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Abstract— Peripheral nerve decoding algorithms form an
important component of closed-loop bioelectronic medicines
devices. For any decoding method, meaningful properties need
to be extracted from the peripheral nerve signal as the first
step. Simple measures such as signal amplitude and features
of the Fourier power spectrum are most typically used, leaving
open whether important information is encoded in more subtle
properties of the dynamics. We here propose a feature-based
analysis method that identifies changes in firing characteristics
across recording sections by unsupervised dimensionality re-
duction in a high-dimensional feature-space and selects single
efficiently implementable estimators for each characteristic to
be used as the basis for a better decoding in future bioelectronic
medicines devices.

I. INTRODUCTION

Bioelectronic medicines [1] modulate the activity patterns
on peripheral nerves by implanted devices. They form a new
way of treatment with promise for many conditions such
as hypertension and tachycardia [2], [3], sleep apnea [4],
rheumatoid arthritis [5] and many more. Today’s devices are
still very simple, however, and mostly operate in an open-
loop fashion that is not aware of the current activity on
the nerve. For future bioelectronic medicines, closed-loop
systems that diagnose the signals on target nerves and only
block or stimulate when necessary could be much more
efficient and effective. It is thus vital for the progress of
the field to investigate ways of continuously or periodically
characterising peripheral nerve activity and associating its
patterns with the physiological state (‘decoding’) to modulate
adaptively.

A first step of such a decoding will be the extraction of
meaningful properties from the peripheral nerve recording to
then associate with the physiological parameters we seek to
estimate. Peripheral nerve recordings possess a low signal-
to-noise ratio, due to the weak (∼10mV) potentials caused
by the axons and the presence of other sources of electricity
such as muscles. Spatial recording resolution of current non-
invasive interfaces (cuff electrodes) is limited as well, making
it impossible to differentiate single fibers. The recording is
thus made up by compound action potentials (CAP): the
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superposed activity of many axons in a nerve-bundle. Given
these constraints on data quality, decoding is most often
based on the amplitude of the rectified and integrated signal
[6], [7] or the power (as square of amplitudes from a Fourier
spectrum) in a certain frequency band [8].

But are those simple summary values (amplitude, power)
sufficient to capture the entire information contained in
peripheral nerve recordings or are better measurements pos-
sible? Many subtleties are known to exist in peripheral
firing such as active fibre diameters, active fascicles and
different rhythms [9], many of which will be informative
for decoding. If we could identify some of those firing
characteristics in a peripheral nerve recording and estimate
them in each new observation, we might have a better starting
point for decoding. So how can we decide which are the main
varying firing characteristics and how can we estimate them –
keeping in mind that this estimation has to be very energy-
efficient to not deplete the small battery of the implanted
device?

One possibility of characterising time series such as pe-
ripheral nerve recordings by their dynamical properties is a
set of global time series features, of which many have been
developed in different disciplines over the past decades [10].
Representing a time series by its dynamical properties using
features proved useful for e.g., classification [11], clustering,
and forecasting [12]. In this work we seek to leverage the vast
literature on time-series features to find better representations
of peripheral nerve firing.

Building on a diverse set of over 7 500 time series features
[13], [14], we propose an unsupervised analysis method
that fulfills two purposes. It (1) automatically infers the
types of properties across which peripheral nerve recordings
vary most and (2) proposes estimators that quantify these
properties (‘characteristics’) in new data. We demonstrate the
utility of our approach on simulated data in which the activity
characteristics firing rate, myelination ratio, and burstiness
were uncovered successfully. The selected estimators for
the main peripheral firing characteristics can be efficiently
implemented for on-line summarisation of peripheral nerve
recordings and thus as a basis for a more accurate decoding
in closed-loop bioelectronic medicines.

II. METHOD
A. Time-series features

We want to analyse peripheral nerve recordings by their
dynamical properties based on a diverse set of estimators
for time-series characteristics. To this end we use the Highly
Comparative Time Series Analysis (hctsa) toolbox [13], [14]
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Fig. 1. Unsupervised selection of efficient estimators for the main varying signal characteristics. Each of the N peripheral nerve recordings in a
given dataset is transferred to a high-dimensional feature-vector using the hctsa-toolbox (here visualised as three-dimensional albeit having thousands of
dimensions). In property space, we find the main directions of spread in the data caused by the dynamical properties that vary across single recordings.
For each component, a single feature can be chosen that estimates one main characteristic.

which lets us compute more than 7 500 global time-series
features measuring e.g., basic statistics of value-distributions,
linear correlations, stationarity, entropy and many more. Each
feature fi(X) summarises a time series X = {X1, X2, ..., XN}

of length N as a single value, fi : �N → �. Using the
ensemble of all M ≈ 7 500 features F = { fi : i = 1, ...,M}, the
hctsa-toolbox can transfer our peripheral nerve recordings
to data points in an M-dimensional feature-space F(X) :
�N → �M for characteristics-based analysis. On the datasets
in this study, up to 1 500 of our inital 7 500 features had
special valued outputs and were removed, on average ∼6 800
remained. Most features of the library are robust against
unusual time-series properties, only very short time series
with less than ∼100 samples will cause a higher percentage to
fail. Computation of all features for one of our time series of
length 8 000 samples took about 340±180s on a single core in
a state-of-the-art cluster. If computation time is a constraint,
the feature set can be pruned at modest performance decline,
see Results III-A.

