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ABSTRACT 
 
Many organisms exchange small RNAs during their interactions, and these RNAs can target or              
bolster defense strategies in host-pathogen systems. Current sRNA-Seq technology can          
determine the small RNAs present in any symbiotic system, but there are very few bioinformatic               
tools available to interpret the results. We show that one of the biggest challenges comes from                
sequences that map equally well to the genomes of both interacting organisms. This arises due               
to the small size of the sRNA compared to large genomes, and because many of the produced                 
sRNAs come from genomic regions that encode highly conserved miRNAs, rRNAs or tRNAs.             
Here we present strategies to disentangle sRNA-Seq data from samples of communicating            
organisms, developed using diverse plant and animal species that are known to exchange RNA              
with their parasites. We show that sequence assembly, both de novo and genome-guided, can              
be used for sRNA-Seq data, greatly reducing the ambiguity of mapping reads. Even confidently              
mapped sequences can be misleading, so we further demonstrate the use of differential             
expression strategies to determine the true parasitic sRNAs within host cells. Finally, we             
validate our methods on new experiments designed to probe the nature of the extracellular              
vesicle sRNAs from the parasitic nematode H. bakeri that get into mouse epithelial cells. 
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INTRODUCTION 
 
Organisms do not live in isolation. The wonderful diversity and complexity in life arises in part                
due to the contacts that living beings have with their peers. Symbioses can have positive or                
negative consequences to one or both of the interacting partners. These interactions are not              
only obvious at the macroscopic level, but molecular exchanges underlie many of them.             
Molecules moving between organisms of different species include antibiotics, toxins, volatiles,           
sugars, amino acids, amongst many others. 
 
RNA is a molecule of incredible functional versatility, participating in central cellular processes             
as messenger, transfer and ribosomal RNA, but also in complex regulatory layers, from bacterial              
riboswitches to eukaryotic microRNAs (miRNAs). Yet RNA has historically been regarded as an             
unsuitable molecule for exchanging signals between cells or organisms due to its instability,             
even though it was proposed as an extracellular communicator several decades ago [1].  
 
Recent advances in sequencing technology have allowed researchers to measure RNAs with            
unprecedented sensitivity, leading to the surprising discovery that many small RNAs, including            
miRNAs, are extracellular components of many human bodily fluids like blood, tears and             
maternal milk [2–4]. These extracellular RNAs can be protected from degradation through            
binding to proteins like Argonaute and/or encapsulation within extracellular vesicles (EVs) [5].            
Even so, a report that miRNAs from plant food sources could be detected in the mammalian                
bloodstream was quite surprising [6]. These so-called “xenomiRs” have been hotly debated,            
with a slight consensus arising that miRNAs detected after passing through the vertebrate             
digestive tract are probably contaminations or other molecular errors coming from index            
swapping during Illumina library preparation [7–9].  
 
Interestingly, a key discovery came when Botrytis cinerea, a fungal plant pathogen, was shown              
to secrete small RNAs, that traffic into plant cells to help block the host defense response [10].                 
Since then, we and others have shown that small RNAs are detected in material exchanged               
between a large variety of pathogens and their hosts [11–15]. The parasitic nematode             
Heligmosomoides bakeri secretes small RNAs inside EVs into the host gut environment,            
modulating the immune response of mice [11]. The parasitic plant Cuscuta campestris produces             
miRNAs that travel into the host tissue eliciting a functional silencing response in Arabidopsis              
[13]. Plants can also deliver their own sRNAs to strike back at their pathogens [14,15]. RNA                
exchange even occurs between the different domains of life: the bacterium Salmonella uses the              
host Argonaute to produce miRNA-like RNA fragments that increase its survival [16], and             
mammalian miRNAs present in the gut can be internalized into bacteria and affect their growth               
thereby shaping the microbiota [17]. Although there has been more focus in the literature on               
RNA released from pathogens, RNAs are probably being exchanged between all sorts of other              
interacting species [17–20]. 
 
Sequencing technologies are at a state were detecting RNAs of different sizes, from all sorts of                
biological material, even single cells, is accessible to most research groups. Analysis of RNA              
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sequencing of interacting organisms began a few years ago, with “Dual RNA-Seq” experiments             
that focused on transcriptional analyses of bacterial pathogen-host systems [21,22]. To           
successfully perform these experiments, several technical aspects needed to be addressed to            
account for highly abundant rRNA or tRNA from phylogenetically heterogeneous samples, the            
lack of poly-A tails in prokaryotes, and scenarios where one of the organisms is present in very                 
small relative amounts. In contrast, the bioinformatic analyses of these results are almost             
straightforward, since 100-150 nt sequences (the most common read-length of current Illumina            
sequencers) can usually be easily assigned to the correct position, in the correct genome of               
origin. 
 
