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Abstract: Loners, individuals out-of-sync with a coordinated majority, occur frequently in nature. 20 

Are loners incidental byproducts of large-scale synchronization attempts or are they part of a 21 

mosaic of life-history strategies?  Here, we provide the first empirical evidence of naturally 22 

occurring heritable variation in loner behavior, using the social amoeba Dictyostelium discoideum. 23 

Moreover, we show that Dictyostelium loners—cells that do not join the multicellular life-stage—24 

result from a dynamic population-partitioning process. Underlying this partitioning, we find 25 

evidence that each cell makes a stochastic, signal-based decision resulting in an imperfectly 26 

synchronized multicellular development affected by both abiotic (environmental porosity) and 27 

biotic (strain-specific signaling) factors. Finally, we predict that when strains differing in their 28 

partitioning behavior co-occur, cross-signaling impacts slime-mold diversity across spatio-29 

temporal scales. Loners are therefore critical to understanding collective and social behaviors, 30 

multicellular development, and ecological dynamics in D. discoideum. More broadly, across taxa, 31 

imperfect synchronization might be adaptive by enabling diversification of life-history strategies. 32 
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Introduction 33 

Collective behaviors, in which a large number of individuals exhibit some degree of behavioral 34 

synchronization, are frequent across the tree of life and across spatio-temporal scales: from 35 

microbial aggregates to the great wildebeest migration, from locust swarming to synchronized 36 

bamboo flowering, from fish schooling to mechanical adaptation in honeybee clusters (Couzin & 37 

Krause, 2003; Gregor, Fujimoto, Masaki, & Sawai, 2010; Hopcraft et al., 2015; Janzen, 1976; 38 

Kaiser & Crosby, 1983; Katz, Tunstrom, Ioannou, Huepe, & Couzin, 2011; Peleg, Peters, Salcedo, 39 

& Mahadevan, 2018; Simpson, McCaffery, & Hägele, 1999). Intriguingly, however, such 40 

synchronization is sometimes imperfect and ‘out-of-sync’ individuals (henceforth loners), have 41 

been reported in several of these systems. For instance, in locusts, population crowding prompts a 42 

transition from a solitary phase, in which individuals repel each other, to a gregarious phase, in 43 

which they attract each other. Experiments show, however, that not all individuals undergo this 44 

transition, even if exposed to long periods of crowding (Simpson et al., 1999). In wildebeest, 45 

hundreds of thousands of individuals coordinate with each other and organize herding migrations, 46 

but resident populations, that fail to migrate, also exist (Hopcraft et al., 2015). Similarly, 47 

wildebeest calving times are also highly coordinated, but some fraction of the calves are born 48 

outside the calving period (Hopcraft et al., 2015). In bamboo, individuals predominantly flower in 49 

synchronized masts, but sporadic out-of-sync events have also been recorded (Janzen, 1976).  50 

The roots of imperfect synchronization will undoubtedly differ across systems. Nevertheless, the 51 

occurrence of imperfect synchronization across such different systems and scales raises 52 

fundamental questions about its causes and consequences. Are loners mistakes—merely inevitable 53 

byproducts of large scale synchronization attempts—or are they a variable trait that selection can 54 

shape with potential ecological consequences? Theoretical investigations of such loner behaviors 55 

have been sparse, but the handful of existing studies have suggested that, at least in some systems, 56 

they could be a means of spatio-temporal niche-partitioning (Dubravcic, van Baalen, & Nizak, 57 

2014) that promotes diversity (Martínez-García & Tarnita, 2017; Tarnita, Washburne, Martínez-58 

García, Sgro, & Levin, 2015). However, despite this theoretically established potential, variability 59 

and heritability of loner behaviors have not been characterized in natural populations. Thus, there 60 

exists no empirical evidence, in any system, that loners are anything more than chance stragglers, 61 

lacking an avenue for selection to act on them. 62 

The cellular slime mold Dictyostelium discoideum is an ideal system in which to experimentally 63 

characterize loner behaviors. Its life cycle comprises a unicellular feeding stage and a starvation-64 

induced multicellular stage—the result of a developmental process involving coordinated cell 65 

aggregation, which culminates in the production of starvation-resistant spores (Bonner, 2009). 66 

There has been extensive progress in understanding this multicellular stage (Bonner, 2009; Gregor 67 

et al., 2010; Strassmann & Queller, 2011), but less attention has been paid to the potential role of 68 

asocial aspects—such as the non-aggregating solitary loner-cells—in development. Loners die 69 

under sustained starvation, but they persist temporarily (Dubravcic, 2013); if food is replenished, 70 

they eat and divide, and their progeny subsequently recapitulate the multicellular development 71 

(Tarnita et al., 2015). Finally, it has been shown that knockout strains can have different loner 72 

behaviors (Dubravcic et al., 2014). Altogether, these observations suggest that loners could indeed 73 

be part of a life-history strategy in D. discoideum. However, to fully establish this, one needs to 74 

show (a) that there are evolutionary paths such that loner behavior can be tuned while populations 75 

retain viability in their natural environments and (b) that there are fitness differences between 76 

strains with different loner behaviors in natural environments. Here we tackle (a) by inspecting 77 
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loner behavior in naturally occurring strains; in the process, we uncover the cellular decision-78 

making rules underlying the aggregator-loner partitioning and explore their potential ecological 79 

consequences. 80 

Results and Discussion 81 

The aggregator-loner partitioning is heritable and context-dependent 82 

To determine whether the loner behavior is heritable—and, thus, whether there is the potential for 83 

natural selection to act on it—we developed an experimental protocol to identify individual loner 84 

cells (Fig. 1a,b), permitting us to characterize their spatial distribution (Fig. 1c, Fig. S1) and 85 

quantify their density (Fig. 1d,e, Fig. S2). Importantly, we worked with three natural isolates (i.e. 86 

strains or genetic variants) that were collected from the same location to ensure that observed 87 

behaviors of individual strains were not an artifact of lab rearing and that observed behavioral 88 

differences among strains reflected naturally co-occurring strategies. When homogeneously plated 89 

cells of a given strain were left to starve and undergo multicellular development, loner cells were 90 

found throughout aggregation territories, with a higher density at territory borders and at 91 

experimental boundary conditions than in the immediate surroundings of aggregation centers (Fig 92 

1c, Fig. S1). In repeated experiments under controlled conditions, loner densities of a given strain 93 

fell consistently within a conserved distribution (framed portion of Fig. 1e); moreover, the loner 94 

distributions of some strains were significantly different in their mean and variance (compare 95 

strains NC28.1 and NC85.2 in Fig. 1d, and framed portion of Fig. 1e). These findings demonstrate 96 

that the aggregator-loner partitioning behavior is heritable and thus has the potential to be shaped 97 

by selection. 98 

To characterize the underlying developmental process, it must first be determined whether a cell’s 99 

decision to commit to aggregation or remain a loner is context-independent (Dubravcic et al., 2014; 100 

Tarnita et al., 2015) (the result of a stochastic switch) or whether it depends on external factors. If 101 

it is context-independent, then loner density should increase linearly with the density of initially 102 

plated cells, i.e., the heritable quantity would be the fraction of loners, as previously posited 103 

(Dubravcic et al., 2014; Tarnita et al., 2015). Instead, we found a non-linear dependence: at low 104 

initial densities, cells were too sparse for aggregation to occur and all cells remained loners; above 105 

a threshold, aggregation occurred with increasing efficiency and loner densities decreased; 106 

surprisingly, at high initial cell densities, loner densities plateaued (Fig. 1d, Fig. S2c-k). Thus, past 107 

a range of initial densities, it is the number (or density), and not the fraction, of loners that is 108 

heritable, suggesting an underlying cell decision-making process that is fundamentally different 109 

from a stochastic switch. Furthermore, when we varied the porosity of the agar substrate—a proxy 110 

for an important environmental characteristic for this soil-dwelling amoeba—less porous (more 111 

concentrated) agar yielded higher loner densities (Fig. 1e), and differentially affected D. 112 

discoideum strains by enhancing the difference between strains that leave fewer loners (‘better 113 

aggregators’) and those that leave more loners (‘worse aggregators’). Interestingly, the agar 114 

porosity affects not only the mean number of loners, but also the variance (Fig. 1e). Altogether, 115 

these findings demonstrate that the heritable aggregator-loner partitioning is context-dependent—116 

the result of a density-dependent decision-making process (Balázsi, Van Oudenaarden, & Collins, 117 

2011) that interacts with the abiotic environment. 118 

The aggregator-loner partitioning is the result of an abiotically-modulated quorum-based 119 

stochastic process. 120 
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To identify the properties of this decision-making process, we constructed a spatially explicit 121 

individual-based model (Fig. S3; see Methods) starting from a limited set of assumptions: that the 122 

strain-specific partitioning behavior results from imperfect synchronization in the developmental 123 

program, and that this asynchrony stems from a stochastic response to cell-population densities 124 

(i.e., quorum sensing). Consistent with our experimental design, we started with a population of 125 

cells immediately after food exhaustion and assumed them to be in a pre-aggregating state, P. P-126 

cells emit extracellular signaling molecules at a strain-specific rate 𝛾; signal diffuses with diffusion 127 

coefficient D and serves a quorum-sensing purpose (Gregor et al., 2010; Loomis, 2014) that 128 

regulates the stochastic transition to the aggregating state, A: when the signal perceived by a cell 129 

exceeds the strain-specific sensitivity threshold 𝜃 (i.e. the quorum is met), that cell has a strain-130 

specific probability 𝜆 per unit time of becoming an aggregating A-cell. A-cells continue to emit 131 

signal and move towards the aggregation center with constant, strain-specific velocity 𝑣. At the 132 

center, cells become multicellular (M-state) and stop emitting signal. Importantly, we do not 133 

impose restrictions on the nature of the signaling molecule or on the sensing mechanism, and the 134 

model employs this molecule broadly to fulfill both a traditional (Gomer, Yuen, & Firtel, 1991; 135 

Loomis, 2014) and a dynamical quorum sensing role (Gregor et al., 2010). 136 

Because our model is focused on population partitioning, it deliberately simplifies certain 137 

dynamics (Dallon & Othmer, 1997; Gregor et al., 2010; Keller & Segel, 1970; Kessler & Levine, 138 

1993; Palsson & Othmer, 2000; Sawai, Thomason, & Cox, 2005) and it bundles many possible 139 

intermediate states that make up the P-to-A transition: for example, before aggregating, cells must 140 

sequentially starve, become excitable by cAMP (Clarke & Gomer, 1995; Jain, Yuen, Taphouse, & 141 

