multiple 

copies (multiplicity >1). Inherently, the accuracy of timing depends on the amount of data available 

to estimate these values. Whole-genome data contains significantly more mutations than whole-

exome data, thus providing greater accuracy on 𝜋. Nevertheless, whole-exome data can provide 

enough mutations to have a wide but appropriate estimation, that can become even more 

accurate when a single mutation is detected across multiple samples from the same patient. 

Through integrating posteriors of each mutation, we can calculate and power-correct the 

posteriors on the proportion of mutations from high and low multiplicity events present on a 

chromosome segment and thus the 𝜋 of the segment (after change of variables, Online 

Methods).  

For higher-order copy number events (i.e., when one or both alleles have a copy number above 

2), it is possible to estimate the relative timing of each of the gain events independently via MCMC 

(see below and Online Methods). It is possible that gains that lead to allele copy number >2 

happen gradually or in a single burst event. Alternatively, such gains may have occured 

independently from each other with significant time passing between the first and other 

subsequent gains.  

Overall, PhylogicNDT SinglePatientTiming method provides single-patient 𝜋 estimates for all 

measurable events by directly inferring posterior distributions on all gains, including higher-order 

gains and WGD, and through convolutions of these posteriors, it also provides 𝜋 estimates for 

SNVs, indels, copy-neutral loss-of-heterozygosity events, and homozygous deletions.   

 

Ordering of mutational events within subclones of a patient  

 

In studies of post-treatment tumours, it is quite common that a pre-treatment sample might not be 

available. In such situation standard genomic analysis that relies on measuring differences 

between pre- and post-treatment samples is not possible. PhylogicNDT SubclonalTiming 

provides functionality to estimate molecular time ordering within specific branches (including 

subclonal branches) of the patient’s phylogenetic tree. Given a sufficiently high subclonal 
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mutational burden in a post-treatment tumour (or WGS data), we can determine the order of 

events and in particular those that happened during the latest subclonal expansions, which more 

likely have been acquired or selected-for during treatment. In the case when both pre- and post-

treatment samples are available, we can more accurately estimate the order of events during 

progression under treatment and better nominate events that promoted resistance (see below 

and Online Methods).  

 

Estimating the average cancer developmental trajectory across a cohort of patients 

 

It is widely appreciated that within specific tumour types, individual tumours can be further 

classified into distinct biological subtypes, based on their histological, genetic, transcriptional, or 

epigenetic profiling. It could also be hypothesized, based on existing work in premalignant cancer 

lesions  5,35,36, that this is a result of separate developmental trajectories that are specific to the 

subtype of cancer they define. For example, several major lung adenocarcinoma subtypes were 

previously identified 47,48 and include KRAS-wild type, EGFR-wild type, and fusion-driven tumours. 

Single patient trajectories can be aggregated together to build preferential timing models, and 

elucidate the average order of events in a specific subtype. PhylogicNDT LeagueModel method 

ranks the order of driver events based on the order within each patient. The method then 

calculates the odds ratio of events occurring early (first half) or late (second half) during tumour 

development (Online Methods). 

 

PhylogicNDT LeagueModel uses the probabilistic trajectories for single patients generated in the 

previous step and integrates the information into a pairwise event contingency table (Figures 1G-

I). This table represents the probability that a random patient (from the cohort) that harbors a 

specific pair of events, will have the first event in the pair earlier, later or at a similar/indetermined 

time as the other event. This dataset is then sampled in such a way that all individual events play 

a “sports season” against each other with “matches” played between pairs of events, where the 

outcome of the “match” is decided by sampling from the pairwise probabilities.  

To test the ability of the LeagueModel to faithfully represent the average trajectory in a cohort we 

used simulated data. As shown in Figures 1H-I, when a mixture of multiple trajectories is simulated 

in the cohort (using PhylogicSim TimingS imulator), the League model estimates the average 

trajectory accurately with respect to the relative abundance of trajectories and prevalence of 

events. To further validate the approach, we simulated 50 distinct cohorts with various 

combinations of trajectory mixtures, both WES and WGS data. On average, the PhylogicNDT 

LeagueModel accurately estimated cohort-level trajectories (for the majority of the simulated 

events, the absolute difference between the median of observed and expected log10 odds ratios 

was below 1, Figure 1I).  

 

Analysis of differences in developmental trajectories conditional on clinical variables or 

presence/absence of specific driver events  

 

It is important to understand if known biological subtypes within the tumour show distinct 

developmental trajectories during progression to malignancy. For this purpose, we have 

developed an approach, PhylogicNDT ConditionalTiming, that allows exploration of differences in 
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progression models between subsets of samples in the cohort. For example, known clinical 

subtypes of lung adenocarcinomas (EGFR-mut, KRAS-mut, fusion-driven cancer) can be 

analyzed separately by the PhylogicNDT LeagueModel approach and then compared to each 

other by calculating the difference in the posteriors of their log odds ratio (see below). Significance 

is calculated using an empirical background model based on permuting samples between the 

compared subtypes.  