B. Detecting the varying characteristics in feature-space

We analyse datasets in the high dimensional feature-
space generated by the hctsa-toolbox to detect the dynamical
properties (‘characteristics’) that varied over time. See Fig. 1
for a schematic overview of our approach. Using hctsa,
each single time series can be summarised as a point in
feature-space; all recordings contained within a dataset form
a point-cloud. Features are normalised per dataset by a robust
sigmoid transform [13]. If characteristics that vary between
recordings are estimated by some of the computed features,
their variation will drive the spread of this point cloud along
those features. We can thus detect varying signal properties
as the main directions of variance using dimensionality
reduction methods such as principal component analysis
(PCA) or others [15]. These main dimensions make up the
low-dimensional space of ‘main varying characteristics’ to
project our data into.

C. Selecting efficiently implementable features

So far we have uncovered the main varying signal char-
acteristics across our recording segments as the principal
components (PC) in feature-space. Each of these components
will depend on the computation of thousands of single

features. To efficiently project new data onto the PCs, we
approximate each of them by a single representative feature
selected by maximum Pearson correlation to the component.
In this way we devise our set of efficient estimators for the
varying signal characteristics in the dataset at hand.

D. Datasets

To be in possession of ground truth and to demonstrate
the success of our method, we generated surrogate data in
the peripheral nerve simulator PyPNS [16]. Four simulated
datasets were obtained from a nerve with a fixed length
of 5cm containing 500 active axons. For each of the four
datasets, we generated 400 to 1000 snippets of length 400ms,
sampled at 20kHz, across which two to three of the firing
characteristics myelination ratio (0 - 2%), firing rate (0.1 -
10 spikes/ axon/ second), and burstiness (0 - 100% of firing
probability imbalance between two alternating intervals) var-
ied uniformly. Our method was then trained to detect these
characteristics in the unsupervised manner described above.
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Fig. 2. Example simulated recording with varying characteristics firing
rate and burstiness. Data was generated in the peripheral nerve simulator
PyPNS [16]. (a) Low rate, low burstiness, (b) high rate, low burstiness,
(c) low rate, high burstiness, (d) high rate, high burstiness. At low rates,
burstiness is not visible even for a human observer in (a) and (c).

III. RESULTS
A. Recovery of characteristics

We want to uncover, in a purely data-driven way, the
three characterstics firing rate, myelination, and burstiness
that varied in our simulator. To this end we transferred all
simulated peripheral nerve recordings per dataset into the
hctsa-feature-space and found the principal components. Ide-
ally, each of the two to three characteristics varied in a given
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dataset would be recovered in one principal component (PC)
in feature-space each. To demonstrate this correspondence
between PCs and characteristics in a first example, Fig. 3
plots the time-series points for the varying characteristics
firing rate and burstiness projected onto the first and second
PC. As can be seen, firing rate is cleanly captured by the first
component, burstiness by the second. At lower firing rates
(to the right of the plots in Fig. 3), PC2 is less informative
of burstiness, consistent with visual intuition from Fig. 2A
and C (burstiness is harder to distinguish for low firing-rate).
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Fig. 3. Example for a successful unsupervised detection of the
characteristics burstiness and firing rate in the first two principal
components (PC) in a normalised M-dimensional feature-space. When
projecting the time series into the space of the first two principal components
as obtained from PCA in our ∼6 800-dimensional feature-space (here as
axes), each of the two main signal characteristics is captured in one
dimension (coloring). Each dot is a time series. At low firing rates (high
PC1, to the right of the plot), burstiness cannot be detected anymore as was
to be expected from Fig. 2.

As an overview over all our four datasets, Fig. 4A shows
the correlation between firing characteristics and each of
the first components for datasets with noise-level −6dB (see
Fig. 2 for an example recording). On datasets with two
varying characteristics, especially in the pairs (bustiness,
myelination) and (firing rate, burstiness), each characteris-
tic was perfectly recovered by a single PC each. For the
pair (myelination, firing rate), firing rate was not cleanly
separated from myelination as noise partly shadowed ac-
tion potentials from unmyelinated fibres. At three varying
characteristics, burstiness and myelination were reasonably
captured by the first and second PC but firing rate could
not be cleanly separated anymore. Across all datasets, PC1
captured between 60 and 90% of the variance, the PC2 5 to
25%, and PC3 1 to 5%. When randomly selecting subsets
of the hctsa feature pool to reduce computation time, a
characteristics-dependent decline in recovery with modest
losses from ∼1 000 features can be observed in Fig. 4C.