Gomer, 1992), and finally chemotax (Gregor et al., 2010). Moreover, for computational 142 

convenience, our model simplifies various sources of stochasticity that arise during the 143 

developmental process, such as the existence of multiple aggregation territories and the variable 144 

boundary shapes between them. This prevents us from studying the sources and dynamics of the 145 

variance in loner density, an important direction for future work. Nevertheless, this reduced model 146 

is powerful enough to qualitatively recapitulate all other properties of the observed population 147 

partitioning (Fig. 1f; Fig. S4a-e). Importantly, the model recovers the plateau in the loner counts 148 

as a function of initially-plated cell density (Fig. 1f; Fig. S4a-d; Box 1 and SI Appendix) and it 149 

provides an intuition for the identity of the loners (Fig. 2): they are P-cells that did not make the 150 

probabilistic transition to the A-state when they had a quorum and that are left without a quorum 151 

when enough of their neighbors underwent the P-to-A transition and moved towards the 152 

aggregation center. 153 

Total loner density then depends on how quickly P-cells switch to the A-state relative to how 154 

quickly they are left without a quorum (𝜆/𝑣), and on how easy it is to maintain a quorum (see Fig. 155 

S4a-d, Box 1 and SI Appendix for analytical results). Thus, the larger the P-to-A transition rate 𝜆, 156 

the fewer loner cells are left behind since P-cells sensing a quorum switch faster to the A-state; 157 

conversely, the larger the aggregation speed 𝑣, the more loners are left behind since A-cells move 158 

away faster and leave their P-cell neighbors without a quorum (Fig. S4c). Consequently, the farther 159 

a cell is from the aggregation center, the sooner it is left without a quorum and the more likely it 160 

is to become a loner (Fig. S4e), which explains our experimentally observed spatial distribution 161 

(Fig. 1c). 162 

Achieving and maintaining a quorum depends on the ratio between the sensitivity threshold and 163 

the signaling rate, 𝜅 = 𝜃/𝛾, and on the signal diffusivity, D. Higher 𝜅 leads to more loners because 164 

more neighbors are required for a quorum (Fig. S4d). Similarly, lower diffusivities result in higher 165 
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loner densities (Fig. S4f,g) because the signal remains highly concentrated around the emitters, 166 

and cells need to be more densely packed to maintain a quorum (Fig. S4h,i). Moreover, decreasing 167 

the diffusivity differentially affects worse and better aggregators (Fig. 1g, Fig. S4f,g), because 168 

diffusivity and signal spreading are nonlinearly related (see Methods). These results mirror the 169 

experimentally determined dependence of loner densities on agar concentration, suggesting signal 170 

diffusivity as a potential mediator of this dependency. Because loner densities responded to agar-171 

concentration changes in a range that should not impede the diffusion of cAMP (Johnson, Berk, 172 

Jain, & Deen, 1996; Pluen, Netti, Jain, & Berk, 1999), these results further suggest that at least 173 

one of the molecules involved in the quorum-dependent transition should be large—for example, 174 

conditioned medium factor (CMF)(Gomer et al., 1991), prestarvation factor (PSF) counting factor 175 

(Kolbinger et al., 2005), counting factor (Brock & Gomer, 1999) or phosphodiesterase 176 

(Bodenschatz, Bae, & Prabhakara, 2017).  177 

Notably, PSF and CMF are secreted during the growth phase and early starvation. This led us to 178 

investigate the potential role that these earlier signaling stages could play in regulating loner 179 

behavior. To test this hypothesis, we let cells grow in bacterial suspension until resources are 180 

depleted, and only subsequently plated them in agar gels. Thus, the initial responses to resource 181 

depletion occur in a well-mixed environment, and any signaling molecules secreted in this phase 182 

should synchronously reach all cells. If early signaling is responsible both for the loner differences 183 

between strains and for the effects of agar concentration on loners, we predicted that the well-184 

mixed environment should produce the same effects as increasing diffusion in our model (Fig 1g). 185 

First, the increased signaling synchrony should decrease the loner number of any given strain; 186 

second, strains that had more synchronous signaling to begin with (i.e. better aggregators) should 187 

be less affected by this treatment than strains that started out with less synchronous signaling (i.e. 188 

worse aggregators), which would cause the differences between strains to decrease. Consistent 189 

with these predictions, we found that the loner counts decreased dramatically for the worse 190 

aggregator, leading to a reduction in the difference between strains (Fig. 3). This supports our 191 

hypothesis that vegetative or early starvation signaling—and not the later, cAMP relay signaling 192 

and synchronization, as previously inferred using knockouts (Dubravcic et al., 2014)—could be a 193 

critical stage at which loner behavior is regulated and the natural variation that we observed is 194 

produced. 195 

The aggregator-loner partitioning depends on the identity of neighboring cells. 196 

Collectively, the results above show that the population partitioning stems from interactions 197 

between genotype and environment and suggest that cell signaling mediates these interactions. 198 

This raises the possibility that a strain’s partitioning could also be influenced by the presence of 199 

other strains via cross-signalling. If a cell’s commitment to aggregation were independent of the 200 

identity of co-occurring strains, a mix of strains would leave behind a total mixed loner density 201 

that is the linear combination of the two strains’ loner densities (see Methods). Our model, 202 

however, predicts developmental interactions between co-occurring strains that produce a diversity 203 

of departures from linearity (Fig. 4a; Fig. S5).  204 

When we plated well-mixed cells of the strains NC28.1 (better aggregator) and NC85.2 (worse 205 

aggregator) at different frequencies and left them to co-develop under starvation conditions we 206 

found agreement with this theoretical prediction. The total loner density of the mixed strains 207 

deviated significantly from the linear combination, mapping out a sigmoidal curve (Fig. 4b, Fig. 208 

S6), which was one of three possible theoretical outcomes. Thus, when the better aggregator was 209 

more abundant in the mix (25%:75%) there were fewer total loners than predicted by the linear 210 
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combination; conversely, when the worse aggregator was more abundant (75%:25%) there were 211 

more total loners. That strains influence each other’s partitioning is consistent with existing results 212 

using knockouts (Dubravcic et al., 2014) and it is particularly interesting in light of prior work 213 

showing that, during aggregation, D. discoideum cells do not perfectly discriminate against non-214 

kin and genetically heterogeneous multicellular aggregates occur naturally (Strassmann, Zhu, & 215 

Queller, 2000), allowing for potential interactions between strains that can alter each other’s life-216 

history investments (Buttery, Rozen, Wolf, & Thompson, 2009; Strassmann & Queller, 2011). 217 

Whether or not such interactions occur within the aggregate (Martínez-García & Tarnita, 2016; 218 

Tarnita et al., 2015; J. B. B. Wolf et al., 2015), our results reveal that they do occur earlier in the 219 

developmental process. 220 

Such developmental interactions that alter life history investments could severely impact strain 221 

fitness, alter D. discoideum diversity, and threaten the persistence of the social behavior 222 

(Strassmann & Queller, 2011). It is therefore crucial to understand their consequences for 223 

individual strains. In our case, the theoretical model produced two possible outcomes of co-224 

development (see SI Appendix): the two co-occurring strains can become either (i) more similar 225 

(Fig. S7a,b) or (ii) more different (Fig. S7c,d) in their partitioning behavior. In particular, when 226 

the theoretical density of the mixed-strain loners had a sigmoidal shape similar to that derived 227 

experimentally, the loners of the better aggregator quickly went to zero as the frequency of the 228 

worse aggregator in the mix increased (Fig. S7c,d). Thus, the better aggregator became even better 229 

in the presence of the worse aggregator, enhancing the difference between the two strains (case ii). 230 

This occurred because the more sluggish loners of the worse aggregator maintained quorum long 231 

enough for the better aggregator to aggregate perfectly. Experimentally, the spatial distribution of 232 

the mixed-strain loners provides insight into their potential composition (Fig. 4c,d): as soon as the 233 

worse aggregator is part of the mix (even at the lowest frequency), the spatial distribution of the 234 

mixed loners is almost identical to that of the worse aggregator—and strikingly different from that 235 

of the better aggregator—suggesting that, as predicted, the mixed-strain loners predominantly 236 

comprise the worse aggregator. Importantly, developmental interactions between co-occurring 237 

strains do indeed have consequences for the life history investments of individual strains. 238 

Cross-signaling may foster slime mold diversity across spatio-temporal scales. 239 

The two possible outcomes of co-development predicted by our population-partitioning model are 240 

reminiscent of two classical evolutionary routes to diversity maintenance—quasi-neutrality (case 241 

i; Fig. 5a) and character displacement (case ii; Fig. 5b)—and are therefore likely to have 242 

consequences for slime-mold diversity. To investigate these biodiversity consequences of strains 243 

mixing and co-developing—instead of perfectly segregating and avoiding co-development—we 244 

incorporated our population-partitioning model into an existing model of competition for resources 245 

over multiple successive growth-starvation (Martínez-García & Tarnita, 2016, 2017; Tarnita et al., 246 

2015) (Fig. S8; see Methods). Although empirically we did not investigate fitness differences 247 

between strains, here we assume that such differences exist and depend on the environmental 248 

conditions as in prior work (Martínez-García & Tarnita, 2016, 2017; Tarnita et al., 2015). The 249 

environment is characterized by the mean time between nutrient replenishment events. We 250 

considered both deterministic environments (all replenishment times of equal size) and stochastic 251 

environments (exponentially distributed nutrient replenishment times). For each, we explored a 252 

range of mean nutrient replenishment times. Regardless of whether co-development occurs, within 253 

any environment, there was competitive exclusion: consistent with previous work, we found that 254 

strains that leave behind more (fewer) loners are more competitive in environments with shorter 255 
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(longer) mean replenishment times (Tarnita et al., 2015). In deterministic environments the identity 256 

of the winner was also deterministic and not altered by co-development (inset of Fig. 5c,d); 257 

however, co-development did alter the time-to-extinction of the loser (inset of Fig. 5e,f). On the 258 

contrary, in stochastic environments, for every pair of competing strains, there is a range of 259 

environments where the identity of the winner is uncertain and that range is drastically altered by 260 

co-development (Fig. 5c,d). As in deterministic environments, co-development also influenced the 261 

time-to-extinction of the loser (Fig. 5e,f). 262 

To untangle the effects of co-development on diversity at different spatial scales, we discretized 263 

the environment into small-scale patches with identical replenishment conditions. Competition 264 

between pairs of strains occurred within each patch, and there was no dispersal between patches. 265 