  

Another interesting application of this approach is to explore the association between the absence 

or presence of a specific mutated gene and the developmental trajectory. Similar to above, a 

cohort can be split into samples that contain or do not contain a specific event, and any differences 

in trajectories can be assessed for statistical significance. When performing this analysis across 

the major driver events in a cancer type, it allows us to identify events that influence the timing of 

other events (see below and Online Methods).  

 

 

Exploration of clonal dynamics and progression models of Lung adenocarcinomas 

before, on and after treatment 

 
To understand the mechanisms and genetics behind tumour progression under multiple lines of 
treatment and to explore potential trajectories tumours can take prior to diagnosis and during 
treatment, we applied the PhylogicNDT suite of tools to study a subtype of lung adenocarcinomas 
that are primarily driven by gain-of-function ALK fusion events. We then compared the results to 
a wide range of primary lung adenocarcinomas 47,48. 
We obtained biopsies from 21 patients, taken at multiple time points and across different 
anatomical sites, including before, during, and after treatment with 1st and next generation TKIs 
(total of 64 samples). We sequenced 64 whole-exomes with at least one pre- and one post-
treatment samples and matched normal control. In one patient, we additionally had an autopsy 
analysis at death with total of 13 distinct biopsies analysed. 
 

Description of the cohort and clinical results 

 

We identified 21 patients with ALK-positive non-small cell lung cancer (NSCLC) who had at least 

one biopsy available for analysis. Baseline clinical and pathological features of this cohort are 

summarized in Supplemental Table 1. Median age at diagnosis was 48 years (range 22-77). A 

majority of patients (85%) had advanced-stage disease at initial diagnosis. Consistent with prior 

reports 49 , most ALK-positive patients were never- (80%) or light-smokers (10%), and all had 

baseline adenocarcinoma histology. Details regarding treatment histories and clinical outcomes 

are summarized in Figure 2A and Supplemental Table 1. Of note, 81% of ALK-positive patients 

within this cohort initially received cytotoxic chemotherapy prior to ALK-directed therapies, which 

largely reflects that most patients (76%) were diagnosed with metastatic NSCLC prior to the first 

regulatory approval of an ALK inhibitor, crizotinib, in the United States (in 2011). 

 

All patients (N=21) received crizotinib during their disease course. Median time from metastatic 

diagnosis to initiation of crizotinib was 5.9 months (range 0.4 – 37.3 months). Patients received a 

median of one line of therapy (range 0-5) prior to crizotinib. Median progression-free survival 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/508127doi: bioRxiv preprint 

https://paperpile.com/c/LxMwZ4/7nkh+V1zn
https://paperpile.com/c/LxMwZ4/dCjT
https://doi.org/10.1101/508127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

14 
 

(PFS) on crizotinib was 7.9 months (range 2.57- 51.6 months; Figure 2A). All patients eventually 

relapsed on crizotinib. Repeat biopsies performed at or shortly after clinical progression on 

crizotinib were performed in 19 patients. WES of post-crizotinib biopsies revealed secondary ALK 

resistance mutations in 5 (26%) patients. The remaining patients did not have ALK resistance 

mutations, suggesting alternative mechanisms of resistance. 

  

Following disease progression on crizotinib, 20/21 (95%) patients subsequently received a next-

generation ALK inhibitor. Agents included: ceritinib (N=14), alectinib (N=3), brigatinib (N=3), and 

lorlatinib (N=2). Three patients received two or more next-generation ALK inhibitors. Clinical 

outcomes for each agent are summarized in Figure 2A. In total, 10 biopsies performed on or 

shortly after progression on next-generation ALK inhibitors were available for WES. ALK 

resistance mutations were identified in five (50%) of these specimens. Of note, two of these 

patients (Pt023 and Pt051) were negative for ALK resistance mutations in post-crizotinib/pre-next-

generation ALK inhibitor biopsies, consistent with prior reports suggesting that the acquisition of 

additional ALK resistance mutations is more common in patients treated with more potent next-

generation ALK inhibitors. 

 

 

Figure 2. Clinical description and treatment summary of 21 patient ALK-fusion positive non-small 

cell lung cancer cohort and selected somatic mutations found in their genomes. (A) Treatment 

history plot detailing the clinical treatment history of each patient in the ALK-fusion positive cohort 

treated with 1st, 2nd, and 3rd generation ALK inhibitors overlaid with time of biopsy (circles). (b) 

Mutation co-occurrence (CoMut) plots showing somatic changes in copy-number and non-silent 

somatic mutations between pre- and post-treatment samples in known cancer genes and 

pathways.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/508127doi: bioRxiv preprint 

https://doi.org/10.1101/508127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

15 
 

Landscape of acquired somatic events after TKI treatment 

 

Upon initial analyses of the 64 samples, we noted considerable changes in copy number 

variations and acquired mutations of known oncogenic drivers across many well-known cancer 

gene pathways (Figure 2B). Notably patients that had very short or no response to crizotinib (PFS 

< 7 months) showed no detectable ALK gene mutation in the post crizotinib biopsy suggesting a 

certain level of intrinsic resistance, unlike the patients with longer reposes. Individuals that did not 

acquire known ALK gene alterations post treatment had developed point mutations and copy 

number events in PI3K-AKT, RAS/RAF/MEK/ERK, RTK signaling pathways. Several patients 

showed alterations in TAP1 and other genes associated with antigen presentation. 

