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Abstract 
A differentially methylated region (DMR) is a genomic region in which DNA methylation is consistently 

positively or negatively associated with a phenotype or exposure. We demonstrate that existing 

algorithms for identifying DMRs either fail to consistently control false positive rates (comb-p and 

DMRcate), suffer from low power (bumphunter) or lack modeling flexibility (seqlm). We introduce a new 

method, dmrff, that overcomes these shortcomings and can additionally be used to meta-analyze 

multiple datasets. When applied to investigate associations of age in multiple datasets, dmrff identifies 

novel DMRs near genes previously linked to age. An R implementation is available on Github 

(http://github.com/perishky/dmrff). 

Keywords: epigenetics, epigenetic epidemiology, DNA methylation, bump hunting, differentially 

methylated region, epigenome-wide association study 

Background  
DNA methylation is a modification of DNA by the addition of a methyl group.  In mammals, methylation 

mainly occurs at cytosines, often in the context of a cytosine followed by a guanine (CpG). The presence 

of methylation is known to change how the underlying DNA sequence is interpreted within a cell (1). For 

example, methylation near the beginning of a gene is usually linked with lower gene activity (2). Patterns 

of DNA methylation are generally very stable and are copied faithfully from parent to daughter cell but 

do change throughout development and aging as well as with a variety of changes in phenotype and 

environmental exposures (3). 

Epigenome-wide association studies (EWAS) test associations of DNA methylation levels at cytosines 

across the genome with phenotypes and exposures of interest. Most current EWAS are applied to DNA 

methylation datasets generated using either the Illumina Infinium HumanMethylation450 (450k) or 

MethylationEPIC (EPIC) BeadChips microarrays including measurements at 485,000 or 850,000 CpG 

sites, respectively.  Although these are large numbers, they are a small fraction of the approximately 30 

million CpG sites scattered across the human genome. To provide an informative coverage of the 

genome, measured CpG sites for both arrays were selected strategically to cover specific regions of 

interest including gene promoters, gene enhancers, CpG islands, transcription factor binding sites, and 

regions previously linked to disease. Each targeted region typically includes a small number of measured 

CpG sites.  For example, over 15,000 genes have at least 5 measured CpG sites on the 450k array in their 

promoters. For the EPIC array, there are over 21,000 such genes. 

Often EWAS studies lack power due to the curse of dimensionality, i.e.  small numbers of samples 

relative to the number of measurements. To adjust for so many tests, most EWAS apply a simple 

Bonferroni-corrected threshold, 0.05 divided by the number of CpG sites tested.  This threshold, 

however, is almost certainly conservative because it assumes independence between association tests 

at all pairs of CpG sites. However, there are strong dependencies between CpG sites, particularly CpG 

sites located close together. Using permutations, the recommended threshold was recently increased to 

2.4×10-7 for the 450k array and 3.6×10-8 for genome-wide measurements (4).  

A single threshold, however, cannot simultaneously account for the strong dependencies between 

specific groups of CpG sites, and lack of dependencies between others. A more sensitive approach for 

improving power may be to test associations with groups of dependent CpG sites, for example CpG sites 
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located close together. In fact, associations are often observed at clusters of CpG sites within genomic 

regions (5) and are consequently called differentially methylated regions (DMRs). This is consistent with 

the role of DNA methylation making a genomic region either more or less amenable to binding by DNA 

binding proteins such transcription factors (6).  

 A variety of algorithms have been developed for detecting DMRs including bumphunter (5), Comb-p (7), 

DMRcate (8) and seqlm (9). Each method other than seqlm begins with an EWAS and then adjusts CpG 

site summary statistics by sharing information between nearby CpG sites.  Candidate DMRs are 

identified as regions composed of CpG sites whose adjusted statistics all surpass some threshold. Finally, 

statistics are calculated for each candidate DMR. Seqlm differs in that it first partitions the genome into 

regions whose CpG sites have similar associations with the variable of interest. DNA methylation 

summaries of each region are then generated and an EWAS is applied to these region summaries. 

Other DMR-finding algorithms have been proposed but have been omitted from our comparison for 

various reasons. Aclust (10) is omitted because it is known to generate a high number of false positives 

(9). Several other methods are omitted because they only support comparison between two groups: 

GetisDMR (11), DMRFinder (12), Probe Lasso (13) and DMRMark (14).  Recently proposed GlobalP (15) 

and SKAT (16) were found to by their authors to produce inflated statistics in simulated data. Originally 

designed for genome-wide association studies, aSPUw was recently applied to DNA methylation data 

(17). We omit aSPUw from our comparison because it considers a different DMR model, e.g. allowing 

direction of effect to differ between CpG sites. 

In the following, we investigate the performances of bumphunter, Comb-p, DMRcate and seqlm and 

identify important shortcomings of each.  We propose a new method, dmrff, that overcomes each of 

these shortcomings. 