Dealing with eukaryotic small RNAs (~20-30 nt) presents completely different challenges.           
Removal of rRNA and tRNA, or poly-A selection is not required, since a simple size-selection               
step prior to, or after, library generation will enrich for the RNA population of interest. On the                 
other hand, bioinformatic analyses can be challenging since very short sequences can map             
perfectly to a large genome just by chance. Furthermore, short sequences can map to multiple               
locations, leading to uncertainty that is sometimes solved by discarding these sequences. Some             
sequences can also genuinely arise from different species. Ancient miRNAs, as well as highly              
conserved rRNA/tRNA fragments can share up to 100% identity between phylogenetically           
diverse organisms like nematodes and mammals. On the other hand, new miRNAs are             
constantly evolving, and they have been proposed as phylogenetic markers [23]. Taking            
advantage of this idea, miRTrace was developed to predict the taxonomic diversity in any              
sRNA-Seq sample or detect the origin of cross-species contaminations [24]. Yet because it             
relies on a database of clade-specific miRNAs, it cannot classify sequences that have not been               
curated. 
 
There is increasing interest in studying the small RNAs that are naturally exchanged between              
organisms. Recently we discovered that the extracellular vesicles (EVs) secreted by the            
parasitic nematode Heligmosomoides bakeri are enriched in 5’ triphosphate sRNAs derived           
from repetitive elements [25], and not mostly microRNAs as we had found initially using              
standard library preparation techniques [11]. This is quite significant, since the sRNAs secreted             
by Botrytis cinerea that impair plant defense responses derive from transposable elements [10].             
It is possible that many pathogens use repetitive elements of their genome to efficiently explore               
a wide range of sequences to interfere with their hosts. There are no available methods to                
confidently detect and quantify these kinds of sRNAs within the cells or tissues of another               
organism. Here we describe the development of methods to detect, quantify, and characterise             
sRNAs that can move between different species. 
 
We downloaded available data from experiments designed to probe inter-organismal          
communication mediated by small RNAs. To further increase our dataset diversity and address             
scenarios where there are very low levels of parasite sRNAs, we designed new experiments to               
discover which of the sRNAs in H. bakeri EVs actually get into mouse host cells. We detail the                  
difficulties of analysing these kinds of experiments, and propose a series of strategies to solve               
them. One of the biggest challenges arises from the sRNAs which can confidently map to the                
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genomes of both interacting species. We show that this ambiguity depends on the length of the                
sRNA, the size of the genomes, and their phylogenetic relationship. We next demonstrate how              
sequence assembly of the raw sRNA-Seq data extends the length of many sRNAs and reduces               
the ambiguity problem. Finally, we show how differential expression analysis, in combination            
with sRNA assembly, and proper experimental designs, can be leveraged to confidently detect             
and quantify the sRNAs that move between even closely related species. 
 
 
 
RESULTS AND DISCUSSION 
 
 
A diverse selection of species that exchange small RNAs 
 
To build a foundation for bioinformatically probing cross-species RNA communication, we           
selected sRNA-Seq samples representing interactions from four phylogenetically diverse pairs          
of organisms (Table 1). These were the model plant Arabidopsis thaliana infected by a fungus               
(Botrytis cinerea) or a parasitic plant (Cuscuta campestris), and the mongolian gerbil (Meriones             
unguiculatus) infected by a filarial parasite (Litomosoides sigmodontis). Given our interest in            
parasitic nematodes and their secreted extracellular vesicles (EVs), we also designed new            
experiments to explore the EV small RNAs from Heligmosomoides bakeri that get internalized             
by host cells, using sRNA-Seq of a mouse intestinal epithelial cell line. The full list of sRNA-Seq                 
samples available from these experiments are described in Supplementary Table 1. 
 