 

Tumour progression and clonal dynamics under multiple lines of treatment 

 
 

A major underlying reason for the emergence of tumour resistance to TKIs after treatment is the 

acquisition of new, secondary mutations in ALK. Accordingly, we closely examined changes in 

subclonal structure (from PhylogicNDT Clustering) that occurred after the TKI treatment(s), 

specifically searching for growing clones that acquired mutations in ALK. We observe that 

treatment with TKIs is accompanied by strong shifts in the clonal structure (Figure 3). Almost 

invariably, the resistant clone containing the ALK mutation took over and became the majority of 

the tumour cell population. In all such cases for which the pre- and post-TKI treated samples were 

available (and had sufficient purity), the post-treatment biopsy contained one or more growing cell 

populations with an ALK missense mutations. 

 

Mutations can be usually attributed with some probability to a particular mutational process active 

in a cell (e.g., normal aging or deficiencies in particular repair processes). To determine which 

processes might have been responsible for mutating ALK under pressure of TKI treatment, we 

used our SignatureAnalyzer 46 tool to discover the signatures and their level of activity in each 

sample from each patient and annotated each ALK mutation with the probability that it originated 

from a particular mutational process (Figure 3A-B). Interestingly, the APOBEC (COSMIC SBS 2, 

13 50) and aging signatures (COSMIC SBS1) were the most prominent mutational processes 

found in our cohort. 

  

We constructed phylogenetic trees for each individual patient using the BuildTree tool 

(representative trees shown in Figure 3B) and assigned mutations to each of the branches. We 

quantified the relative contribution of signatures that were originally active in a patient at the start 

of the disease, as determined by their common appearance in every sample (i.e. truncal 

mutations), with those that were active in later cell subpopulations (Figure 3A). In 9 of the 21 

cases, we observed activity of a mutational process associated with APOBEC deaminases (>20% 

APOBEC-associated mutations across all samples of the patient). Moreover, in 6 of these 9 

cases, there was a significant increase in APOBEC activity in later cell subpopulations compared 

to the truncal clone (increased by more than 2-fold; see example in patient Pt 037 tree in Fig 3B). 

In another 2 cases, the truncal mutations already had APOBEC-associated mutations but later 

subclones predominantly acquired aging signature mutations, and nearly no APOBEC (e.g. Pt 
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061 tree); a third category of 12 patients displayed no change in the mutational signatures 

between the trunk and subclones (e.g. Pt 051 tree). 

 

 
Figure 3. Estimated phylogenetic trees for ALK-fusion positive tumours and subclone 

identification annotated with somatic mutations, neoantigen number and quality, and predominant 

mutational signatures in each sample. (A) Signature analysis of mutational signatures active in 

each sample by the SignatureAnalyzer tool. (B) Phylogenetic trees built by PhylogicNDT 

BuildTree representing clonal structure of each tumour after integrating data from multiple 

samples from a single patient, overlaid with signature analysis and neoantigen load for each clone 

and subclone. Inferred clonal composition of the pre- and post-treatment samples is represented 

as circle plots. (C) Neoantigen number and fraction of weak (green) vs. strong (blue) antigens in 

each sample.  
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Next, we tested whether patient-specific factors are associated with signature activities. Most 

notably, we identified an unexpected significant association between the APOBEC signature 

activity and patient age. The majority of cases that showed a significant increase in APOBEC 

activity over time were the relatively young (< 40 yo) patients: nearly all young patients displayed 

higher APOBEC activity and mutation load (83%, N=5/6) than the older (>= 40 yo) patients (20%, 

n=2/10) (Fisher’s Exact Test p=0.0350). 

  

As expected, the number of truncal mutations associated with the CpG>T Aging signature 

(COSMIC SBS 1) in younger patients was consistent with their age (noticeably lower than in the 

patients above 40 yo). One can hypothesize that the substantially increased activity of the 

APOBEC signature in younger patients is required for their cancer initiation and progression given 

the low mutation counts associated with aging. This high APOBEC activity may also influence the 

patient’s response to TKI inhibition and the tumour’s ability to develop resistance due to the higher 

genetic diversity which contributes both to intrinsic and acquired resistance. This is supported by 

a 38-year-old patient (Pt 086) who developed 6 individual ALK mutations and had one of the 

highest APOBEC mutation loads in the entire cohort. In contrast to the relatively younger patients, 

most older patients displayed a relative absence of APOBEC activation in either pre- or post-

treatment samples, and their overall mutation load was appropriate for their age (since most were 

from the CpG>T Aging signature). Additionally, two patients that exhibited moderate APOBEC 

activity in the clonal trunk surprisingly showed decreased activity in the later subclones. 