Results 
Figure 1 illustrates DMRs identified by dmrff in the meta-analysis 14 publicly available datasets to 

identify associations with age (see Methods).  All DMRs lie within the BLCAP gene, near the beginning of 

the NNAT gene. The extent of each is marked by a dark gray horizontal bar. Meta-analysed effect 

estimates are shown as thin vertical bars for each measured CpG site.  Two DMRs are composed of CpG 

sites with negative effects and a third much larger DMR is composed of CpG sites with positive effects. 

Simulation Studies 
We applied algorithms comb-p, DMRcate, bumphunter and seqlm as well our new algorithm, dmrff, to 

two different simulations: one for estimating false positive rates and another for estimating power (see 

Methods). 

False positive rates 
False positive rates (FPRs) were estimated by generating random phenotype/exposure variables and 

testing associations with publicly available DNA methylation profiles (see Methods for details). All 

maintained false positive rates below expected 5% threshold except for comb-p (FPR > 20%; Figure 2) 

when applied to a subset of chromosome 1 ('chr1-subset', see Methods). However, when applied to a 

subset of the genome including clusters of highly correlated CpG sites ('corr-subset', see Methods), we 

found that the bumphunter 'value' statistic was also slightly inflated (FPR = 8%; Figure 2). We also found 

that DMRcate statistics were prone to inflation but was not observed unless the dataset contained at 
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least one CpG site association with a false positive rate below 0.05. When we tweaked the dataset by 

adding additional CpG sites to guarantee at least one such association (‘augmented corr-subset’, see 

Methods), we found that the false positive rates for both comb-p and DMRcate increased to 91.7% and 

51.6%, respectively (Figure 2). Note that any DMRs identified that included the additional CpG were not 

included in the false positive rate calculations. The dramatic false positive increase for comb-p is due to 

the additional CpG sites having lower inter-CpG correlations than in the rest of the dataset.  This caused 

the comb-p auto-correlation function to under-estimate correlations between CpG sites leading to 

greater inflation of DMR statistics. Only the bumphunter ‘area’ statistic, EWAS, seqlm and dmrff 

maintained false positive rates below the 0.05 significance threshold used by each algorithm. 

Power 
The power of each DMR algorithm was assessed by generating phenotype/exposure variables associated 

with clusters of CpG sites in the methylation dataset at various strengths (see Methods). Power at each 

association strength was estimated as the proportion of generated variables for which an algorithm 

identified a DMR that overlapped with the associated cluster of CpG sites. Overall, comb-p has the 

greatest power followed by DMRcate, seqlm and dmrff, EWAS and finally the two versions of 

bumphunter (Supplementary Table 1). Figure 3 shows the power of only seqlm, dmrff and EWAS 

because power lacks meaning for algorithms that do not control false positive rates. 

Analysis of age 
We applied dmrff, seqlm and EWAS to an analysis of age in 14 publicly available DNA methylation 

datasets (see Methods). In each dataset, all three methods identified similar numbers of DMRs although 

numbers varied quite significantly between datasets (Supplementary Table 2). DMR numbers were 

estimated from EWAS by merging CpG sites with age associations within 500bp of one another into a 

single DMR. Overall, dmrff appears to have consistently identified more DMRs than the other two 

methods. To investigate if this is sensitive to significance thresholds, we asked how many DMRs 

remained for each method after removing any that overlapped with DMRs identified by another method 

but at a more relaxed significance threshold (Supplementary Table 3). Both dmrff and seqlm identified 

hundreds of DMRs (at Bonferroni-adjusted p < 0.05) containing no EWAS associated CpG sites (at 

Bonferroni-adjusted p < 0.2). dmrff identified hundreds and, for over 70% of the datasets, thousands of 

DMRs (at Bonferroni-adjusted p < 0.05) that did not overlap with DMRs identified by seqlm (at 

Bonferroni-adjusted p < 0.2). seqlm identified at most 326 DMRs (at Bonferroni-adjusted p < 0.05) in any 

single dataset not overlapping with any identified by dmrff (at Bonferroni-adjusted p < 0.2).  

Replication of DMRs 
We asked how well DMRs identified by dmrff in one dataset replicated in other datasets. For each of the 

14 publicly available datasets described above, we meta-analysed the statistics for the age DMRs 

identified by dmrff in the remaining 13 datasets (fixed-effect inverse-variance weighted meta-analysis) 

and then calculated the rate of replication (i.e. the % of DMRs with meta-analysed Bonferroni adjusted p 

< 0.05). For comparison, we used the same approach to calculate replication rates for individual CpG 

sites. The results are summarized in Supplementary Table 4. In 12 out of 14 datasets, we observed 

above 96% replication rates and less than 0.13% difference between the CpG site and the DMR 

replication rates in each dataset. The two remaining dataset replication rates were 1.2% and 3% higher 

for CpG sites. 
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We also calculated replication rates for DMRs that did not contain age-associated CpG sites (at 

Bonferroni-adjusted p < 0.2). For 11 of 14 datasets, the CpG site replication rate was less than 2% 

greater. For the remaining three datasets, the CpG site replication was 20%-37% greater. For two of 

these datasets, GSE55763 and GSE87571, CpG site replication rates, 87.4% and 61.2%, respectively, was 

unusually low compared to other datasets. In all other datasets, replication rates were above 96%. This 

suggests that these two datasets are somehow systematically different from the other datasets. 