Since the field of cross-species communication by RNA is still young, these represent some of               
the only real-world scenarios of symbiotic models that have been examined with sRNA-Seq.             
The biological material sampled in each case is diverse: infected stems or leaves in the case of                 
Arabidopsis, serum from infected gerbils, and a cell culture for our nematode-mouse model. The              
amount of parasite RNA present within the infected samples can also be quite different. Botrytis               
spores are used to infect Arabidopsis leaves, from which RNA is extracted after the necrotrophic               
fungus has grown and invaded the tissue of its host. For Cuscuta, we selected the samples that                 
included the haustorium connected to Arabidopsis stems. As such, both Arabidopsis           
experiments included parasite tissue, and not only extracellular material. For the rodent models,             
on the other hand, the pathogen releases extracellular RNA to the host environment and the               
parasites are not themselves present in the collected material. We expect these last samples in               
particular to be akin to a “needle in a haystack” problem, with very small amounts of parasite                 
sRNA amongst a very large amount of host RNA. In contrast, the plant samples are expected to                 
contain a mixed population of parasite and host sRNAs at more comparable levels. 
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Table 1. Small RNA sequencing datasets of interacting organisms 

Host Parasite Tissue or condition Data availability Reference 

Arabidopsis 
thaliana Botrytis cinerea Rosette leaves: 24, 48 and 

72 hours after infection 

Short Read Archive: 
SRP019801. Samples: 
SRX252403, SRX252404, 
SRX252405 

[10] 

Arabidopsis 
thaliana 

Cuscuta 
campestris 

Arabidopsis stems with an 
attached Cuscuta haustorium 

Short Read Archive: 
SRP118832. Samples: 
SRX3214810, SRX3214811  

[13] 

Meriones 
unguiculatus 

Litomosoides 
sigmodontis Serum from infected gerbils 

GEO: GSE112949. Samples: 
GSM3091975, GSM3091976, 
GSM3091977, GSM3091978, 
GSM3091979 

Quintana, 
et al. 2019 

Mus 
musculus 

Heligmosomoides 
bakeri 

MODE-K cell line: 4 and 24 
hours after adding EVs 

GEO: GSE124506. Samples: 
GSM3535462, GSM3535463, 
GSM3535464, GSM3535468, 
GSM3535469, GSM3535470 

This work 

 
 
Determining the amount of host, parasite, and ambiguous reads in sRNA datasets 
 
As a first step to identify the genome of origin of sRNAs involved in cross-species               
communication, we prepared a combined reference genome for each pair of interacting species             
(see Methods, and Supplementary Table 2). We then focused only on sRNA reads between              
18-30 nucleotides that map with 100% identity to the corresponding combined reference. These             
mapped reads are then divided into three categories: i) host (if they only map to the host portion                  
of the reference), ii) parasite (if they only map to the parasite) and iii) ambiguous (if they map at                   
least once to the host and at least once to the parasite). With this partitioning, different                
experiments yield varying proportions of host, parasite and ambiguous reads (Figure 1).  
 
The Arabidopsis + Botrytis libraries show between 3.8-6.1% of parasite reads (increasing with             
the time post infection), with ambiguous reads accounting for 1.1-7.2%. The Arabidopsis +             
Cuscuta libraries show 71% of parasitic and 17% of ambiguous reads. The infected gerbil              
serum had between 2.2-6.5% of parasite reads but only around 1% of ambiguous reads. Finally,               
the MODE-K cells treated with extracellular vesicles from H. bakeri yielded the lowest amount of               
parasite reads, in the range of 0.4-1%. In this case, the parasitic reads are clearly outnumbered                
by the ambiguous ones, with 5.2-6.3% being assigned to this category. These results highlight              
the difficulty in correctly identifying all the parasitic sRNAs. Whilst one approach would be to               
discard the ambiguous reads we would in all cases be throwing away an important amount of                
sequencing information that may include bonafide RNA molecules involved in cross-species           
communication.  
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Figure 1 . Percent of ambiguous and parasitic reads from infected samples. Each column             
represents one sRNA-Seq sample, and columns are grouped by experiment. Each experiment            
is given the name of the two interacting species, and the Y-axis is scaled independently to                
highlight the percent of parasite (blue) and ambiguous (purple) reads. Host reads (green) in all               
cases make up the remainder of 100%. Biological replicates are defined by “r” and time points                
post infection (B. cinerea) or incubation with EVs (H. bakeri) noted (further detailed in Table 1).  
 
 
Ambiguity in host-parasite sRNA-Seq reads is influenced by read length, genome size            
and phylogenetic distance 
 
We next wanted to determine what factors lead to the ambiguous reads. There are at least three                 
variables that could contribute: the length of the read, the size of the genomes, and the                
phylogenetic relationship of the genomes. We present these factors from a theoretical            
standpoint, using “k-mers” (nucleotide words of length k) as a proxy for reads. 
  