 

Given the substantial differences of APOBEC activity with age in our cohort, we next explored 

whether other genomic features correlated with age. We found a trend suggesting that the 

structure and type of ALK fusion rearrangement also differs between younger and older patients. 

We classified the local copy number and pattern of the EML4-ALK rearrangement into the 

following 3 categories: (i) copy-neutral inversion, (ii) high level gain of the fused allele and (iii) 

chromothripsis. Younger patients exhibited more copy-neutral EML4-ALK fusion fusions without 

associated gains (3/5), while older patients exhibited high chromothripsis events associated with 

amplification and multiple gains. 

 

Clonal composition changes during treatment of individual patients  

 

To study changes in clonal composition due to TKI treatment, we analyzed in each patient the 

sizes of the clones, as identified in the phylogenetic tree, and in each of the samples (circle plots 

for representative patients in Figure 3B). We noted significant shifts (>%25 CCF shift in at least 

on clone) that occurred in the clonal composition after TKI treatment in almost every case. 

Individuals that acquired on-target ALK resistance mutations in one or more subclones showed 

significant clonal shifts in their post-treatment biopsies, wherein the ALK-resistant cell population 

overtook a significant portion of the tumour (e.g. Pt 037 and Pt 051 in Figure 3B). In patients 

where the resistance to crizotinib could not be explained by ALK mutations, we were still able to  

detect very strong clonal shifts between pre- and post-treatment biopsies, suggesting that the 

emerging clones harbor alternative resistance mechanisms. Some growing clones acquired 

mutations in known cancer driver genes (as in Pt 61, with STK11 mutation), but whether these 
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driver mutations conferred resistance or independently increased fitness is yet unclear. In patients 

that developed kinase-domain mutations after crizotinib, secondary resistance often also was 

caused by additional events in the ALK gene. 

 

An important clinical question is whether the mutation load increases in samples after several 

lines of treatment compared to the primary tumour. If this is indeed the case, patients with 

significant mutation load in their tumours might be considered for treatment with checkpoint 

inhibitors, since recent results show better response to immunotherapy in high mutation load 

tumours 51.  Neoantigens arise from mutated proteins due to nonsynonymous mutations acquired 

during tumour growth, and their quantity and presentation quality (weak or strong) affect the ability 

of the immune system to recognize and kill tumour cells 52. The number of neoantigens introduced 

with each clonal expansion during tumour evolution is usually proportional to number of mutations 

acquired during the expansion 51,52. Fewer than expected neoantigens can be a hallmark of 

resistant subclones that survived the selective pressure of the immune system (ie. 

immunoediting).  

 

The clonal tree generated by BuildTree allows us to assess and quantify the neoantigen load on 

a clone-by-clone basis (Figure 3B-C). As expected, the neoantigen load was proportional to the 

number of mutations within the respective clone in most scenarios; thus, clones displaying 

increased APOBEC mutational activity also had proportionally higher neoantigen load. In some 

cases, we identified unexpected discrepancies between neoantigen loads in patient’s clones with 

a similar number of mutations. For example, a clone harboring a likely deactivating mutation in 

TAP1––a known gene involved in transporting antigens from the cytoplasm to the endoplasmic 

reticulum––in patient Pt 051 showed a markedly higher number of strong neoantigens compared 

to its sibling clone (3 vs 12 strong neoantigens among the respective 21 vs. 24 clone-specific 

mutations; Fig 3B; Fisher’s Exact p-value=0.0071). This behavior can suggest immunoediting at 

the subclonal population level and can also explain increased fitness of the TAP1-mutated clone 

in the intermediate post-crizotinib sample. After treatment with 2nd generation TKI, however, the 

ALK-mutated clone was preferentially selected (Figure 3B).  

  

Overall, by representing the clonal structure with a phylogenetic tree and studying changes in per-

sample clonal composition, we were able to explore the differential behavior of driver mutations, 

mutational signatures, copy number changes, fusion events, and neoantigen load on a clone-by-

clone basis and thus reconstruct clonal dynamics under treatment with increasing levels of detail. 

 

Single-patient timing: Molecular time ordering of mutational events and developmental 

trajectory from individual patients 

 

We applied PhylogicNDT SinglePatientTiming to a large set of WES and WGS data from 455 lung 

adenocarcinoma patients (union of TCGA data and our cohort) to infer patient-level preferential 

ordering trajectories. Depending on the tumours architecture and mutational rate, these 

trajectories can be inferred with varying levels of resolution. We selected a representative set of 

patients (Figure 4A) from 3 major known clinical subtypes (fusion-driven, KRAS-mut, EGFR-mut) 

of lung adenocarcinoma to demonstrate typical differences between individual trajectories. As 
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expected, tumours from the EGFR-mut and KRAS-mut subtypes show early EGFR and KRAS 

point mutations, respectively, followed by the gains in the general chromosomal regions of those 

genes. Surprisingly, the trajectory of some ALK/ROS1 fusion-driven tumours showed early U2AF1 

mutations, a gene with a known role in splicing of RNA transcripts, suggesting a possible 

contribution in promoting growth of cells driven by fusion events. 