Meta-analysis 
It is now common to increase statistical power by meta-analyzing summary EWAS statistics from 

multiple studies. dmrff can be extended for use in meta-analysis in a straight-forward way using two 

different approaches, the first called ‘two-step meta-analysis’ and the more convenient ‘reference meta-

analysis’ (see Methods).  In both approaches, EWAS summary statistics are calculated for each dataset, 

meta-analysed and used to identify candidate DMRs. Candidate DMR statistics are then calculated for 

each dataset using EWAS summary statistics and finally meta-analysed across all datasets.  In the two-

step approach, pairwise CpG site correlations used to calculate candidate DMR statistics are obtained 

from each original dataset.  In the reference approach, the pairwise correlations are obtained from a 

single designated dataset. 

In the 14 datasets described above, the two-step approach identified 70,464 DMRs of age whereas the 

reference approach identified 83,549.  However, this difference however is misleading since the two 

step approach generally identifies much larger DMRs (Supplementary Table 5). For example, 22,973 

two-step DMRs contain more than 1 CpG site compared to only 12,156 reference DMRs. In addition, the 

two-step DMRs are much more likely to be novel (Supplementary Table 5). A DMR is considered novel 

for an approach if it contains no CpG sites belonging to a DMR identified by the other method (at 

Bonferroni adjusted p < 0.2 rather than 0.05). For example, of the 9,095 two-step DMRs covering at least 

8 CpG sites, 347 are novel.  By comparison, there are only 204 DMRs covering 8 or more CpG sites, of 

which only 9 are novel. For most DMR size thresholds, the two-step approach identifies at least 10x 

more novel DMRs than the reference procedure. Since CpG correlations play a larger role in the DMR 

statistic for larger DMRs, these results indicate that a reference dataset is unlikely to provide a useful 

representation of the CpG site correlation structure found in each individual dataset. 

Novel DMRs are functionally relevant 
Of the 70,464 age DMRs identified by the two-step method, 662 do not include any CpG site association 

identified by EWAS meta-analysis (Bonferroni-adjusted p < 0.05). Relaxing the EWAS p-value threshold 

from 0.05 to 0.2, 482 remain without an EWAS association. 

We investigated the potential biological implications of these 482 novel DMRs by comparison to 

published associations of gene expression profiles from nearly two hundred individuals in nine tissues: 

adipose, artery, heart, lung, muscle, nerve, skin, thyroid and blood (18). Of 41298 genes included in the 

gene expression profiles, 14308 were linked (by Illumina annotation) to one of our age DMRs. 

Eliminating all those genes that were also linked to an age-associated CpG site identified by EWAS meta-

analysis (at a relaxed Bonferroni-adjusted p < 0.2), 123 DMR-linked genes remained.  

We then asked if these 123 genes were enriched with gene expression associations with age. We 

observed strong enrichments in blood but not in any other tissues. For example, associations with age 
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had been observed in 51 (40%) of these 123 genes in blood but at most 21 (17%) in any of the other 

eight tissues (adipose 14, artery 21, heart 6, lung 4, muscle 5, nerve 0, skin 0, thyroid 0). 

To formally assess enrichment, we applied two enrichment tests. First, we used Fisher's exact test with 

respect to several different significance thresholds for identifying genes with age-associated gene 

expression levels (p = 1x10-6-0.2). We observed very strong enrichments in blood for most thresholds 

considered, but no evidence of enrichment in any of the other tissues (Figure 4). Second, we applied the 

Wilcoxon rank sum test to determine if the 123 genes were more strongly associated with age than a 

random selection of the same number of genes.  Again, in blood, we observed strong evidence of 

enrichment (p < 0.0012) but no evidence in the other tissues (p > 0.26). 

Running time 
Comb-p, DMRcate, seqlm and dmrff are all complete computation of a genome-wide dataset in a few 

minutes, comparable to the running time of an EWAS (Table 1). Bumphunter requires about 10x longer 

when using 100 bootstraps.    

Discussion 
We have described a new approach for identifying differentially methylated regions based on inverse-

variance weighted meta-analysis that is fast, controls false positive rates and is often more powerful 

than other approaches like EWAS and seqlm that also control false positive rates. Furthermore, when 

applied to several publicly available datasets, we show that DMRs identified are highly replicable 

between datasets and that novel DMRs identified by our extension of dmrff for meta-analysis are 

biologically relevant.  

None of the previously published DMR-finding algorithms can make all these claims. Comb-p is one of 

the most popular algorithms because it is extremely powerful and was one of the first serious attempts 

to avoid false positives due to dependencies between CpG sites. Unfortunately, we and others (9) have 

shown that the approach fails to consistently control error rates because it depends on a single 

autocorrelation function to represent a DNA methylation correlation structure that varies across the 

genome. Consequently, in some genomic regions, the function underestimates dependencies between 

CpG sites and consequently generates inflated DMR statistics.  