Importantly, this setup allows us to investigate the effects of co-development on alpha (intra-patch) 266 

and beta (inter-patch) diversity, but it does not introduce any intrinsic spatial heterogeneity. As 267 

expected, within each patch, we found competitive exclusion. However, at the level of the 268 

environment, if the replenishment conditions are within the range where the identity of the winner 269 

is uncertain, there can be coexistence. Each of our predicted modes of co-development imparted a 270 

distinct biodiversity signature. Specifically, in case (i), the converging behaviors of the two strains 271 

led to much longer times to extinction, resulting in higher transient alpha diversity compared to 272 

the segregated model. However, this mode of co-development also narrowed the environmental 273 

range in which competition lead to non-deterministic exclusion, resulting in lower stationary beta 274 

diversity compared to the segregated model (Fig. 6a). Case (ii) yielded the opposite outcome for 275 

both alpha and beta diversity (Fig. 6b).  276 

Conclusion 277 

To conclude, here we showed natural variation and heritability in the aggregator-loner partitioning 278 

behavior of naturally co-occurring strains of D. discoideum. Strikingly, the seemingly asocial 279 

loners are not a separate, independently-determined subset of cells, but rather they arise 280 

dynamically from the collective process. Coupling experiments and theory, we revealed that the 281 

aggregator-loner partitioning behavior is governed by a stochastic cell-level decision-making 282 

process mediated by cell signaling and modulated by both the abiotic and the biotic context. These 283 

investigations of collective behavior revealed previously unknown stochastic aspects of D. 284 

discoideum development. Finally, we used a theoretical approach to explore the ecological 285 

consequences of these findings and showed that the co-development of different strains impacts 286 

diversity across multiple scales. These results, arising solely from interactions between ecology 287 

and development, recapitulate the biodiversity outcomes of classical eco-evolutionary interactions. 288 

Overall, our results highlight the necessity of an integrated approach to collective behaviors, 289 

including multicellularity: studying asocial life-history strategies revealed insights into collective 290 

behavior and development, and studying development revealed insights into ecological dynamics 291 

and parallels with well-studied eco-evolutionary processes. 292 

Furthermore, our findings have potentially fundamental implications for the evolution of 293 

aggregative multicellularity and social behaviors. Many factors could undermine the integrity of 294 

social complexes, such as free-riding, whereby individuals reap the benefits of group living 295 

without paying the costs. In slime molds, free-riders—strains that never contribute to stalk 296 

formation in mixes—have been found both in the wild (Buss, 1982) and in the lab (Kuzdzal-Fick, 297 

Fox, Strassmann, & Queller, 2011). If under selection, the heritable loners, invulnerable to the 298 

threats to the multicellular stage but capable of re-achieving multicellularity via their offspring, 299 
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could constitute insurance against such threats and could therefore be critical to the evolution and 300 

persistence of aggregative multicellularity. This hypothesis is consistent with the handful of 301 

theoretical studies on cooperative behaviors that have considered social loners (Garcia, Doulcier, 302 

& De Monte, 2015; Hauert, De Monte, Hofbauer, & Sigmund, 2002).  303 

 304 

Finally, beyond multicellularity and sociality, our results have potential implications for the 305 

broadly analogous loner behaviors identified across a variety of systems in which some form of 306 

coordination or synchronization is observed, from insects (Simpson et al., 1999) to vertebrates 307 

(Couzin & Krause, 2003; Hopcraft et al., 2015) to plants (Janzen, 1976). Our findings represent 308 

the first demonstration that loner behaviors can indeed exhibit natural variation and heritability—309 

and that this can have significant ecological consequences—and, as such, they motivate a broader 310 

investigation into loner behaviors in other systems. While the mechanisms underlying the 311 

existence of loners are likely different across systems, the widespread existence of loners and the 312 

possibility that they could in fact be shaped by selection suggest an interesting conjecture: that, in 313 

general, imperfect synchronization may enable evolution to shape population-partitioning 314 

strategies in ways that could be instrumental for behavioral diversity and for the persistence of the 315 

collective stage, and thus for system-level robustness. 316 

 317 

 318 

Box 1 319 

 320 

In the spatially implicit limit (𝐷 ⟶ ∞, 𝑣 finite) and in the limit of large initial population size 321 

(𝑁0 ⟶ ∞), the density of loners 𝜌𝐿 can be calculated analytically, which reveals the interactions 322 

among model parameters (see SI Appendix). We find 323 

 324 

𝜌𝐿 ∝ { 𝜅 (1 −
𝜆

�̃�
) ,  if  𝜆 < �̃�

                 0 ,  otherwise

 325 

 326 

where 𝜅 = 𝜃/𝛾 is the ratio between the sensitivity threshold and the signaling rate, and �̃� is the 327 

velocity rescaled by the mean distance traveled by cells before joining the aggregate. This reveals 328 

a phase separation determined by the relative speeds of the two transitions, P-to-A and A-to-M 329 

(Fig. S4b): a lack of synchronization resulting in loners occurs only if the P-to-A transition is 330 

slower than the A-to-M transition. 331 

 332 
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Materials and Methods 488 

Experiments. D. discoideum growth and plating. 489 

 NC28.1, NC34.1, and NC85.2 —three clonal lineages of D. discoideum originally isolated from 490 

Little Butt's Gap, North Carolina (Francis & Eisenberg, 1993) –were obtained from dictyBase 491 

(Fey, Dodson, Basu, & Chisholm, 2013) and grown on Klebsiella aerogenes lawns prepared on 492 

SM agar plates (Fey, Kowal, Gaudet, Pilcher, & Chisholm, 2007). After the D. discoideum cells 493 

aggregated and formed fruiting bodies, spores were harvested and used to inoculate 3mL of a K. 494 

aerogenes suspension in SorMC buffer (OD600 of 8). The suspension was kept in a shaker for 24 495 

hours and then used to inoculate 12mL of the K. aerogenes suspension. During growth, D. 496 

discoideum cell densities were kept below 3 x 106 cells/mL. After 24 more hours, in preparation 497 

for the synchronous starvation of the cells, the suspension was cooled to 4°C for five minutes. The 498 

suspension was then centrifuged at 700 g for three minutes at 4°C and the remaining pellet was 499 

resuspended in 10mL of SorMC buffer. The spinning and resuspension cycles were repeated three 500 

times to wash away any remaining K. aerogenes cells (Fey et al., 2013). For the final resuspension 501 

the cell concentration was 107 cells/mL. 502 

From each stock suspension, a dilution series in SorMC buffer (80%,70%,...,20%) was obtained. 503 

In addition, a 5% dilution was prepared from each stock suspension. The 5% dilutions were below 504 

the critical aggregation density, and they were used to estimate the total amount of cells in the 505 

other samples coming from the same stock suspension. Cells were platen on non-nutrient agar gels 506 

(2%, 3% and 4% concentrations) cast in 1.5mm acrylamide gel casts (Bio-Rad). Each of the diluted 507 

and undiluted cell suspensions was applied to the agar substrates as a 10μL droplet.  508 

The samples were then left to develop in a moist dark chamber at 21°C until the streaming phase 509 

of aggregation was over and most of the aggregates were already at the slug stage (~14 hours). 510 

Development was then halted by lowering the chamber temperature to 4°C. Even though the 5% 511 

diluted suspension samples never aggregated, they were also left in the chamber for the full length 512 

of the experiment. This circumvents the problem of residual divisions post resource removal. The 513 

diluted and non-aggregated samples were then used to estimate the total number of cells in the 514 

undiluted aggregated samples. 515 

In order to check for the consistency of the dilution procedure, 5%, 10% and 15% dilutions of 516 

NC34.1 strain stock solutions were also prepared and plated on 3% agar substrates. A linear 517 

Gaussian model with intercept 0 was fit to the cell counts of different dilutions of the same 518 

suspension. The standard deviation of this model was taken to be the error intrinsic to the dilution 519 

process (Figure S2a).  520 

For mixed strain experiments, strains NC28.1 and NC85.2 were used. They were grown, washed 521 

and resuspended separately. Then, without diluting the suspensions, different mixes were made 522 

(25%,50% and 75% of the initial strain NC28.1 suspension). A 5% dilution was made for each of 523 
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the two pure strain suspensions. Each of the mixes, pure strain suspensions, and dilutions were 524 

plated as four replicates for each experiment. These 5% dilutions were used to estimate the 525 

proportions of cells of each strain in each of the experiments. 3% agar substrates were used. 526 

For the resource depletion experiments, cells of strains NC28.1 and NC85.2 were grown in 527 

bacterial suspensions until they reached either a density of 1x106 cells per mL (conditions under 528 

which bacteria were still plentiful), or for 10 hours longer than that (conditions under which 529 

bacteria have just been depleted). In both treatments, cells were then washed from bacterial 530 

leftovers and let aggregate on 3% agar gels 531 

Imaging samples and counting cells.  532 

An ultrasonic atomizer (from CVS) was used to uniformly apply a 0.5mm thick layer of warm 533 

imaging solution (SorMC containing 0.3 mol/L of dextrose and 0.05% agar) to the samples. After 534 

resting for 10 minutes at room temperature cells assume a spherical shape and detach from 535 

neighboring cells. Samples were then photographed with a Canon t5i DSLR camera at a Nikon Ti-536 

Eclipse inverted microscope equipped with a 10X objective. The imaged area, a square of side 537 

1.5cm, was large enough to encompass the initial cell plated area plus a buffer zone that ensures 538 

that all cells were imaged. Custom software using the OpenCV package for Python was then used 539 

to count the cells that did not join aggregation centers. 540 

The error of automatic cell counts was estimated by taking samples of images of cells in various 541 

densities, manually and automatically counting them and fitting a linear Gaussian model with slope 542 

1 and intercept 0 (Figure S2b). The standard deviation of the fitted model was taken as the 543 

automatic counting error. 544 

Total plated cell counts in each sample were estimated by counting the non-aggregated 5% dilution 545 

of the corresponding stock suspension and multiplying by the dilution factor of that particular 546 

sample. We do not assess differential loner viability, which might effectively increase the 547 

difference in loner allocation between strains. 548 

Spatial pattern analysis. 549 

 For each cell in each experiment, the local cell density was calculated in a neighborhood with a 550 

radius of 10% of the total experimental radius. Cells that weren't within the center of the 551 

experimental area (defined by a radius of 60% of the total experimental radius) weren't included 552 

in the analysis, to avoid border effects. For each strain and agar concentration, neighborhood 553 

densities of cells of all experiments were pooled together in a probability distribution. The results 554 

were qualitatively similar for other neighborhood radii, but because the imaging treatment might 555 

shift a bit the position of the cells, we chose a radius that is considerably larger than this effect 556 