 

 
Figure 4. Single-patient timing trajectory: Molecular time ordering of mutational events and timing 

trajectory from individual patients. (A) Individual timing trajectories resulting from PhylogicNDT 

SinglePatientTiming analysis of selected ALK-fusion positive as well as EFGR-mutated and 

KRAS-mutated lung adenocarcinoma patients. (B) Phylogenetic tree and molecular time ordering 

(C) of subclonal events (within a tree branch) by SubclonalTiming analysis from a single patient. 

For molecular time ordering, treatment schedule is shown below to visualize the changes in 

subclonal mutational events and the acquisition of potential resistance mutations in the context of 

when the patient received each of the treatments, 1st generation TKI (crizotinib), 2nd generation 

TKI (brigatinib). 
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The availability of multiple samples from the same patient enabled both improved accuracy in 

reconstruction of the single-patient phylogenetic tree and timing of events (see Online Methods, 

Supp. Figure 3). Similar to timing events within the trunk of a phylogenetic tree, it is also possible 

to time events within a specific branch with the PhylogicNDT SubclonalTiming tool, as mentioned 

above. When events are present only in a subset of samples from the same patient, this 

information allows to more accurately place events in the overall developmental trajectory within 

a specified subclonal branch. Moreover, we can estimate the timing of these events with respect 

to mutations specific to their branch. For example, in Figure 4B, we find that a prominent subclone 

in Pt086 acquired gains on chromosomes 8 and 9p, and using the other mutations in this branch, 

we can infer their timing. We observe that prior to TKI treatment, the patient’s mutation rate is 

dominated by the aging signature (COSMIC SBS 1). Following crizotinib, the mutation rate 

increased sharply, with a strong contribution of the APOBEC signature, likely driving resistance 

(consistent with the observation described above), and the neoantigen load increased more than 

tenfold (2 vs. 44). Using the multiple samples available for this patient, we are able to order the 

subclonally acquired copy number gains and mutations, showing that chromosome 8 and 9p are 

potential founding events of this subclone. Additionally, the phylogenetic tree provides information 

on the molecular time (measured in number of acquired mutations) that different subclones have 

emerged. For example, since the orange subclones is a descendant of the cyan subclone, we 

can infer that it emerged after all the mutations in the cyan subclone. The molecular time of sibling 

subclones start at the end of their parental clone (Figure 4B). We see a multitude of ALK mutation 

clones occuring in serial and sibling clones in the complex of the phylogenetic structure of this 

case. 

To validate that our timing estimates within a subclone are correct, we reran the analysis after 

excluding the earliest sample and, in this scenario, the mutations present in the cyan clone were 

detected as fully clonal (truncal). Reassuringly, the relative timing of the events when the cyan 

clone is a subclone (i.e., when using all samples) are consistent with the ones obtained when the 

cyan clone is part of the trunk (i.e., when ignoring the earliest sample) (Supp. Figure 4). This 

finding is quite important since in many treatment scenarios where only post-treatment samples 

are available, we could infer the timing and order of events that happened late in development, 

hence likely occurred during treatment. Additionally, such analysis allows us to explore the 

molecular time in which neoantigens are introduced relative to different treatments. 

 

Cohort-level timing analysis: Comparison of developmental trajectories of fusion-driven, 

EGFR-mut, and KRAS-mut lung adenocarcinoma subtypes  

 

It is widely appreciated that specific tumour types can be further categorized into biologically 

meaningful subtypes based on their histological, genetic, transcriptional, or epigenetic profiling–

–for lung adenocarcinoma, these major subtypes include KRAS-mut, EGFR-mut, and ALK/ROS1 

fusion-driven  tumours 53. It can be hypothesized that developmental trajectories (order and type 

of events) will differ among subtypes.  

To explore and compare the differences in the average evolutionary trajectories that transform 

normal cells in the specific cancer subtypes, we ran the PhylogicNDT SinglePatientTiming and 

LeagueModel tools on individual tumours and known clinically distinct subtypes from a dataset of 

455 adenocarcinomas (union of TCGA samples and our cohort).  
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Figure 5. Cohort-level timing analysis: Comparison among the acquisition order of somatic 

mutations in fusion-driven, EGFR-mutated, and KRAS-mutated lung adenocarcinoma subtypes. 