DMRcate is also very popular due to its speed and ease of use. It is, however, often not more powerful 

than EWAS because it tests for DMRs only when EWAS successfully identifies associations.  Furthermore, 

similar to comb-p, it tends to generate inflate DMR statistics in genomic regions with strong 

dependencies between CpG sites. 

Although bumphunter is an intuitive approach for identifying differentially methylated regions and one 

of the earliest approaches to allow the data to completely determine the beginning and end of DMRs, it 

is unfortunately extremely time-consuming and lacks power. Further, we have shown that the ‘value’ 

statistic may also be inflated in parts of the genome with strong dependencies between CpG sites.  

A recently published method, seqlm, is currently the only that correctly controls false positive rates and 

may additionally be more powerful than EWAS. However, we show many examples where it is less 

powerful than dmrff.  More importantly, its implementation is not as flexible as that of dmrff, as it is 

limited to a single association-testing model and does not appear to be have a straight-forward 

adaptation for meta-analysis. 
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Dmrff does have some limitations. First, it does sacrifice a small amount of power in order to optimize 

the starting and ending positions of DMRs.  Candidate regions are initially identified as sequences of CpG 

sites with EWAS p-values below some threshold, e.g. 0.05. Dmrff then shrinks the regions by calculating 

statistics for all sub-regions and then greedily selecting sub-regions to cover the candidate region with 

the strongest statistics. This sub-region analysis increases the burden of multiple testing.  

Second, the adaptation of dmrff to meta-analysis requires CpG site correlations from each of the original 

datasets. In meta-analyses performed in large consortia, a straight-forward application of dmrff involves 

a somewhat clumsy two-step process in which dataset analysts first perform EWAS and then wait for 

EWAS meta-analysis and candidate DMR discovery to be performed centrally before going ahead with 

calculating statistics for candidate DMRs. To make meta-analysis more convenient, we have 

implemented a procedure that generates and saves the correlations of all pairs of CpG sites a given 

maximum distance δ apart in a dataset.  This procedure is applied to each dataset at the same time as 

the original EWAS. These correlations can then be submitted at the same time as the EWAS summary 

statistics for meta-analysis. It is then possible to perform the remaining dmrff meta-analysis centrally 

without further consulting individual datasets. The DMRs identified using this approach are the same as 

for the basic two-step procedure provided that no candidate regions are larger than 2δ base pairs in 

length. However, in some meta-analyses, original datasets and therefore CpG site correlations are no 

longer available such as when previously published studies are meta-analysed. In these cases, dmrff can 

still be applied using correlations from a reference datataset.  However, as we have shown, the result 

will be less powerful. We note that this is still preferable to using algorithms like comb-p or DMRcate 

that do not require CpG site correlations, because the results are likely to suffer from inflated p-values. 

Third, dmrff is not currently the best option for whole-genome bisulfite sequencing data which includes 

DNA methylation measurements for all or nearly all the CpG sites in the genome. This is because the 

greedy approach for shrinking candidate genomic regions will likely generate far too many tests in 

genomic regions with high CpG density. In future, we plan to investigate more efficient replacements for 

the greedy algorithm.  

Conclusions  
We recommend dmrff as the best of available options for identifying DMRs in DNA methylation profiles 

generated using the Illumina BeadChips. An open-source implementation is freely available on GitHub 

(http://github.com/perishky/dmrff). 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508556doi: bioRxiv preprint 

http://github.com/perishky/dmrff
https://doi.org/10.1101/508556
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

Methods 

Published algorithms for identifying DMRs 
Comb-p (7), DMRcate (8), bumphunter (5) and seqlm (9) were all applied with default settings with the 

following exceptions. Comb-p was applied with dist set to 500, seed to 0.05 and threshold to 0.05. 

DMRcate was applied with lambda set to 500 and min.cpgs set to 2. Bumphunter was applied with 

useWeights and pickCutoff set to ‘TRUE’, pickCutoffQ to 0.95, nullMethod to ‘bootstrap’, B to 

100 and maxGap to 500.  Seqlm was applied with max_block_length set to 20 and max_dist to 500.  

To reduce running time of bumphunter, in cases where other algorithms were applied to 1000 

simulations, bumphunter was applied to 100. 

Each of these algorithms except for seqlm begins with an EWAS and then adjusts CpG site summary 

statistics by sharing information between nearby CpG sites (500bp here).  Candidate DMRs are identified 

as regions composed of CpG sites whose adjusted statistics all surpass some threshold.  Finally, statistics 

are calculated for each candidate DMR.  

Bumphunter smooths CpG site EWAS effects using local regression with a Gaussian kernel (by default 

but other approaches can be specified). Candidate DMRs are identified as sets of consecutive CpG sites 

whose smoothed effects are all greater than a pre-specified threshold. Statistical significance is 

calculated by generating a null distribution by bootstrapping.  