Statistical analyses of mixed strain experiments. Given a constant initial cell density, we intend 557 

to test if the loner-aggregator partitioning process of a strain is influenced by the genotypic identity 558 

of its neighbors. We let Pi be the proportion of cells of strain i that stay as loners. We determined 559 

that this depends on 𝜌0, the initial density of the population, such that the density of loners in a 560 

clonal population of strain i at density 𝜌0 is 𝜌𝐿
𝑖 = 𝜌0𝑃𝑖(𝜌0). Here we investigate whether in mixes 561 

Pi is also a function of the fraction Π𝑗 = 1 − Π𝑖 of cells of co-occurring strain j (where Π𝑖 is the 562 

fraction of cells of strain i). The total loner density in the mix can be expressed as 𝜌𝐿
mix =563 

Π𝑖𝜌0𝑃𝑖(𝜌0, Π𝑗) + Π𝑗𝜌0𝑃𝑗(𝜌0, Π𝑖), where 𝜌0 is the initial total density of plated cells and Π𝑖 is the 564 

fraction of strain i in the initial mix.  565 
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Null hypothesis. If Pi is not a function of Π𝑗 , then 𝜌𝐿
mix = Π𝑖𝜌𝐿

𝑖 + Π𝑗𝜌𝐿
𝑗
, which is the linear 566 

combination of the expected loner counts for each of the strains composing the mix (null 567 

hypothesis).  568 

Statistical test 1. Piecewise linear regression (Fig. 3). We measure departures from this linear 569 

expectation by fitting a piecewise linear regression to the data. The p-value shows how often data 570 

drawn from the global linear fit generates piecewise linear regressions with more extreme 571 

inclinations. 572 

Statistical test 2. Maximum likelihood (Fig. S6a-c). We also use a maximum likelihood based 573 

model selection to test for non-linearity. We let 𝜌𝐿
mix = 𝜌𝐿

𝑖 + 𝑓(Π𝑗)(𝜌𝐿
𝑗

− 𝜌𝐿
𝑖 ) + 𝜖 where 𝑓 is the 574 

function of interest and 𝜖 is a normally distributed noise term. If 𝑓(Π𝑗) = Π𝑗  then we recover the 575 

null hypothesis. In addition, for 𝑓 we explore three other functional forms: sigmoidal, convex and 576 

concave, which are given by a shape parameter a as follows: 577 

 578 

𝑓(Π𝑗) =
𝑎Π𝑗

1+(𝑎−1)Π𝑗
 – convex if 0 < 𝑎 < 1;  concave if 𝑎 > 1 579 

𝑓(Π𝑗) =
𝐼𝑎(Π𝑗)−𝐼𝑎(0)

𝐼𝑎(1)−𝐼𝑎(0)
 where 𝐼𝑎(𝑥) =

1

1+𝑒−𝑎(𝑥−0.5) – sigmoidal 580 

 581 

We also considered three forms for the noise term: a homoscedastic structure, a constant 582 

coefficient of variation and a heteroscedastic structure, given respectively by 583 

 584 

𝜖 ∼ 𝑁(0, 𝑐)  585 

𝜖 ∼ 𝑁 (0,
𝑐

𝜌𝐿
𝑖 +𝑓(Π𝑗)(𝜌𝐿

𝑗
−𝜌𝐿

𝑖 )
)  586 

𝜖 ∼ 𝑁(0, 𝑐𝑖Π𝑖 + 𝑐𝑗Π𝑗)  587 

 588 

We computed the ΔAIC, the difference in AIC (Akaike Information Criterion) between a given 589 

model and the best model in the candidate set. Credible intervals were built for the shape parameter 590 

a using Log-likelihood ratios. 591 

Statistical test 3. Bootstrapping analysis (Fig. S6d,e). For each of the five strain mix 592 

proportions, empirical distributions were bootstrapped and 50.000 data sets were constructed. For 593 

each resampled data set, a linear regression was performed using only the pure strain experiments 594 

and another linear regression was performed using only the mixed strain experiments. The 595 

difference between these inclinations is a measure of the non-linearity of the data set. 596 

 597 

Theory. Population-partitioning model. We implement the spatially-explicit developmental 598 

model on a square system of lateral length ℓ = 0.2cm that represents a single aggregation territory. 599 

Time is discretized in short intervals of length dt = 0.01h; our results are independent of the value 600 

of dt. Within each time step, the internal state and the position of every cell can be updated. Since 601 

reproduction and death are negligible over the temporal scales of aggregation, the total population 602 

size is conserved during each run of the model. 603 

Consistent with the experimental setup, we initialize the simulations immediately after resource 604 

exhaustion with N0 discrete and randomly distributed cells, assumed to be in a pre-aggregating 605 

state, P. Thus the initial density of cells is ρ0 = N0/ℓ
2. P-cells do not move; they emit signal at a 606 

constant strain-specific rate γ and sense it with a strain-specific sensitivity threshold 𝜃. The 607 
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assumption that P-cells do not move is consistent with experimental results showing a reduced 608 

movement of vegetative cells at high density (D’Alessandro et al., 2018). Within each time step 609 

dt, P-cells that sense a local signal density higher than the strain-specific sensitivity threshold θ, 610 

may become aggregating A-cells with a strain-specific probability λdt. A detailed description of 611 

how signal density is obtained at the position of each cell is below. 612 

A-cells move in the direction of the aggregation center, which is exogenously imposed in the center 613 

of the system, making a straight displacement of length 𝑣dt in every time step. This movement 614 

pattern simplifies the complexities of D. discoideum motion during aggregation, such as the 615 

tortuosity in single-cell trajectories caused by imperfect chemotaxis (Fisher, Merkl, & Gerisch, 616 

1989). However, the net effect of these ingredients is to increase the time required to reach the 617 

aggregation center, which can be incorporated in the model by changing the value of cell velocity. 618 

A-cells stop sensing signal but they continue to emit it at the same strain-specific rate, γ. When A-619 

cells cross the location of the aggregation center (center of the system) in one of their 620 

displacements, they adhere to the mound and become multicellular, M-cells. M-cells do not move 621 

and they neither emit nor sense signal. Both the A-to-P and the P-to-M transition between cell 622 

states are irreversible. 623 

Simulations are allowed to run until the time between two consecutive cell arrivals to the mound 624 

is larger than a fixed value tarr = 1 hour. Alternatively, we explore the effect of a fixed aggregation 625 

time by finalizing the simulations after an exogenously imposed time (results not shown). Neither 626 

qualitative nor quantitative differences were observed between these two ending conditions, 627 

provided that both of these times were sufficiently large. We compute the final density of loners 628 

by counting the number of cells that do not belong to the mound at the end of each model 629 

realization and dividing it by the area of the system, ℓ2. Due to the low skewness of the distribution 630 

of loner densities obtained from independent realizations, we use the mean loner density, which is 631 

obtained by averaging over 100 realizations. A summary of the model parameterization is provided 632 

in Table S1. 633 

Computation of signal density. Signal is released by both A- and P-cells, but it is sensed only by 634 

P-cells. The signal density, σ, at time t at the position r of a focal P-cell is 635 

𝜎(𝒓, 𝑡) = ∑ 𝜎𝒓′(|𝒓 − 𝒓′(𝑡)|)

𝒓′≠𝒓

 (1) 

where the index of the sum runs over the locations of all other A- and P-cells in the system, 636 

|𝒓 − 𝒓′(𝑡)| is the distance between the focal cell and these other cells, and 𝜎𝒓′ gives the individual 637 

contribution of a cell at location 𝒓′ to the total signal density. Since P-cells do not move, 𝒓 does 638 

not depend on t; similarly, 𝒓′(𝑡) is either constant (if it is the position of another P-cell) or not (if 639 

it is the position of an A-cell). Our assumptions that signal is continuously released by each cell at 640 

a strain-specific rate γ, diffuses in the system with diffusion constant D and spontaneously decays 641 

at rate η, lead to a stationary profile in which signal density decreases with the distance from the 642 

emitter (see SI Appendix for a detailed calculation of this profile 643 

𝜎𝒓′(|𝒓 − 𝒓′(𝑡)|) =
𝛾

2𝜋𝐷
K0 (√

𝜂

𝐷
|𝒓 − 𝒓′(𝑡)|) . (2) 

K0 is the zero-order modified Bessel function of the second kind. Since in the experiments 644 

aggregation occurs simultaneously on several adjacent aggregation territories, signals may diffuse 645 
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from one territory to another. To allow for this possibility in the model, the distances between the 646 

sensing focal P-cell and each of the emitters are measured using periodic boundary conditions. 647 

Competition model. 648 

This model consists of a sequence of growth-starvation periods with the population partitioning 649 

between loners and aggregators occurring at the onset of starvation. The expected length of the 650 

starvation periods (i.e., mean starvation time) defines the environmental conditions. We discretize 651 

each environment into # =104 isolated patches (no cell dispersal between them) of area 1 and 652 

identical environmental conditions. The model architecture broadly follows (Martínez-García & 653 

Tarnita, 2016) but the population partitioning between loners and aggregators is modified to 654 

incorporate the behavior produced by the developmental model described above. We assume that 655 

the loner-aggregator partitioning curve is constant for all starvation events. Therefore, we do not 656 

consider mutation or horizontal gene transfer, which could alter strains’ aggregation behavior. 657 

Growth. During growth, free-living amoebae of two different strains compete for a shared resource 658 

within each patch. The initial frequency of each strain in the mix is drawn from a standard log-659 

normal distribution, and the total initial population size X0 is normalized to the size of the resource 660 

pulse, R0.  The size of the resource pulse is fixed and large to guarantee that the population of cells 661 

in the patch is also large and that its fluctuations do not affect the aggregator-loner partitioning 662 

(i.e., aggregation occurs for population sizes that lie in the region in which loner density plateaus 663 

in Fig. S4). Mathematically, the growth dynamics is given by a Monod-like equation: 664 

�̇�𝑖 =
𝑐𝑅

𝑅 + 𝑅1/2
𝑋𝑖       (𝑖 = 1,2) (3a) �̇� =

−𝑐𝑅

𝑅 + 𝑅1/2
∑ 𝑋𝑖,

2

𝑖=1

 (3b) 

where the dot indicates the time derivative, Xi is the population size for strain i, R is the amount of 665 

resources, and R1/2 is the abundance of resources at which the growth rate is half of its maximum 666 

c. Here, for simplicity, we assumed that both strains have the same maximum growth rate, although 667 

relaxing this assumption constitutes an important expansion towards a more complete 668 

understanding of life history traits and tradeoffs in slime molds (Martínez-García & Tarnita, 2016, 669 