(A) LeagueModel timing diagrams of combined trajectories from a cumulative dataset of 455 

patients containing patients from each lung adenocarcinoma subtype showing when in mutational 

time (early → late) somatic mutations are acquired. (B) Comparing the timing of selected acquired 
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somatic mutations between non–fusion-driven and fusion-driven lung adenocarcinoma cohorts, 

with differential events shown. (C) Quantification of the differences among the three major 

subtypes of lung adenocarcinoma, divided into three classes of mutational events: events that are 

1) significantly earlier (left) or 2) later (right) in fusion-driven cancers compared to either EGFR-

mutated or KRAS-mutated cancers and 3) events in which the timing is not significantly different 

among the three subtypes (middle). The significance values are based on permutation test with 

the 3 categories. (D) “Butterfly” plot of PhylogicNDT ConditionalTiming results capturing the 

association between the presence or absence of specific somatic events and the developmental 

trajectory, to determine potential biological dependencies of specific late-occurring mutations on 

other, earlier-occurring events.  

 

 

In Figure 5A, we present the LeagueModel timing diagrams for the different subtypes of lung 

adenocarcinoma.  We find that all three subtypes have relatively early TP53 mutations and 

chromosomal loss of 17p, though non-fusion driven cancers tend to have them in a set of earliest 

events.  This suggests a shared biological dependency on initially mutating the TP53 locus for 

tumour development regardless of the genetic subtype. EGFR-mutant and KRAS-mutant lung 

cancers show very early co-amplifications of the corresponding gene loci that occur after the initial 

EGFR/KRAS mutation, suggesting a strong tendency during early stages of tumours to amplify 

and up-regulate the mutated copy of the gene. Figure 5B displays major differences between 

fusion-driven and all other lung adenocarcinomas that we analyzed. In Figure 5C, we quantified 

the differences between the three major subtypes of lung adenocarcinoma.  The figure depicts 

three classes of events: events that are 1) significantly earlier or 2) significantly later in fusion-

driven cancers compared to either EGFR-mutant or KRAS-mutant cancers (permutation-based; 

left/right in Figure 5C; Online Methods), and 3) events in which the timing is not significantly 

different in fusion-driven cancers (middle in Figure 5C). As expected KRAS and EGFR driven 

cancers showed these defining events as substantially earlier in the timelines as well as relatively 

early gains of corresponding chromosome regions. 

 

Further exploration of the trajectories is possible by calculating conditional dependency of timing 

of certain genetic events. We explored whether the presence or absence of a specific driver event 

(mutation or copy-number) significantly impacted the relative timing of any other event. We 

developed a tool PhylogicNDT ConditionalTiming and a permutation test to explore the conditional 

timing of somatic events (Figure 5D, “butterfly” plot). Known biological dependencies are clearly 

observed, such as chromosomal loss of 17p locus occurring earlier in TP53-mutated cancers 

(n=213/236 TP53-mutated, n=104/208 TP53-wild type) and loss of 9p occurring earlier in samples 

with homozygous deletion of CDKN2A (n= 47/49 homozygous deletion, n= 237/395 no 

homozygous deletion), ATM/loss_13q have similar dependency. In addition, we identified yet-

uncharacterized conditional timings that can provide novel biological insights into cancer 

development, such as earlier BRAF mutations in cases with loss of 15q arm (n=22/249 with loss 

of 15q, n=16/195 without loss of 15q). Finally, loss of 19p appears earlier in EGFR-wild type cases 

(n=39/59 EGFR-mutated, n=275/385 EGFR-wild type), suggesting that tumours that do not have 

EGFR alterations are likely driven by loss of STK11. 
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Heterogeneity of tumour lesions in anatomically distinct locations   

 

We applied the whole PhylogicNDT package to multiple samples taken at the same time from 

various metastases across the body (lung and liver) from the same patient at autopsy. By applying 

PhylogicNDT to this autopsy case, we were able to assess the phylogenetic relationships and 

migration patterns of clones in a very large sample set from a single patient. We analyzed 13 

samples from patient Pt 034 (Figure 6). The spatial heterogeneity of the disease is quite 

remarkable when the clonal structure on individual samples is mapped back to their location in 

the patient's body (Figure 6). We observe that the lung and liver lesions are markedly different: 

with one branch (which first showed progression) driven by a known resistant MAP2K1 missense 

mutation and the other likely driven by JAK2 and PIK3CA missense mutations. The MAP2K1 

branch is associated with the Aging mutational signature (the most active signature in all lesions), 

whereas the JAK2 branch with lesions in the liver show high levels of APOBEC activity. The two 

branches have distinct copy number events: the first branch harbors gains in 14q and 3q, as well 

as loss of 13q, while the second branch is associated with loss of 1q.  

 

 

Figure 6. Heterogeneity of tumour lesions in anatomically distinct locations, sampled during 

treatment and time of autopsy of an ALK-fusion positive lung adenocarcinoma patient (Pt 034). 