Comb-p operates on EWAS p-values, updating the p-value for each CpG site by combining p-values of 

nearby CpG site using the Stouffer–Liptak–Kechris (SLK) correction and then adjusting the resulting p-

values for multiple tests. In the correction, p-values are weighted by their distance from the CpG site 

whose p-value is being updated according to an auto-correlation function derived from the EWAS p-

values. Candidate DMRs are identified as sets of consecutive CpG sites with updated p-values below 

some threshold. P-values for candidate DMRs are then again calculated using the SLK correction and the 

autocorrelation function.  

DMRcate smooths EWAS t-statistics by combining t-statistics from nearby CpG sites using a Gaussian 

kernel of a specified width. Statistical significance for each CpG site is then recalculated from the 

smoothed t-statistic and a new threshold for genome-wide significance selected so that the number of 

CpG sites passing the threshold is the same as the number that survived multiple testing correction in 

the original EWAS. Consecutive CpG sites whose recalculated p-values are below this threshold are 

identified as DMRs. 

Seqlm differs from these algorithms by first partitioning the genome into regions of CpG sites with 

similar associations with the variable of interest.  Region boundaries are identified using the minimum 

description length (MDL) principle.  Following this, a DNA methylation summary is obtained for each 

region and then tested for associations with the variable of interest. 

dmrff 
Similarly to bumphunter, comb-p and DMRcate, dmrff identifies DMRs by combining EWAS summary 

statistics from nearby CpG sites. Straight-forward approaches for combining summary statistics such as 

Fisher’s method or other meta-analytic approaches cannot be directly applied because they assume 

independence between underlying tests. In our case, this assumption corresponds to independence 

between nearby CpG sites which is rarely true. Violating this assumption causes combined statistics to 
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have inflated statistical significance. An extension of inverse-variance weighted meta-analysis was 

recently proposed for such cases (19), and we apply it here to EWAS statistics for the CpG sites within a 

genomic region. The test statistic is B/S where 

B = (1TΩ−11)−11TΩ−1β 

and 

S = sqrt((1TΩ−11)−1) 

and β is the one-column matrix of EWAS effect estimates for each CpG site, Ω is equal to σσT x ρ, σ is the 

vector of standard errors for β, ρ is the CpG site correlation matrix, and 1 is a one-column matrix of 1's.  

The test statistic B/S for the region with null associations has a standard normal distribution.  

Genomic regions to test are identified as those spanned by sets of CpG sites with at most 500bp 

between consecutive sites and which have nominal EWAS p-values < 0.05 and EWAS effect estimates 

with the same sign (all of these values are parameters in dmrff and can be redefined). The region 

statistic B/S is then calculated not only for each region but also for each sub-region. Candidate DMRs are 

identified by greedily selecting sub-regions with the most extreme statistic that do not overlap with 

previously selected candidates. P-values for each candidate are Bonferroni-adjusted for multiple tests, 

conservatively treating each EWAS test and each sub-region test as independent. 

Inputs to dmrff include the EWAS effect size estimates and p-values along with the EWAS DNA 

methylation profiles.  For our analyses, limma (20) was used to execute the EWAS. 

Simulations 
We generated simulations to evaluate the power and false positive rates of DMR algorithms. To ensure 

that the simulations were as similar to real-world applications, we produced simulations from DNA 

methylation profiles generated from human blood DNA using the Illumina Infinium 

HumanMethylation450 Beadchip. The 464 profiles are publicly available at the Gene Expression 

Omnibus (accession number GSE50660) (21). We applied algorithms to quite small subsets of the 458K 

CpG site measurements available from each profile in order to decrease algorithm running time per 

simulation. This allowed us to increase the precision of performance estimates by increasing the number 

observations per algorithm.  We reduced the 485K CpG site measurements across the genome to three 

different subsets: 

1. 'chr1-subset': The 2577 autosomal CpG sites found in clusters of 15-25 measured CpG sites on 

chromosome 1. A cluster was defined as a sequence of measured sites with less than 500bp between 

consecutive CpG sites. These data represent medium-sized clusters of sites. 

2. 'corr-subset': The 8906 autosomal CpG sites found in clusters of at least 2 CpG sites in which 

consecutive measured CpG sites had a correlation of R > 0.8. These data represent (potentially) smaller 

sized groups of sites with high correlation between sites used to define clusters. 

3. ‘augmented corr-subset’: The corr-subset of 8906 CpG sites on chromosome 1 together with CpG sites 

with simulated methylation levels correlated with the variable of interest. These additional CpG sites are 

needed to reveal inflated DMR statistics generated by DMRcate. When DMRcate is applied, if no 

individual CpG site has an association with the variable of interest with a false discovery rate less than 

5%, then DMRcate terminates and reports no DMRs.  However, if even a single CpG site has a sufficiently 
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strong association, then DMRcate proceeds to test for DMRs and reports statistics for each candidate 

DMR.  We therefore artificially included CpG sites with sufficiently strong associations with the variable 

of interest. To prevent these additional sites from interfering with DMRs corr-subset and to satisfy the 

DMRcate requirement that all CpG sites correspond to those measured by the Illumina microarray, we 

generated random methylation levels for the 670 CpG sites located in clusters of 10 CpG sites on 

chromosome X. Correlations of these CpG sites with the variable of interest were uniformly distributed 

between R=0 and R=0.3. DMRs identified by any algorithm on chromosome X were omitted from error 

rate calculations. 