2017; J.B.B. Wolf et al., 2015). The growth phase finishes when resources are below a starvation 670 

threshold (R*=1) that is exogenously imposed, since R only tends to zero asymptotically in Eq. 671 

(3b). 672 

Population partitioning. Since cell death is negligible over the temporal scales of aggregation, we 673 

assumed that the aggregator-loner partitioning occurs instantaneously upon resource exhaustion. 674 

We explored two different scenarios: 675 

(a) Well-mixed development. Each patch is occupied by a homogenous mix of the two strains 676 

(Figure S8). Upon resource exhaustion, the density of loners left behind by each of the two 677 

strains is determined from the pair-specific co-developmental curve obtained via simulations 678 

of co-development using the spatially-explicit developmental model above (Fig. S7a,c). 679 

Whenever the composition of the mix at the end of a growth period does not coincide with 680 

any of the proportions sampled with co-developmental simulations, we estimate the density 681 

of loners of each strain with a linear interpolation between the two closest points to the 682 

desired proportion. Finally, since both strains are homogeneously distributed across the 683 

whole patch of area 1, the number of loners of each strain i, 𝑋𝑖
𝐿 (which is the variable of 684 

interest for our model), is identical to loner density. We obtain the number of aggregated 685 
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cells of each strain as the difference between that strain’s population size upon resource 686 

exhaustion (immediately before the population partitioning) and its number of loners.  687 

(b) Segregated development. Each patch is occupied by the two strains but they do not mix; we 688 

therefore assume that they occupy a fraction of the patch area equal to that strain’s proportion 689 

(Fig. S8). Upon resource exhaustion, the density of loners left behind by each of the two 690 

strains is determined from simulations of the developmental model above under clonal 691 

conditions. To obtain the number of loners, we multiply the density by the fraction of the 692 

patch (of area 1) occupied by that strain. We then obtain the number of aggregated cells as 693 

in the well-mixed scenario. 694 

After the population partitioning occurs, based on experimental measures that consistently find an 695 

80:20 spore:stalk ratio within D. discoideum fruiting bodies formed under identical conditions 696 

(Stenhouse & Williams, 1977), we multiply the number of aggregated cells of each strain i by the 697 

same constant factor s = 0.8 that reflects the effect of spore-stalk cell differentiation. This operation 698 

yields the number of reproductive spores, 𝑋𝑖
𝑆𝑃. 699 

Starvation. The population partitioning is followed by a starvation period of length Tst, in which 700 

both aggregated and non-aggregated cells die, but at different rates. Spores die at a constant and 701 

low rate δ, whereas loners have a survival probability, S, that decays with time and reaches zero at 702 

a maximum survival time Tsur. Analogous with (Martínez-García & Tarnita, 2017), we fit this 703 

maximum survival time as well as the functional shape of the survivorship curve using 704 

experimental data (Dubravcic, 2013) to obtain 705 

 706 

𝑆(𝑡) =
𝑒−(𝜇𝑡)𝜍

− 𝑒−(𝜇𝑇𝑠𝑢𝑟)𝜍

1 − 𝑒−(𝜇𝑇𝑠𝑢𝑟)𝜍 , (4) 

 707 

where μ is the rate of decrease of the survival probability and ς is a parameter that modulates the 708 

decay of S with time. At the end of the starvation phase, we obtain the populations of surviving 709 

loners and spores of each strain i as 710 

 711 

𝑋𝑖
𝐿(𝑡 + 𝑇𝑠𝑡) = 𝑋𝑖

𝐿(𝑡)𝑆(𝑇𝑠𝑡) (5a) 𝑋𝑖
𝑆𝑃(𝑡 + 𝑇𝑠𝑡) = 𝑋𝑖

𝑆𝑃(𝑡)𝑒−𝛿𝑇𝑠𝑡. (5b) 

 712 

The lengths of the starvation periods Tst are either constant (deterministic environments, in which 713 

the length of each starvation period coincides with its mean value) or drawn from an exponential 714 

distribution with a mean �̅�𝑠𝑡 that gives the expected length of the starvation periods. We label 715 

deterministic environments using the length of their starvation periods Tst and stochastic 716 

environments using their expected value �̅�𝑠𝑡.  �̅�𝑠𝑡 (or Tst in deterministic environments) is a 717 

measure for the environmental quality. Lower values of �̅�𝑠𝑡 represent better environments in which 718 

pulses of resources arrive more frequently on average; larger values of �̅�𝑠𝑡 represent worse 719 

environments in which resources recover less frequently. Each starvation phase ends with the 720 

arrival of the next resource pulse of size R0. We assume that all loners have the same viability 721 

regardless of strain (i.e. that different strains do not have differential loner mortality); therefore, 722 

upon resource replenishment, all surviving loner cells start reproducing immediately, following 723 

Eqs. (3). Spores take an additional time Tger to germinate (Cotter & Raper, 1968), during which 724 

they continue to die at rate δ. At the end of the germination time, not all spores become reproducing 725 

cells; spores have a probability ω of germinating successfully (Dubravcic et al., 2014). Therefore, 726 
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we multiply the total number of spores by a constant factor ω to obtain the fraction of the 727 

population of spores that become viable cells and start reproducing according to Eqs. (3). 728 

We repeat this sequence of growth-starvation cycles until one of the strains becomes extinct. We 729 

then record the winning strain for each patch and the time-to-extinction for the loser (proxy for 730 

transient alpha-diversity). Once we have obtained the winner in each patch, we calculate the 731 

variability in the winner across different patches, Φ (proxy for stationary beta-diversity), as 732 

Φ =
# − |#𝑤 − #𝑏|

#
, (6) 

where # =104 is the total number of patches, and #w and #b are the number of patches dominated 733 

by the worse, respectively the better aggregator in the stationary state. From Eq. (6), it follows that 734 

Φ varies between 0 and 1 (Φ = 1 when #𝑤 = #𝑏 and Φ = 0 when #𝑤 =  # or #𝑏 =  #). Since the 735 

extinction times and the noise in the extinction times and 𝛷 vary depending on the pair of strains 736 

and the environmental conditions, mean values are taken over a varying number of independent 737 

realizations of the model to optimize computational efficiency. A summary of the model 738 

parameterization is provided in Table S1. 739 

 740 
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Figure 1. Loners are a heritable component of D. discoideum fitness. a, b, After aggregation, loner cells are hard to individualize 

(a), but become clearly distinguishable after processing (b). c, Map of the position of each loner cell in an experiment (NC85.2 

developing in 3% agar). Red square marks region shown in (a,b). d, Loner densities of three strains as a function of initial plated density 

in 3% agar. Error bars, independent estimates of counting error (see Methods). Lines correspond to linear regressions using only high-

initial-density data points (filled circles, >75.000 cells/cm2). e, Loner densities from experiments with high initial cell density as a 

function of substrate agar concentration (y-axis same as in d). Boxes, inter-quartile ranges; horizontal lines, medians; whiskers, 1.5× 

inter-quartile range from the median; points, outliers. Strain NC28.1 always left fewer loners (t-test, p<0.001). Values inside frame 

correspond to data used in (d). f, g Schematic of model results showing loner densities as a function of initial cell density (f) and signal 

diffusion coefficient (g). The y-axis in (g) is the same as in (f). 
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Figure 2. Developmental model schematic. a, At high initial densities, all P-cells have a quorum 

to initiate aggregation. b, With a strain-specific probability, some P-cells transition into A-cells. c, 

As A-cells aggregate, some of the P-cells that did not transition into A-cells are left without a 

quorum. These are the loners. d, At the end of development, P-cells far from the aggregate location 

are more likely to have been left without a quorum and to stay as loners. 

 

 

 
 

Figure 3. Well-mixed signaling changes loner behavior. Allowing cells to exhaust their 

resources in suspension does not significantly change the behavior of the better aggregator (strain 

NC28.1) (p = 0.7), but it reduces the mean and variance of the number of loners of the worse 

aggregator (strain NC85.2) (p = 0.0006). Boxes, inter-quartile ranges; horizontal lines, medians; 

whiskers, 1.5× inter-quartile range from the median; points, outliers.  
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Figure 4. Co-occurring strains interact during development. a, Schematic of the range of 

theoretically predicted loner densities at different mix proportions of two co-occurring strains 

(thick curves). Dashed line, expected loner densities if cells commit to aggregation independent of 

the identity of their neighbors. b, Experimentally observed loner densities for different mix 

proportions of a better (NC28.1, blue) and a worse (NC85.2, red) aggregating strain in 3% agar. 

Black points, mean loner densities for each of the five proportions. Dashed line, same as in (a). 

Solid lines, piecewise linear regressions, which deviate significantly from the linear fit (p=0.019; 

see Methods). c, Experimentally observed spatial patterns of each mix proportion are characterized 

by the local cell density around each cell (see Methods). Narrower distributions (NC28.1, blue 

curve) correspond to more homogeneously distributed loners. Broader distributions (NC85.2, red 

curve) correspond to more clumped loners. d, Experimentally obtained loner position maps are 

shown for each of the mixed proportions. Colors in (c,d) correspond to colors in (b). 
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Figure 5. Ecological implications of developmental interactions. a, b, Co-development makes strains (different colors) more similar 

(a, case i) or more different (b, case ii) in their partitioning behavior. c-f, Effect of well-mixed versus segregated development on (c, d) 

the identity of the winner and (e, f) extinction times. Theoretical dynamics in the two environments whose symbols have a black 

boundary are shown in Fig. 6. Panels c, e and d, f are predictions for the pairs of strains in Figures S7a and S7c, respectively. Green 

strain is the same across all panels. Main panels, stochastic environments; insets, deterministic environments (see Methods). Color 

gradients indicate the change in the fraction of patches dominated by each of the mixed strains. Parameterization as in Fig. S7a,c

c 
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f 

c 
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Figure 6. Model results of the effects of developmental interactions on transient alpha-

diversity and stationary beta-diversity. a,b, White interior boundaries symbolize a transient 

patch-level dynamic; black interior boundaries symbolize a stationary patch-level dynamic. a, 

Strains converge in their partitioning behavior due to developmental interactions (case i). In a 

stochastic environment with mean starvation time �̅�𝒔𝒕 = 448 hour (symbol with black boundary in 