Read length 
Intuitively, it is more likely that a small k-mer will be present in two genomes compared to a                  
longer k-mer. To illustrate this, we define two random genomes of the same sizes as A. thaliana                 
and B. cinerea, and calculated the fraction of shared k-mers of different sizes [26]. The shared                
k-mers between these two random genomes decrease rapidly as k increases (Figure 2a). For              
instance, almost 80% of k-mers of length 12 are shared, but when considering k-mers of length                
18, less than 0.003% are shared. 
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Figure 2 . Factors that influence the number of ambiguous k-mers between pairs of             
genomes. X-axes represent the k-mer size and Y-axes the fraction of shared or ambiguous              
k-mers. a) Random genomes of sizes equivalent to those of A. thaliana and B. cinerea. b) Fixed                 
A. thaliana genome, compared to full B. cinerea genome or a sample corresponding to 50% or                
10% of the complete genome. c) All genomes are subsampled to the size of the smallest, that of                  
B. cinerea. d) Real fractions of ambiguous k-mers in each pair of complete genomes. Insets               
correspond to a zoomed in area of k-mer sizes 18-23. 
 
Genome size 
The size of each genome determines the maximum number of distinct k-mers that it contains               
(Supplementary Figure 1 ). A smaller genome will have fewer distinct k-mers, and so the              
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number of shared k-mers it can have with another genome is also expected to be smaller. To                 
highlight this property, we took the real A. thaliana genome, but sampled decreasing fractions of               
the B. cinerea genome (100%, 50% and 10%) to visualize how the number of shared k-mers                
changes. As expected, smaller Botrytis genomes share a smaller percent of k-mers of any              
length (Figure 2b). 
 
Phylogenetic distance 
Real genomes are not random concatenations of nucleotides, but are related through shared             
ancestry. Thus, the phylogenetic distance between two genomes should also influence the            
number of shared k-mers and therefore our ability to distinguish small RNAs that might map to                
both. If we imagine two genomes that have just begun to diverge, almost all k-mers will be                 
shared. To quantify the effect of phylogenetic separation, but ignoring the effect of genome size               
which we described above, we fixed the smallest of the genomes under consideration (B.              
cinerea) and randomly down-sampled each of the other six genomes to this size.  
 
The effect of phylogenetic distance is small but noticeable (Figure 2c). In particular A. thaliana               
shares more k-mers with another plant (C. campestris) than with a fungus (B. cinerea). While               
both pairs of animal genomes are expected to be similarly related (rodents and nematodes), H.               
bakeri shares fewer k-mers with mouse than L. sigmodontis with the gerbil. This can be               
explained since H. bakeri has a particularly large genome (~700Mb, compared to ~65Mb for L.               
sigmodontis), that is full of repetitive elements many of which are unique to this species [25]. A                 
random sample of the H. bakeri genome will thus include more k-mers from these repetitive               
elements. This helps explain the smaller fraction of shared k-mers than expected due to              
phylogeny, and highlights an extra contributing factor: genome composition and complexity,           
which we will not explore further in this work. 
 
It is thus not possible to predict the exact number of ambiguous k-mers between two species                
just based on their genome size, but if the genomes are available it can be efficiently calculated                 
using tools like Jellyfish [27]. By doing so, we can see that H. bakeri and M. musculus show the                   
highest level of ambiguous k-mers, while A. thaliana and B. cinerea show the lowest (Figure               
2d). These are the biggest and smallest pairs of genomes, respectively, indicating that genome              
size is a major factor driving these differences. But at longer k-mers the two plant genomes are                 
the pair with the highest ambiguity. This is due to their close phylogeny (both species are                
eudicotyledons, a clade of flowering plants). In all cases the ambiguous k-mers between real              
genomes, at larger k-mer sizes, become much higher than expected exclusively by genome             
size, reflecting the contribution of shared ancestry (Supplementary Figure 2). 
 