B. Robustness against noise

As a measure of how well the main dimensions obtained
by dimensionality reduction captured signal characteristics,
we linearly regressed each characteristics c as set in the
simulation against the first main dimensions D (2 main
dimensions for 2 varying characteristics, 3 for 3):

ĉ = Dα + ε. (1)

The unexplained variance 1 − R2(ĉ, c) gave an estimation
of how well the input characteristics could be retrieved by
the output of our method. Until a noise RMS of half the
signal RMS (−6dB), the characteristics set in our simulation
were recovered well, see Fig. 4B. Myelination ratio was the
most robust against noise as expected from the high action
potential amplitudes from myelinated fibres, burstiness and
firing rate could not be well detected at high noise levels.

C. What types of features are selected?

So far we have shown that unsupervised dimensionality
reduction in feature-space is a promising way of extracting
low-dimensional directions of variation in the underlying
system that works well in the majority of our simulated
neural firing datasets. But can we interpret each dimension
in terms of the signal properties that are being measured,
and are they sensible given what we know is varying in
the underlying system? To answer these questions, we rank
single features by their Pearson correlation to the principal
components – and therefore the varying characteristics in the
data.

In general, the highest Pearson correlations between single
features and principal components reached at least 0.8 and
often 0.98 or better, meaning that we can find appropriate
single features to represent each principle component. For
the characteristic myelination ratio, features selected by our
method typically evaluate extreme events, outliers, statistics
on residuals in local fits. This makes sense as myelinated
axons produce very strong peaks. Features corresponding
to firing rate components often compute value distribution
properties and autocorrelation measures that detect uncorre-
lated noise vs. natural signals. Burstiness-features measure
stationarity and predictability. We therefore automatically
identify sensible features.

The selected estimators will be different for every dataset
and the purpose of this study is not to select a fixed set of
features for real world data from our simulated demonstration
datasets. The method has to be rerun for a dataset to analyse
as each recording will be different in the composition of
fibres, the firing patterns and the interface.

D. Comparison to standard methods

Our method is able to detect the main varying characteris-
tics in a peripheral nerve recording and select single estima-
tors for them. The unsupervised nature of this characteristics-
discovery thus goes beyond unsupervied feature-selection
approaches such as Laplacian score [17] or SVD-entropy
[18], and further makes use of the most comprehensive
feature set available to date.

What do our low dimensional representations add to the
standard power-based features computed on peripheral nerve
activity? For a brief comparison of our method to RMS as
a feature, we added its Spearman rank correlations to the
characteristics set in our simulation in Fig. 4A. Naturally,
with a univariate power measure, no distinction between dif-
ferent firing characteristics is possible. Interestingly however,
our first principal component behaves largely identical with
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Fig. 4. Two varying characteristics are well recovered by PCA in feature space up to a noise-power of half the signal power (−6dB). The second
and third principal component provide additional information compared to standard power-measures. (a) Noise RMS was set to half the signal
RMS, see Fig. 2 for example time series. Bars indicate the Spearman rank correlation between a single characteristic of a dataset and the classic measure
RMS as well as the first principal components (PCs) obtained by dimensionality reduction. RMS behaves largely identical to the first PC. (b) Abscissa
is the unexplained variance between the actual signal characteristics and the ones linearly regressed against the first dimensions, Eq. (1). (c) When only
considering a subset of all ∼6 800 hctsa-features, characteristics recovery declines. Each number of features randomly sampled 10 times, SNR=0.1.

RMS in terms of correlation to the data characteristics. In
the following PCs, more subtle dynamical properties such as
burstiness and myelination were recovered. The estimators
selected by our method thus cover all signal properties
captured by state-of-the-art measures but importantly provide
additional information about more subtle firing characteris-
tics.

IV. CONCLUSIONS
Peripheral nerve decoding algorithms will play an impor-

tant role in the development of closed loop bioelectronic
medicines devices. To date the analysed recordings have been
characterised by simple amplitude- or power-based measures.
We here demonstrate the feasibility of (1) automatically
detecting important signal characteristics and (2) providing
simple feature-based estimators for each. Our method is
successful on simulated peripheral nerve recordings in which
two independent peripheral firing characteristics could be
recovered cleanly in most cases. The method provides a
low dimensional representation of the data in meaningful
dynamical properties that is more informative than the state-
of-the-art characterisation by simple power measures. The
selected single estimators for important dynamical properties
of peripheral firing can be implemented efficiently for the use
in next generation bioelectronic medicines devices and the
method may find application in related BMI applications as
well.
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