Fig. 4e), co-development induced quasi-neutrality increases transient coexistence (and transient 

alpha-diversity). However, it also eliminates the variability in the winner and thus co-development 

induced quasi-neutrality eliminates stationary beta-diversity. b, Strains diverge in their partitioning 

behavior due to developmental interactions (case ii). In a stochastic environment with mean 

starvation time �̅�𝒔𝒕 = 430 hour (symbol with black boundary in Fig. 4e), co-development induced 

character displacement has the opposite effect from (a): the mean extinction time decreases 

(decreased transient alpha-diversity) but the variability in the winner across patches increases 

compared to segregated development (increased stationary beta-diversity).
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Figure S1. Experimental loner spatial distributions. a, Representative loner position maps are shown for each of the three strains 

(NC28.1 in blue, NC85.2 in red and NC34.1 in grey) plated on 3% agar. The position of each cell is plotted such that darker regions 

represent regions densely packed with loners. b, Characteristic loner spatial patterns for each strain are expressed as the probability 

distribution of local cell densities (see Methods). Broader peaks and fatter distribution tails (such as for NC34.1) correspond to more 

heterogeneously distributed loner cells. 
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Figure S2. Experimental loner counts. a, Loners in regions with varying loner densities were algorithmically counted and plotted 

against manual (by eye) counts for those same regions. Dashed line = automatic and manual counts coincide. The dispersion around the 

line is a measure of the counting error. b, Cell counts in experiments realized with dilutions from a same cell suspension. Cell densities 

were below the aggregation threshold. Dashed line = linear regression with intercept anchored at zero. The inclination is a measure of 

the cell density of the initial suspension, and the dispersion around the regression line is a measure of the error introduced whenever a 

dilution is made. c-k, Loner counts are shown as a function of initial cell plating densities for each of the three strains and each of the 

three substrate agar concentrations. For initial plating densities above 7.5 x 104 cells/cm2, aggregation occurs for all strains and 

substrates. To test if above this critical cell density the decision to aggregate is context-independent, those samples with high initial 

plating densities (filled circles) were used to fit linear Gaussian models with 0 intercept (dashed lines). These zero-intercept models 

were contrasted to linear Gaussian models with a free intercept parameter (solid lines). ΔAIC, the difference in AIC (Akaike Information 

Criterion) between the 0-intercept and free-intercept models, shows that the latter outperformed the former for all substrates and strains, 

indicating that the decision to aggregate is context-dependent. Moreover, the inclines of the best fitting linear models are not significantly 

different from zero for all but the best aggregating conditions (strain NC28.1 on 2% agar substrates), and even then only weakly positive. 

This indicates that loner densities plateau at high initial plating densities. 
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Figure S3. Schematic of the developmental model. We formulated an individual based model approach in which cells can be in three 

possible internal states: pre-aggregating, P; aggregating, A; and multicellular, M. Each state has different properties, listed in the blue 

boxes. The transitions between states occur only in one direction, as indicated by the grey arrows. The P-to-A transition is based on 

quorum sensing and it occurs at a strain-specific rate, λ; for each time step dt, if the density of signals is above the strain-specific 

sensitivity threshold, P-cells have a probability λdt of becoming A-cells. The transition from aggregation to multicellularity is entirely 

based on movement, and it occurs when cells arrive at the aggregation center. 
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Figure S4. Model results for clonal development. a, Analytical solutions in the  limit 𝐷 → ∞ for the rescaled number of loners versus 

the rescaled initial population size (Eqs. (2.13), (2.15), and (2.16) in the SI). b, Phase separation between perfectly synchronized (no 

loners) and asynchronized (loners) development in the limit 𝐷 → ∞. Red curves are obtained via numerical integration of Eqs. (2.11) 

and (2.12) in the SI for different initial population sizes; the blue-thick curve corresponds to the analytical result in the limit N0 → ∞ 

(Eq. (2.22) in the SI and Box 1 in the main text). c, d, Loner density versus initial cell density when (c) strains differ in 𝜆/𝑣 with fixed 

κ=500 or (d) strains differ in κ with fixed 𝜆=1 and 𝑣=12𝜇m/min. D=10-7. e, Probability density function for the presence of loners; the 

aggregation center is at the center of the system. The histogram is computed using the spatial positions of loners from 100 independent 

realizations of the model with D=3x10-8, ρ0=3x105, 𝜆=1, κ=400. f, g, Loner density versus diffusion coefficient when: f, strains differ in 

𝜆/𝑣 with fixed κ=500; g, strains differ in κ with fixed 𝜆=1 and 𝑣=12𝜇m/min. h, i, Schematic representation of the reduction in the 

regions in which signal density is above the strain-specific sensitivity threshold as a result of reducing the diffusion coefficient. Dashed-

red lines delineate the regions in which signal density is above a strain-specific sensitivity threshold. Color code for the cells and the 

concentration of signals as in Figure 2 (a-d). In (a-g), non-specified parameters and units are as in Table S1. 
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Figure S5. Model results for co-development. For a systematic exploration of the outcome of pairwise developmental interactions 

within the three-dimensional strain-specific parameter space (γ, θ, λ), strains in each mix are labeled according to their relative value of 

the sensitivity threshold, θ. We use the subindex lt, standing for ‘low threshold’, to label strain-specific parameter values of the strain 

with the lowest θ, and the subindex ht, standing for less sensitive, to label strain-specific parameter values of the strain with the highest 

θ. a, 𝛾ℎ𝑡/𝛾𝑙𝑡 — 𝜃ℎ𝑡/𝜃𝑙𝑡 parameter space (𝜃ℎ𝑡/𝜃𝑙𝑡 > 1 by definition). The thick-dashed lines trace two transects of the parameter space 

in which 𝜅ℎ𝑡 =  𝜅𝑙𝑡 (lower line) and 𝜅ℎ𝑡 =  4𝜅𝑙𝑡 (upper line). Densities of mixed loners are shown in (b-d) for the parameter values 

along the lower line and in (e-g) for parameter values along the upper line. Specific parameter relationships are indicated by the positions 

of the squares, whose color is maintained in the mixed-loner curves (b-g). b-d, 𝜅ℎ𝑡 =  𝜅𝑙𝑡 = 600, with 𝜃ℎ𝑡 = 300; and 𝜃𝑙𝑡 = 300 (darker 

brown), 𝜃𝑙𝑡 = 150 (brown), 𝜃𝑙𝑡 = 100 (lighter brown); b, 𝜆ℎ𝑡 = 𝜆𝑙𝑡 = 1; c, 𝜆ℎ𝑡 = 2, 𝜆𝑙𝑡 = 1; d, 𝜆ℎ𝑡 = 1, 𝜆𝑙𝑡 = 2. e-g, 𝜅ℎ𝑡 = 800, with 

𝜃ℎ𝑡 = 400 and 𝜅𝑙𝑡 = 200 with 𝜃𝑙𝑡 = 25, 33, 50, 100, 200, 400 from top to bottom curve (red to black); e, 𝜆ℎ𝑡 = 𝜆𝑙𝑡 = 1; f, 𝜆ℎ𝑡 = 2, 

𝜆𝑙𝑡 = 1; g, 𝜆ℎ𝑡 = 1, 𝜆𝑙𝑡 = 2.  Dashed lines in (b-g) indicate the null hypothesis. Model parameterization shown in Table S1 with D = 

10-7 and ρ0 = 3x105. Averages taken over 100 independent model realizations. 
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Figure S6. Statistical analysis of non-linearity in mixed strain experiments. a-c, Maximum likelihood analysis. a, Grey points = 

experimental mixed loner densities (see Fig. 3b). Black curve = expected loner densities for the maximum likelihood estimate of shape 

parameter a (see Methods). Blue areas = envelopes for the loner density curves for the confidence intervals defined by likelihood ratios 

of 2, 8 and 16, from darker to lighter. b, Negative Log-likelihood profile for the shape parameter a of the model with the best Akaike 

Information Criterion (AIC). Blue areas = confidence intervals defined as in (a). c, ΔAIC, the difference in AIC between a given model 

and the best model in the candidate set. Blue values = the two best-fitting models. d,e, Bootstrapping analysis. For each of the five 

strain mix proportions, empirical distributions were bootstrapped and 50.000 data sets were constructed. d, Grey lines = piecewise linear 

regressions of 20 of these resampled data sets. Black line = the mean of all resampled data sets. Error bars = standard errors. e, For each 

resampled data set, a linear regression was performed using only the pure strain experiments and another linear regression was performed 

using only the mixed strain experiments. The difference between these inclinations is a measure of the non-linearity of the data set. 

Black line shows the probability density function of these inclination differences. Red line at zero marks linearity (p=0.033).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508507doi: bioRxiv preprint 

https://doi.org/10.1101/508507
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

 

 

Figure S7. Model results for the effects of co-development on individual strains. 

Developmental interactions lead strains to become more similar (a, b) or more different (c, d). (a, 

c) Simulations of the individual based model, D =10-7. (b, d) The analytical approximations to (a, 

c) obtained in the limit 𝐷 → ∞ (Eqs. (2.31) and (2.33) in the Supplementary Information), 

qualitatively recapitulate the behavior of mixed-loners and of the loners of each strain. 

Parameterization: γw = 0.5, θw = 400 (κw = 800), λw = λb = 1, κb = 200 with (a) γb = 1 and (b) γb = 

0.25. w = worse aggregator; b = better aggregator. Remaining parameters are as in Table S1. The 

color code for each strain corresponds to Fig. 4. 
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Figure S8. Schematic of the competition model. The model consists of a sequence of growth-

starvation cycles. During growth, cells consume a shared pulse of resources and divide; during 

starvation, loners and aggregated cells die at different rates. The length of the starvation periods 

Tst can be either fixed (deterministic environments, defined by Tst) or drawn from an exponential 

distribution (stochastic environments, defined by the mean starvation time �̅�𝑠𝑡). Upon resource 

exhaustion (at the end of the growth period), the population partitions into aggregators and loners 

according to our population partitioning model. We compare two scenarios: well-mixed, where co-

occurring strains co-develop and loner densities are obtained from co-development curves (e.g., 

as in Figure S7), or segregated, where strains are assumed to not mix and loners are derived from 

each strain’s clonal development partitioning. 
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Table S1. Parameterization of the two theoretical models. CMF is conditioned medium factor. 

 

Theory Experiment 

 Symbol Definition Units Model value Experimental observable Exp. value Ref. 