The full simulation dataset consisted of the selected DNA methylation dataset subset, a simulated 

exposure/phenotype variable and covariates obtained from the original dataset.  Covariates included 

smoking, age and sex because they are known to have strong associations with many CpG sites 

throughout the genome. 

The simulated exposure/phenotype variable was generated from the selected DNA methylation dataset 

subset. The variable was chosen to be continuous and drawn from the standard normal distribution (i.e. 

mean 0, standard deviation 1).  Simulation details are described below. 

Null simulations 
Null simulations consisted of 1000 random variables drawn from a standard normal distribution. These 

were generated independently of the methylation data or covariates, so they could be used to estimate 

the false positive rate of an algorithm.  Specifically, the false positive rate would be equal to the number 

of variables for which the algorithm identified at least one DMR. 

Power  simulations 
A phenotype/exposure variable with a differentially methylated region in a methylation dataset was 

simulated by: 

1. identifying a cluster of at least 15 CpG sites (at most 500bp between consecutive CpG sites), 

2. taking the mean of the standardized methylation levels of the 10 CpG sites in the middle of the 

cluster, and then  

3. generating a random variable with a given correlation R with the mean.  

By construction, the resulting variable would have an average correlation of approximately R with each 

of the 10 consecutive CpG sites.  

The correlations considered ranged from 0 to 0.4:  

0.0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 

0.125, 0.15, 0.175, 0.2, 0.25, 0.3, 0.35, 0.4 

For each of the 24 possible correlations, 100 variables were generated. 

The power of an algorithm at a given correlation is then estimated as the proportion of the 100 

simulated variables for which the algorithm identifies a DMR overlapping with at least one of the 10 CpG 

sites used to generate the variable. 
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DNA methylation datasets for analyses of age 
We performed analyses of age in publicly available DNA methylation profiles of peripheral blood in 

order to test the methods in a real-world setting.  We identified 20 eligible datasets available from the 

Gene Expression Omnibus (GEO) (22), all generated using the Illumina Infinium HumanMethylation450 

BeadChip (Supplementary Table 6). An EWAS of age was performed in each using linear models 

implemented in the limma R package (20). Chromosomes X and Y were excluded as datasets included 

males and females. Twenty surrogate variables were included as covariates to account for cell count 

heterogeneity and technical variation. These were calculated from the DNA methylation profiles using 

the sva R package (23).  

Following the EWAS of age in each dataset, correlations between CpG site effect sizes revealed that six 

datasets had extremely low agreement with the other datasets (Supplementary Table 7; mean 

correlation < 0.25). We therefore excluded these datasets from meta-analysis. EWAS age associations 

were meta-analysed using fixed effect, inverse variance-weighted meta-analysis implemented by the 

metafor R package (24).  

To apply dmrff in the meta-analysis setting, we first identified candidate regions using the meta-

analysed EWAS p-values and effect sizes, i.e. regions defined by sets of CpG sites with consecutive CpG 

sites at most 500bp apart and each site having an EWAS p-value < 0.05 and the same EWAS effect sign. 

We then calculated the dmrff statistic for each region and sub-region in each meta-analysed dataset.  

Following this, the dmrff statistics from each dataset were then meta-analysed using fixed effect, 

inverse variance-weighted meta-analysis.  Candidate DMRs were identified as in dmrff by greedily 

selecting sub-regions with the most extreme meta-analysed statistic that does not overlap with 

previously selected candidates. P-values for each candidate were Bonferroni-adjusted for multiple tests, 

conservatively treating each EWAS test and each sub-region test as independent. 

This approach (called ‘two-step meta-analysis’), however, can be impractical when the meta-analysis is 

being performed by a consortium because it requires two interactions between the meta-analysis team 

and analysts of individual datasets. Dataset analysts first supply EWAS summary statistics and then must 

wait for the meta-analysis team to identify and communicate a set of genomic regions of interest so that 

they can calculate dmrff statistics for these regions for the final DMR meta-analysis. To reduce to a 

single interaction, we considered using a ‘reference’ dataset during meta-analysis to obtain CpG site 

correlations. To maximize agreement with the reference dataset, we selected the EWAS dataset that 

was most similar in terms of pairwise CpG site correlations to the other EWAS datasets.  More 

specifically, we selected 10,000 random CpG sites and a random nearby mate and calculated the 

correlations between these pairs in each dataset.  We then calculated the correlation of these 

correlations between all pairs of datasets.  The reference dataset was selected as the one with the 

largest mean correlation with all other datasets.  We found this to be dataset with GEO accession 

GSE72680 (mean R = 0.75; Supplementary Table 7). We call this approach ‘reference meta-analysis’. 
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List of Abbreviations 

CpG Cytosine followed by a Guanine 

DMR Differentially Methylated Region 

EPIC Illumina Infinium MethylationEPIC BeadChip microarray 

EWAS Epigenome-Wide Association Study 

FPR False Positive Rate 

GEO Gene Expression Omnibus 

450k Illumina Infinium HumanMethylation450 BeadChip microarray 
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Figures 

 

Figure 1. Plot of differentially methylated regions (DMRs) associated with age. 