Clonal migration (“River”) plot detailing subclones migrations between 13 samples.  Truncal 

clone is depicted in green, with branches representing major subclones. Left side are subclones 

found in 4 liver lesions. Right side of truncal clone are subclones found in 9 lung lesions. Circles 

represent the fraction of each subclone population found in each sample. Known ALK inhibitor 

resistance mutation in MAP2K1 found in lung lesions (orange clone).   
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This finding highlights the anatomical aspect of intratumour heterogeneity, showing that different 

anatomical sites (liver vs. lung) can harbour lesions with different activity of mutational processes 

(which may be related to different microenvironments) that result in a different probability of 

developing resistance. Interestingly, the lung lesions also show evidence of cross-lesion seeding, 

since multiple subclonal events are shared among lesions across both the left and right lobes of 

the lung.  

Discussion  

 

The development of tumour resistance to therapeutic interventions remains a key roadblock to 

complete and sustained tumour eradication from the host. Thus, understanding the history of 

tumour progression and growth at all stages of disease (premalignant, primary, post-therapy, and 

upon recurrence) is key to understanding resistance. Here, we presented an analytical suite of 

tools, PhylogicNDT, capable of statistically reconstructing the history of tumour growth and 

progression by analyzing multiple samples from the same patient. To demonstrate the application 

of PhylogicNDT, first and next generation TKI-treated ALK lung adenocarcinoma samples from 

multiple timepoints were analysed to better understand tumour dynamics before and after 

treatment. We were able to explore dynamic changes of tumour cell populations as well as 

interpret the order of somatic events as they occur during tumour initiation and progression. We 

compared the progression models of distinct molecular subtypes of lung adenocarcinomas and 

found both expected and novel order dependencies in these cancers.  

 

Several groups, including our own, have previously developed mathematical models and 

computational approaches to explore clonal structure of cancer cell populations and compare 

samples from an individual patient to each other 5,6,8,9,19. Additionally, approaches were developed 

to analyze mutational multiplicity rates mostly from primary tumours in an attempt to order clonal 

events that preceded the last detectable clonal expansion (including early mutations that possibly 

occurred before malignancy). We significantly expanded our earlier approaches 5,7,9,19,26 to be able 

to jointly model both clonal dynamics and order of early events in cancer across a large number 

of samples representing the same patient. This allows us to explore developmental trajectories of 

tumours not just by using whole genome sequencing and data on single samples, but by 

integrating multiple whole exome sequences and often at even greater resolution. We also 

developed a sampling methodology (PhylogicNDT LeagueModel) that allows to infer average 

developmental trajectories by integrating larger cohorts of tumours. This analysis provides more 

robust results as the cohort size increases and therefore benefit from integrating with both WGS 

and WES data, generated by large cancer genome projects such as The Cancer Genome Atlas 

and the International Cancer Genome Consortium, as well as other projects.  

We demonstrated the utility and accuracy of the PhylogicNDT suite of tools by evaluating their 

performance on extensive simulated data and by applying them to 434 lung adenocarcinomas as 

well as 21 patients with multiple samples (up to 13 samples per patient) collected in different 

timepoints after treatment. We identified distinct developmental trajectories between clinically 

known lung adenocarcinoma subtypes -- KRAS-mutated, EGFR-mutated, and fusion-driven lung 

adenocarcinomas. For example, KRAS- and EGFR-driven cancers had not just point mutations 

in the corresponding genes but also early co-amplifications of the mutated alleles. On the other 
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hand, less common drivers tended to occur preferentially early in specific tumour subtypes. When 

our results are compared to previously reported models of progression from pre-malignant to 

malignant lung cancer (based on sampling pre-malignant lesions) 54, we find similar patterns. 

 

Our results from the joint analysis of multiple samples from the same patient support previous 

findings about widespread intra-tumour heterogeneity 23,37,38, but also suggest incredible plasticity 

of the tumour cell populations under treatment with strong propensity to select specific clones 

after recurrence, even when the genetic cause of the resistance cannot be unambiguously 

determined. By using multiple samples, we were able to reconstruct the phylogeny of all 

detectable cancer cell populations and characterize the subclones in terms of activity of 

mutational processes and neoantigens load. Our single-patient timing approaches allow us to 

explore the order of events not just in the trunk of the phylogenetic tree but also within specific 

clonal expansions, opening possibilities to differentiate between late, post-treatment events and 

earlier pre-treatment mutations. Thus, this approach can be used to nominate resistance 

mechanisms by only analyzing sets of post-treatment samples (such as post-treatment blood 

biopsies) without the necessity of obtaining primary or pre-treatment tissue (which is often 

logistically challenging). These approaches, when applied to our cohort of ALK-rearranged lung 

adenocarcinoma patients, discovered several interesting patterns of mutational signature activity 

in later subclonal populations. Specifically, we found statistically significant differences in 

APOBEC activity in younger vs. older patients, suggesting a role of this mutational process in 

tumour initiation in younger patients. We also demonstrated activity of different signatures 

depending on the physical location of the metastatic lesions suggest both genetic and, potentially, 

environmental modulators of mutational process activity in drug-resistant tumours.    