P
o

p
u

la
ti

o
n

 p
a

rt
it

io
n

in
g

 m
o

d
el

 

λ Strain specific P-to-A transition rate hour-1 Varied -- 

θ Strain-specific sensitivity threshold Kg/cm2 Varied -- 

γ Strain-specific signaling rate  Kg/hour Varied -- 

𝑣 Strain-specific A-cells velocity μm/min 
Varied 

around 12 
Velocity of aggregating cells 12μm/min (Loomis, 2012) 

�̃� 
Rescaled cell velocity  

(D → ∞ limit; see Sup. Information) 
hour-1 Varied -- 

N0 Initial number of P-cells # cells Varied -- 

η Decay constant of the signal min-1 1.2 Parameter used for model fitting. 

D Signal diffusion coefficient cm2/s Varied 
cAMP diff. coeff. (2% agar) 

CMF diff. coeff. (water film) 

4.4x10-6 cm2/s 

8x10-7 cm2/s 

(Dworkin & Keller, 

1977; Song et al., 2006; 

Yuen & Gomer, 1994) 

R
es

o
u

rc
e
 c

o
m

p
et

it
io

n
 m

o
d

el
 

μ Decrease rate of survival probability hour-1 2x10-3 
Number of alive/moving loners 

versus time 

2x10-3 hour-1 
Fitting from 

(Dubravcic, 2013) ς Resistance to starvation parameter -- 2 2 

Tsur Loner maximum lifespan hour 240 240 hour 

Tger Spore germination time hour 4 
Mean germination time 1-3 days 

old spores 
4-8 hour (Cotter & Raper, 1968) 

δ Spore death rate hour-1 2x10-4 -- 

c Maximum division rate hour-1 0.173 Doubling time 4 hour (Fey et al., 2007) 

s Spore:stalk ratio -- 0.8 Spore:stalk proportion ~ 80:20 
(Stenhouse & Williams, 

1977) 

ω Spore germination success -- 0.63 Germination efficiency 0.63 (Dubravcic et al., 2014) 

R0, X0 
Food pulse size; normalized initial 

population size 
# cells 3x105 -- 

R1/2 
Resources consumption 

half saturation constant 
-- 0.1R0 -- 

�̅�𝑠𝑡  Mean starvation time hour Varied -- 
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1 Calculation of stationary signal profile

We assume that cells are punctual sources that release signal at a constant strain-specific rate γ. The signal

has a spontaneous decay rate η and a diffusion coefficient D. Given these conditions, the equation that

governs the spatiotemporal evolution of signal density, σ(x, y; t), is

∂σ(x, y; t)

∂t
= D∇σ(x, y; t)− ησ(x, y; t), (1.1)

The first term on the right side of Eq. (1.1) accounts for the diffusion of signal and the second term for

its spontaneous decay. Here, we first solve the stationary limit (∂t = 0) of Eq. (1.1) in an infinite domain,

imposing as boundary conditions the facts that cells continuously release signals and that signal density goes

to zero when the distance from the emitting cell tends to infinity. Subsequently, we discuss the effect of

considering a finite integration domain with periodic boundary conditions.

Due to the radial symmetry of the problem, we transform Eq. (1.1) to polar coordinates, in which the

partial differential equation in (x, y) becomes an ordinary differential equation in the radial coordinate r

that indicates the distance to the source of the signal,

D

(

d2σ(r)

dr2
+

1

r

dσ(r)

dr

)

− ησ(r) = 0. (1.2)

Since the position of the emitter, r = 0, is a singular point of Eq. (1.2), we will first assume that cells have a

finite radius r̃ and then take the limit r̃ → 0. After the transformation to polar coordinates, and assuming

a finite radius for the cell, the boundary conditions can be written as,

σr̃(r → ∞) = 0, (1.3)

−2πr̃D
dσr̃(r)

dr

∣

∣

∣

∣

r=r̃

= γ. (1.4)

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508507doi: bioRxiv preprint 

https://doi.org/10.1101/508507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Eq. (1.3) imposes the finiteness of the density, and Eq. (1.4) imposes that the amount of mass released

through the boundary of the cell per unit time has to be constant and equal to the strain-specific emission

rate γ. The subscript r̃ in the densities accounts for the finite radius of the cells.

Equation (1.2) is the modified Bessel equation of order zero, and its general solution can be expressed as

σr̃(r) = AI0

(
√

η

D
r

)

+BK0

(
√

η

D
r

)

, (1.5)

where I0 and K0 are the zero order modified Bessel functions of the first, respectively second, kind. From

the boundary condition of Eq. (1.3), it follows that A = 0, since I0 diverges when its argument tends to

infinity. B is calculated from the second boundary condition, Eq. (1.4),

B =
γ

2πr̃
√
ηDK1

(√

η
D r̃
) , (1.6)

whereK1 is the first order modified Bessel function of the second kind and we have used thatK ′

0(r) = −K1(r).

Inserting Eq. (1.6) into (1.5), the stationary signal profile produced by a source of finite radius r̃ is,

σr̃(r) =
γ

2πr̃
√
ηDK1

(√

η
D r̃
)K0

(
√

η

D
r

)

. (1.7)

Finally, to obtain the profile generated by a punctual source, we take the limit r̃ → 0 in Eq. (1.7),

σ(r) =
γ

2πD
K0

(
√

η

D
r

)

. (1.8)

The solution provided by Eq. (1.8) assumes an infinite system size, whereas we perform numerical simu-

lations of the developmental model on a finite domain of lateral length ℓ with periodic boundary conditions.

To impose periodic boundary conditions is equivalent to considering that the simulated finite domain corre-

sponds to a tile embedded into an infinite lattice in which each tile is a mirroring image of the focal domain.

The signal density within the focal tile is obtained by adding over the contributions of all other tiles. How-

ever, since our numerical simulations only explore a range of diffusion coefficients in which σ(ℓ/2) ≈ 0, we

can truncate the sum over tiles at the nearest neighbors of the focal one. This is equivalent to calculating

distances to the position of each emitting cell, (xem, yem), in each spatial coordinate:

rx =







|x− xem| if |x− xem| ≤ ℓ/2

ℓ− |x− xem| if |x− xem| > ℓ/2

ry =







|y − yem| if |y − yem| ≤ ℓ/2

ℓ− |y − yem| if |y − yem| > ℓ/2

The total distance is then given by the radial coordinate r, as r =
√

r2x + r2y.

2 Analytical treatment of the developmental model in the spatially-

implicit limit D → ∞
The spatially-implicit limit of the individual based population-partitioning model consists of disregarding the

spatial effects introduced by a finite signal diffusion coefficient (i.e. the limit D → ∞), but still accounting

for cell movement at a finite velocity. To this end, we map cell movement into a stochastic transition in cell

2
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state from aggregating to being multicellular; the rate of this transition is related to cell velocity, v.

First, we calculate the stationary signal density profile produced by each cell in the limit D → ∞. Unlike

in the low D case explored in the spatially-explicit simulations, in which periodic boundary conditions were

implemented considering only the nearest neighbors of the focal tile, now, since the signal spreads infinitely

far, we need to include the contribution of an infinite number of tiles. This results in each cell generating

a homogeneous signal distribution within the focal tile, σH = M/ℓ2. M is the mass of signal that is being

released by each cell in the stationary limit, which can be obtained by integrating Eq. (1.8) over the entire

range of distances,

M =

∫

∞

0

rσ(r)dr =
γ

2πη
. (2.1)

Due to the conservation of the total population size N0 (since demographic events are neglected on the

temporal scales of aggregation), the state of the system is fully determined by the sizes of two of the three

subpopulations (P,A, and M cells). We choose the number of cells in the P -state, NP , and in the A-state,

NA, as state variables. The number of cells in theM state, NM (t) (i.e., the size of the multicellular aggregate)

can then be obtained from NP (t) +NA(t) +NM (t) = N0.

In order for the aggregation process to be initiated at all, a quorum must be met by the initial population

(all of which are P -cells), i.e. we must have N0σ
H > θ. In the absence of a quorum, all initial cells remain as

loners and therefore the total loner number is L = N0. If there is an initial quorum, then P -cells turn into

A-cells at rate λ; A-cells continue to emit signal while they move in the direction of the aggregate. As A-cells

eventually join the aggregate, they stop signaling and therefore the amount of signal in the system continues

to decrease. P -cells continue to become A-cells at rate λ only if the total signal density [NP (t) +NA(t)]σ
H

remains above the strain-specific sensitivity threshold, θ. The P -to-A transition rate as a function of time

is thus given by

λ̂(t) = λΘ(σH [NP (t) +NA(t)]− θ) , (2.2)

where Θ is the Heaviside function, which takes value 1 for non-negative arguments and 0 for negative

arguments. Therefore, omitting the temporal dependence in λ̂, NA and NP ,

λ̂ =







λ if NP +NA ≥ θ/σH

0 otherwise.
(2.3)

The rate at which A-cells stick to the aggregate and become M -cells can be approximated by the inverse

of the time needed to cover the mean distance to the aggregate at a velocity v, i.e.

ṽ =
v

< d >
(2.4)

where < d > is a characteristic spatial scale of the aggregation territory (mean distance to the aggregation

center). For simplicity, we will fix < d >= 1 in the following and refer to ṽ as a rescaled velocity.

Therefore, the aggregation process can be mapped to a sequence of two stochastic reactions, each of

which occurs at a different rate,

P
λ̂(t)−−→ A A

ṽ−→ M, (2.5)

This stochastic process is fully described by a master equation, which gives the temporal evolution of the

probability g(NP , NA; t) of finding the system in a state (NP , NA) at time t,

∂g(NP ,NA;t)
∂t = ṽ(NA + 1)g(NP , NA + 1; t) + λ̂(NP + 1)g(NP + 1, NA − 1; t) (2.6)

−
(

NP λ̂+NAṽ
)

g(NP , NA; t) (2.7)

3
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To simplify the notation, the temporal dependence in NA, NP and λ̂ has been omitted.