Plot shows EWAS t-statistics for CpG sites as a bar graph, one bar for each CpG site (dark gray bars show 

positive statistics, light gray bars show negative) in the UCSC Genome Browser (25). Differentially 

methylated regions are identified by thick, dark gray horizontal bars. Transcripts of the BLCAP gene are 

shown in blue. 
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Figure 2. False positive rates of DMR algorithms. 

Rates are provided for three datasets, chr1, corr and corr+ (see Methods for details). The p-value 

threshold (adjusted for multiple tests) was set at 0.05 so any rate above 0.05 (horizontal line) indicates 

failure to control false positive rates. 
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Figure 3. True positive rates of DMR algorithms.  

Shown is the proportion of simulated DMRs identified by the algorithms (y-axis) at the given strength of 

association between the CpG sites in the simulated DMRs and the variable of interest (x-axis).  See 

methods.  
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Figure 4. Enrichment of gene expression associations with age among genes linked with novel age 

DMRs.   

The 123 genes linked to DMRs of age but not to CpG sites associated individually with age were tested 

using Fisher’s exact test for enrichment with genes associated with age in nine tissues: adipose, artery, 

heart, lung, muscle, nerve, skin, thyroid and blood. Shown is the statistical significance of Fisher’s exact 

test (y-axis) for different p-value thresholds for identifying gene expression associations with age. 
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Tables 
Table 1. Running times of algorithms applied to DNA methylation profiles including 470K CpG sites and 

464 samples with 44 covariates on a computer with 10 processors. 

algorithm running time 
(minutes) 

bumphunter (100 bootstraps) 61.2 
comb-p 4.5 
DMRcate 4.5 
dmrff 6.2 
seqlm 5.5 
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Supplementary Materials 
 

Supplementary Table 1. True positive rates (%) of each algorithm for different correlations. 
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Supplementary Table 2. Numbers of age DMRs identified in multiple datasets.  Table ordered by the 

number of associations identified by EWAS. 

 

dataset dataset 
size 

 EWAS EWAS 
regions* 

dmrff seqlm 

GSE50660 464  1208 1006 1235 978 

GSE59065 97  3014 2453 4156 0 

GSE72775 335  3243 2567 3291 1872 

GSE72773 310  4949 3869 4884 2459 

GSE51032 845  5310 3851 4892 4191 

GSE40279 656  10356 7345 9489 4736 

GSE56046 1202  10467 8143 9625 8334 

GSE87648 382  11348 7446 10488 6115 

GSE42861 689  14462 9024 12892 10320 

GSE84727 665  15132 9988 13243 9859 

GSE72680 422  18292 10533 16592 11623 

GSE56105 613  43010 25399 37434 16460 

GSE55763 2711  58906 30812 48975 46359 

GSE87571 729  112905 62068 97682 90931 

* EWAS regions are defined in terms of CpG sites associated with age (Bonferroni-adjusted p-value < 
0.05) with at most 500bp between consecutive sites in the genome. 
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Supplementary Table 3. ‘Unique’ age DMRs identified in multiple datasets.  

The table is ordered by the sizes of the datasets. Each pair of algorithms is compared, and the DMRs 

identified by each algorithm (at Bonferroni-adjusted p < 0.05) that do not overlap with those identified 

by the other algorithm (at Bonferroni-adjusted p < 0.2) are shown. 

  dmrff vs EWAS seqlm vs EWAS dmrff vs seqlm 

dataset dataset 
size 

dmrff EWAS 
regions* 

EWAS seqlm EWAS 
regions* 

EWAS dmrff seqlm 

GSE59065 97 440 0 0 0 2453 3014 4156 0 

GSE72773 310 95 0 0 60 1252 1491 1590 28 

GSE72775 335 166 0 0 192 710 849 926 80 

GSE87648 382 622 0 0 112 1691 2231 2617 69 

GSE72680 422 115 0 0 182 1103 1685 1471 99 

GSE50660 464 64 0 0 69 127 154 195 34 

GSE56105 613 358 0 0 1 11487 16019 14700 0 

GSE40279 656 185 0 0 27 2663 3439 3266 5 

GSE84727 665 346 0 0 193 1576 2131 1813 43 

GSE42861 689 181 0 0 323 779 1118 1083 190 

GSE87571 729 379 0 0 582 1141 2631 2333 326 

GSE51032 845 133 0 0 269 372 494 502 146 

GSE56046 1202 249 0 0 144 507 702 764 23 

GSE55763 2711 605 0 0 445 1325 3088 2841 126 

* EWAS regions are defined in terms of CpG sites associated with age (Bonferroni-adjusted p-value < 
0.05) with at most 500bp between consecutive sites in the genome. 
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Supplementary Table 4. Replication rates of dmrff and EWAS in multiple datasets.  