 

The methodology developed in this study can be applied to a broader set of cancers and datasets, 

including multiple sampling in autopsy cases, time course blood biopsy measurements, and pre- 

and post-treatment analysis of resistant tumours. Studying both the biology of early tumour 

development and its progression after treatment is clearly needed to answer the questions of 

resistance and to find new vulnerabilities and therapeutics for effective treatment of cancer.  
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Figure Legends  

 

Figure 1. Overview of PhylogicNDT analysis of multiple samples from the same patient, and 

clustering and timing results on simulated whole-exome (WES) and whole-genome (WGS) 

sequencing data illustrating functionalities of individual tools. (A) Schematics of the PhylogicNDT 

suite of tools used to estimate order of mutational events, reconstruction of subclones and their 

phylogenetic relationships, and comparison of the developmental trajectories and the timing of 

acquisition of somatic events (early vs. late) across different individuals or subtypes of a disease. 

Representation of (B-C) clustering, (E-F) growth kinetics and (G-I) timing methods in 

PhylogicNDT for both WES and WGS using simulated data.   

 

Figure 2. Clinical description and treatment summary of 21 patient ALK-fusion positive non-small 

cell lung cancer cohort and selected somatic mutations found in their genomes. (A) Treatment 

history plot detailing the clinical treatment history of each patient in the ALK-fusion positive cohort 

treated with 1st, 2nd, and 3rd generation ALK inhibitors overlaid with time of biopsy (circles). (b) 

Mutation co-occurrence (CoMut) plots showing somatic changes in copy-number and non-silent 

somatic mutations between pre- and post-treatment samples in known cancer genes and 

pathways. 

 

Figure 3. Estimated phylogenetic trees for ALK-fusion positive tumours and subclone 

identification annotated with somatic mutations, neoantigen number and quality, and predominant 

mutational signatures in each sample. (A) Signature analysis of mutational signatures active in 

each sample by the SignatureAnalyzer tool. (B) Phylogenetic trees built by PhylogicNDT 

BuildTree representing clonal structure of each tumour after integrating data from multiple 

samples from a single patient, overlaid with signature analysis and neoantigen load for each clone 

and subclone. Inferred clonal composition of the pre- and post-treatment samples is represented 

as circle plots. (C) Neoantigen number and fraction of weak (green) vs. strong (blue) antigens in 

each sample. 
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Figure 4. Single-patient timing trajectory: Molecular time ordering of mutational events and timing 

trajectory from individual patients. (A) Individual timing trajectories resulting from PhylogicNDT 

SinglePatientTiming analysis of selected ALK-fusion positive as well as EFGR-mutated and 

KRAS-mutated lung adenocarcinoma patients. (B) Phylogenetic tree and molecular time ordering 

(C) of subclonal events (within a tree branch) by SubclonalTiming analysis from a single patient. 

For molecular time ordering, treatment schedule is shown below to visualize the changes in 

subclonal mutational events and the acquisition of potential resistance mutations in the context of 

when the patient received each of the treatments, 1st generation TKI (crizotinib), 2nd generation 

TKI (brigatinib). 

 

Figure 5. Cohort-level timing analysis: Comparison among the acquisition order of somatic 

mutations in fusion-driven, EGFR-mutated, and KRAS-mutated lung adenocarcinoma subtypes. 

(A) LeagueModel timing diagrams of combined trajectories from a cumulative dataset of 455 

patients containing patients from each lung adenocarcinoma subtype showing when in mutational 

time (early → late) somatic mutations are acquired. (B) Comparing the timing of selected acquired 

somatic mutations between non–fusion-driven and fusion-driven lung adenocarcinoma cohorts, 

with differential events shown. (C) Quantification of the differences among the three major 

subtypes of lung adenocarcinoma, divided into three classes of mutational events: events that are 

1) significantly earlier (left) or 2) later (right) in fusion-driven cancers compared to either EGFR-

mutated or KRAS-mutated cancers and 3) events in which the timing is not significantly different 

among the three subtypes (middle). The significance values are based on permutation test with 

the 3 categories. (D) “Butterfly” plot of PhylogicNDT ConditionalTiming results capturing the 

association between the presence or absence of specific somatic events and the developmental 

trajectory, to determine potential biological dependencies of specific late-occurring mutations on 

other, earlier-occurring events. 

 

Figure 6. Heterogeneity of tumour lesions in anatomically distinct locations, sampled during 

treatment and time of autopsy of an ALK-fusion positive lung adenocarcinoma patient (Pt 034). 

Clonal migration (“River”) plot detailing subclones migrations between 13 samples. Truncal clone 

is depicted in green, with branches representing major subclones. Left side are subclones found 

in 4 liver lesions. Right side of truncal clone are subclones found in 9 lung lesions. Circles 

represent the fraction of each subclone population found in each sample. Known ALK inhibitor 

resistance mutation in MAP2K1 found in lung lesions (orange clone). 
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