Following standard procedures, from the Master equation (2.7) we can derive a system of coupled ordinary

differential equations for the mean value of each subpopulation size,

ṗ(t) = −λ̂p(t) (2.8)

ȧ(t) = λ̂p(t)− ṽa(t) (2.9)

where p(t) and a(t) are the mean values of NP , respectively NA, at time t. The dot over a and p on the left

side of the equation indicates a time derivative. System (2.8) can be solved analytically, using that initially

all cells are in the pre-aggregation state, i.e. p(0) = N0, a(0) = 0. Then

p(t) = N0e
−λ̂t (2.10)

a(t) =
λ̂N0

ṽ − λ̂

(

e−λ̂t − e−ṽt
)

. (2.11)

Since the ultimate objective of this approximation is to obtain analytical expressions for the loner-

aggregator partitioning behavior, an important observable is the time τ at which the decaying signal density

exactly equals the strain-specific sensitivity threshold. τ can thus be obtained by solving

θ = σH[p(τ) + a(τ)] =
σHN0

ṽ − λ

(

ṽe−λτ − λe−ṽτ
)

, (2.12)

where we have used the fact that λ̂(τ) = λ according to Eq. (2.2). Since aggregating cells also contribute to

the pool of signal, τ does not represent the aggregation time; after a time τ , any A-cell in the system will

continue to move towards the aggregate at rate ṽ until a(τ + ∆t) = 0. However, importantly, τ gives the

time at which the last P −A transition occurs. Therefore, all cells that are still in the P -state at time τ will

remain as loners and we can find the total number of loners as

L =







p(τ) if N0σ
H > θ (i.e. a quorum is met)

N0 otherwise
(2.13)

Henceforth we will focus on the former case, when aggregation does get initiated.

In general, we can not solve for τ in Eq. (2.12) and therefore we can not determine the number of loners

analytically. Below, we try to circumvent this problem by looking at a few special cases.

2.1 Analytical results for the non-spatial limit ṽ → ∞
In this limit, cells spend an infinitesimally short time in the A state and therefore p(t) + a(t) → N0e

−λ/t.

To obtain τ we

then solve σHN0e
−λ/τ = θ, which gives τ = ln

(

σHN0

θ

)

/λ. Then, from Eq. (2.13), the number of loners,

when there is a quorum for aggregation, is

L = exp(−λ/τ) = θ/σH. (2.14)

Therefore, in this limit, λ gives the time scale of the aggregation but it has no effect on the number of loners,

which is equal to the sensing-to-signal ratio.

4
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2.2 Analytical results when ṽ = kλ or ṽ = λ/k

In the special case ṽ = 2λ, using the change of variables y = exp(−λτ), (2.12) becomes a quadratic equation

from which y and thus τ can be obtained,

y2 − 2y +
θ

N0σH
= 0. (2.15)

Given the definition of y, Eq. (2.15) only has physical meaning in the domain y ∈ (0, 1]. Within that interval,

if a quorum exists (i.e. N0 > θ/σH), Eq. (2.15) has a single root, which determines the number of loners

p(τ) according to Eq. (2.10) and the definition of y:

L = N0y = N0

(

1−
√

1− θ

N0σH

)

. (2.16)

In the limit N0 → ∞, Eq. (2.16) tends to θ/(2σH), as predicted by Eq. (1) in the main text (also Eq. (2.23)

below).

In the other special case, ṽ = λ/2, Eq. (2.12) becomes again Eq. (2.15) using the change of variables

y = exp(−ṽt). Thus, if there is a quorum for aggregation (i.e. N0 > θ/σH) the number of loners is

L = N0y
2 = N0

(

1−
√

1− θ

N0σH

)2

, (2.17)

which tends to 0 in the limit N0 → ∞, as predicted by the phase separation defined by Eq. (1) of the main

text (also Eq. (2.23) below).

In general, the changes of variables introduced here, y = exp(−λt) and y = exp(−ṽt), will turn Eq. (2.12)

into a polynomial equation of degree n provided that ṽ = nλ or ṽ = λ/n. If the root of such a polynomial

within the interval y ∈ (0, 1] can be obtained, then an expression for the number of loners as a function

of the initial population N0 is accessible. In Figure S4, we show the two cases obtained here (Eqs. (2.16)

and (2.17)), as well as the non-spatial limit ṽ → ∞. In addition, we also show the ṽ = 4λ case, where the

equivalent to Eq. (2.15) is a 4-th degree polynomial, whose root in the interval y ∈ (0, 1] we obtained using

Mathematica 11.1.

2.3 Analytical results in the large population limit N0 → ∞
In the limit of infinitely large initial population size, a quorum is always met. Therefore, from Eq. (2.13),

the number of loners is

L = lim
N0→∞

p(τ) = lim
N0→∞

N0e
−λτ . (2.18)

At the end of this section, we prove that p is a positive and monotonically decreasing function of N0;

therefore L always exists and is greater than or equal to zero. This also implies that lim
N0→∞

e−λτ = 0

(otherwise L would not be finite); applying L’Hôpital’s rule to Eq. (2.18), we obtain

L =
N2

0 ṽσ
H

[

e−2λτ − e−λτe−ṽτ
]

θ(ṽ − λ)
, (2.19)

where we have used Eq. (2.26) for the derivative of τ with respect to N0. Finally, defining Q ≡ lim
N0→∞

N0e
−ṽτ

and rearranging terms, we get

L = Q+
θ(ṽ − λ)

σHṽ
. (2.20)

To obtain an independent expression for L we need another, non-redundant relationship between L and
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Q. This can be obtained by first rearranging terms in Eq. (2.12),

N0

[

e−λτ

λ
− e−ṽτ

ṽ

]

=
(ṽ − λ)θ

ṽλσH
, (2.21)

and then taking the limit N0 → ∞ in Eq. (2.21),

L

λ
− Q

ṽ
=

(ṽ − λ)θ

ṽλσH
. (2.22)

Solving for L in Eqs. (2.19) and (2.22), we find

L =







2πηℓ2 θ
γ

(

1− λ
ṽ

)

if λ ≤ ṽ

0 if λ > ṽ,
(2.23)

where we have used the fact that σH = γ
2πηℓ2 (see Section 2). In the limit N0 → ∞, there is thus a phase

separation given by the relative magnitudes of the P -to-A and A-to-M transition rates.

Proof of the existence of L. In order to obtain in Eq. 2.23 the limit of p(τ) for infinite initial population

sizes, we first need to prove that such a limit exists and is finite. To this end, we will first calculate the

derivative of p(τ) with respect to N0:

dp(τ)

dN0
= e−λτ −N0λτ

′(N0)e
−λτ , (2.24)

Although Eq. (2.12) for τ cannot be solved in general, we can obtain an analytical expression for the derivative

of τ with respect to N0 using implicit differentiation. We differentiate both sides of Eq. (2.12)

[

ṽe−λτ − λe−ṽτ
]

+N0

[

−λṽτ ′(N0)e
−λτ + ṽλτ ′(N0)e

−ṽτ
]

= 0, (2.25)

and solving for τ ′(N0), we obtain

τ ′(N0) =
1

ṽλN0

[

ṽe−λτ − λe−ṽτ

e−λτ − e−ṽτ

]

, (2.26)

which is always positive for any relationship between ṽ and λ. Using Eq. (2.26) in Eq. (2.24), we find

dp(τ)

dN0
= e−λτ

[

1− e−λτ − λ
ṽ e

−ṽτ

e−λτ − e−ṽτ

]

=
e−(λ+ṽ)τ

(

λ
ṽ − 1

)

e−λτ − e−ṽτ
(2.27)

Since the numerator and the denominator of Eq. (2.27) have opposite signs for both λ > ṽ and ṽ > λ,

dp(τ)/dN0 is always negative. Thus, p(τ) is a decreasing function of N0. Since p is a non-negative and

decreasing function, the limit of p(τ) as N0 tends to infinity exists and is always greater than or equal to

zero. Importantly, due to the symmetry between p and N0 exp(−ṽτ), the limit Q defined in the calculation

of L also exists and has the same properties as L.

2.4 Analytical results for co-development of two strains with same λ and ṽ = 2λ

In mixed development, we consider two strains defined by the set of strain-specific parameters (λ, θ, γ). λ

and θ have been defined above, and γ determines the strain-specific signal density σH released by each cell.

We use the term high-threshold strain and the notation ht for the strain with the higher signal sensitivity

threshold and low-threshold strain (lt) for the one with the lower signal-sensitivity threshold. Thus, θht > θlt.
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If both strains have the same strain-specific λ, which is the case studied in this section, then the high-

threshold strain also has the higher investment in loners (i.e. it is the worse aggregator) if

θht
σH

ht

>
θlt
σH

lt

. (2.28)

To obtain the mixed loners, we generalize Eq. (2.12) to the two-strain case,

σH

ht[pht(τht) + aht(τht)] + σH

lt[plt(τlt) + alt(τlt)] = θht, (2.29)

where τht is the time at which the density of signals reaches the strain-specific sensitivity of the high-

threshold strain. Therefore, for t > τht, λ̂ht = 0 and only cells of the low-threshold strain continue to

aggregate (λ̂lt 6= 0).

Let Π be the proportion of the high-threshold strain in the mix; ΠN0 is thus the initial population of

the high-threshold strain, and (1−Π)N0 the initial population of the low-threshold strain. Substituting the

expressions for a(t) and p(t) obtained in Eqs. (2.10) and (2.11), Eq. (2.29) becomes

N0Πσ
H

ht

ṽ − λht

[

ṽe−λhtτht − λhte
−ṽτht

]

+
N0(1−Π)σH

lt

ṽ − λlt

[

ṽe−λltτht − λlte
−ṽτht

]

= θht. (2.30)

τht cannot be obtained from Eq. (2.30) in general. However, since we assume in this section that λht =

λlt ≡ λ and ṽ = 2λ, then the change of variables y = exp(−λτht) turns Eq. (2.30) into a quadratic equation

of the form

y2 − 2y +
θht

N0Π(σH

ht − σH

lt) +N0σH

lt

= 0, (2.31)

that has only one root in the interval (0, 1]. Using that root, we obtain the number of loners of the high-

threshold strain,

Lht = ΠN0y = ΠN0

(

1−
√

1− θht
N0Π(σH

ht − σH

lt) +N0σH

lt

)

(2.32)

After τht, only cells of the low-threshold strain continue to aggregate. The number of loners left by the

low-threshold strain is determined by the relationship between Lht, σ
H

ht, and θlt:

• If σH

htLht ≥ θlt the loners of the high-threshold strain provide quorum for a full aggregation of the

low-threshold strain and therefore Llt = 0.

• If σH

htLht < θlt, the low-threshold strain stops aggregating at a time τlt > τht, such that

σH

htLht + σH

ltplt(τlt) = θlt, (2.33)

which gives the number of loners for the low-threshold strain

plt(τlt) ≡ Llt =
θlt
σH

lt

− σH

htΠN0

σH

lt

(

1−
√

1− θht
N0Π(σH

ht − σH

lt) +N0σH

lt

)

(2.34)

The transition from one outcome to the other occurs at a population composition Π̃ such that σH

htLht =

θlt. Using Eq. (2.32) for the number of loners of the high-threshold strain, we obtain

Π̃ =
2θltσ

H

lt

σH

ht(θht − 2θlt) + 2θltσH

lt

. (2.35)
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