Replication rates were calculated by meta-analysing the DMRs or associations observed in each dataset 

in the other datasets.  ‘Unique’ DMRs are those that do not contain an EWAS association (at Bonferroni 

adjusted p < 0.2).  

  replication rates DMR – EWAS rate number associations 

dataset size 
all 

DMRs 
unique  
DMRs 

EWAS 
all 

DMRs 
unique 
DMRs 

DMRs 
unique 
DMRs 

EWAS 

GSE87571 729 0.6124 0.3418 0.6209 0.0086 0.2791 97682 379 112905 

GSE55763 2711 0.8741 0.6774 0.8861 0.0119 0.2087 48975 605 58906 

GSE56046 1202 0.9618 0.9917 0.9616 -0.0002 -0.0301 9625 249 10467 

GSE56105 613 0.9722 0.9693 0.9731 0.0009 0.0039 37434 358 43010 

GSE50660 464 0.9887 0.9902 0.9876 -0.0011 -0.0026 1235 64 1208 

GSE40279 656 0.9933 0.9891 0.9936 0.0004 0.0046 9489 185 10356 

GSE84727 665 0.9925 0.9748 0.9939 0.0013 0.0190 13243 346 15132 

GSE72680 422 0.9952 0.9920 0.9950 -0.0002 0.0029 16592 115 18292 

GSE51032 845 0.9945 0.9891 0.9953 0.0008 0.0062 4892 133 5310 

GSE42861 689 0.9960 0.9888 0.9961 0.0002 0.0073 12892 181 14462 

GSE87648 382 0.9660 0.6277 0.9962 0.0302 0.3685 10488 622 11348 

GSE72775 335 0.9954 0.9930 0.9963 0.0009 0.0033 3291 166 3243 

GSE59065 97 0.9913 0.9798 0.9977 0.0063 0.0178 4156 440 3014 

GSE72773 310 1.0000 1.0000 1.0000 0.0000 0.0000 4884 95 4949 
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Supplementary Table 5. ‘Unique’ age DMRs by numbers of CpG sites identified by the full two-step and 

reference dmrff meta-analysis methods. 

min DMR size two-step 
DMRs 

unique  
two-step 
DMRs* 

reference 
DMRs 

unique 
reference 

DMRs* 

1 70464 12018 83549 548 

2 22973 1839 12156 109 

3 13526 848 3236 52 

4 8634 547 1111 32 

5 6144 387 498 20 

6 4440 279 253 11 

7 3202 184 145 8 

8 2383 124 87 4 

9 1761 85 48 2 

10 1290 50 30 1 

11 931 32 19 1 

12 668 22 10 1 

13 490 11 5 0 

14 361 5 3 0 

15 270 5 1 0 

16 192 4 1 0 

17 154 4 0 0 

18 112 3 0 0 

19 84 1 0 0 

20 73 1 0 0 

21 54 0 0 0 

22 52 0 0 0 

23 45 0 0 0 

24 37 0 0 0 

25 36 0 0 0 

26 26 0 0 0 

27 22 0 0 0 

28 19 0 0 0 

29 19 0 0 0 

30 16 0 0 0 

* Unique DMRs for a method are defined as those with Bonferroni-adjusted p < 0.05 that do not overlap 

those for the other method identified at Bonferroni-adjusted p < 0.2. 
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Supplementary Table 6. Publicly available datasets available for the age meta-analysis.   

For each dataset, the table provides the Gene Expression Omnibus accession, the number of samples, 

and the average correlation of EWAS age effects with those of the other datasets. 

GEO accession n R 

GSE51057 329 0.06 

GSE80417 638 0.07 

GSE43414 80 0.13 

GSE74548 174 0.15 

GSE97362 233 0.19 

GSE73103 355 0.24 

GSE50660 464 0.42 

GSE72775 335 0.46 

GSE59065 97 0.48 

GSE56046 1202 0.49 

GSE51032 845 0.51 

GSE72773 310 0.52 

GSE40279 656 0.53 

GSE87571 729 0.53 

GSE87648 382 0.54 

GSE72680 422 0.55 

GSE56105 613 0.55 

GSE84727 665 0.55 

GSE42861 689 0.56 

GSE55763 2711 0.58 
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Supplementary Table 7. Publicly available datasets used in the age meta-analysis.  

For each dataset, the table provides the Gene Expression Omnibus accession, the number of samples, 

and the average correlation of the estimated correlation structure within each dataset with that of the 

other datasets. Correlation structure was estimated within a dataset as the correlations between 10,000 

randomly selected pairs of CpG sites.  

GEO accession n R 

GSE87648 382 0.53 

GSE56046 1202 0.61 

GSE50660 464 0.61 

GSE59065 97 0.63 

GSE72773 310 0.65 

GSE72775 335 0.67 

GSE42861 689 0.67 

GSE55763 2711 0.69 

GSE84727 665 0.70 

GSE51032 845 0.71 

GSE87571 729 0.72 

GSE56105 613 0.72 

GSE40279 656 0.72 

GSE72680 422 0.75 
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