From these results there are two important things to note: 1) even for k-mers the size of                 
biologically important molecules like microRNAs (~21 nucleotides), there is always a fraction of             
sequence space that will be shared identically between two genomes, and 2) if we could               
increase the length of any sequence, even by one or two nucleotides, the probability that it will                 
be shared between genomes would decrease substantially. 
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High levels of ambiguity in host-parasite sRNA-Seq reads is caused by conserved            
sequences like ribosomal, transfer, and microRNAs 
 
The levels of ambiguity in our real sRNA-Seq data are much higher than predicted by the                
fractions of k-mers shared between pairs of genomes. For instance, almost 17% of all 18-30nt               
reads from the A. thaliana and C. campestris interaction are ambiguous (Figure 1), while only               
1.8% of k-mers of size 18 are shared between the genomes (Figure 2d). This implies that the                 
sRNA-Seq reads are not produced randomly across the genome, but come from regions with a               
higher-than-average level of conservation. This is not surprising if conserved classes of RNA,             
like ribosomal RNA, are being sequenced. So, from what regions are the sRNA-Seq reads              
being produced, particularly the ambiguous ones? We sought to answer this, focusing on the A.               
thaliana and C. campestris interaction where the problem of ambiguous reads is most apparent              
(Figure 1 ).  
 
We extracted all the ambiguous reads from libraries of A. thaliana stems with C. campestris               
primary haustoria attached (average of 917,669 from the two replicates) and tabulated them by              
length (Figure 3a). The length distribution is as expected for small RNAs enriched in Dicer               
products, with more reads between lengths of 21-24 nt. Plants usually show a peak of 21 nt                 
enriched with miRNAs, and a peak of 24 nt enriched with siRNAs that target transposable               
elements. Interestingly, the ambiguous reads show a marked preference for 21 nt. We then              
traced where all the ambiguous reads mapped in A. thaliana, which is better annotated, and               
classified them according to the annotation of this genome (Figure 3b). Most of the ambiguous               
reads map to rRNA (25%) and miRNA (24%), with a small contribution of tRNA (0.7%). This is a                  
clear enrichment above expected since rRNA, miRNA and tRNA together occupy less than             
0.1% of the Arabidopsis genome, while comprising 58% of the ambiguous reads. Less than 1%               
map to other kinds of annotations, including introns, while the remaining 41% map to              
unannotated intergenic regions, which in total occupy 59% of the genome. Many plant miRNAs              
are highly conserved [28], so it is not surprising that most of the 21 nt ambiguous reads coincide                  
with conserved and highly-expressed miRNAs like MIR159, MIR161 and MIR166. Ribosomal           
reads are more evenly distributed across all read lengths, suggesting that their presence is              
caused by low levels of random fragmentation that are unavoidable for such highly abundant              
molecules. Lastly, tRNAs are less evenly distributed, with a slight peak at 26 nt observable in                
this case, suggesting that specific fragments of tRNAs are being sequenced. Ribosomal and             
miRNA contribution is also the main explanation for the ambiguous reads in libraries collected              
from the Cuscuta stem above the primary haustoria, and from Arabidopsis stems sampled ~4cm              
above the point of C. campestris haustorial attachment (Supplementary Figure 3).  
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Figure 3. Genomic origin of ambiguous reads from libraries of A. thaliana stems with a C.                
campestris haustorium attached. Each bar represents the sequenced reads of one size            
between 18-30 nucleotides. Bar height represents the actual number of reads (top) or the              
fraction of reads (bottom). a) Mapping categories defined as in Figure 1 , but split according to                
read length: host (green), parasite (blue) or ambiguous (purple). b) Genomic annotation of             
ambiguous reads only: rRNA (orange), miRNA (yellow), tRNA regions (light purple), intergenic            
(light green), or other annotation (light blue). 
 
 
With these results we can see that discarding sRNA-Seq reads that map to rRNA and tRNA                
annotations, which is a common practice, can lead to a substantial reduction of ambiguity. Yet               
the ultimate goal of this work is to be able to detect RNA transfer between species and                 
emerging literature suggests tRNA and rRNA fragments could be extracellular signaling           
molecules. For instance, tRNA fragments can be selectively packaged into extracellular vesicles            
and move between cells [29], while tRNA fragments in sperm can contribute to intergenerational              
inheritance [30]. So, there is likely to be important information that could be lost if we discard                 
these kinds of sequences.  
 
Discarding conserved miRNA sequences would be even more problematic, since foreign           
miRNAs are known to benefit from hijacking existing regulatory networks. A Kaposi’s sarcoma             
herpesvirus miRNA uses the same target site as the cellular miR-155 [31], while we have shown                
that nematode miR-100 and let-7, which are identical to their mouse counterparts, are present in               
secreted material during infection [11]. There is a need therefore to be able to track the origin of                  
ambiguous sequences. 
 
Even highly conserved miRNAs, tRNAs and rRNAs have point differences in some part of their               
sequence. For example, the loops of miRNA hairpins are poorly conserved. Due to the high               
depth of current sequencing technology, there will be reads with slightly different 5’ and 3’ ends,                
due to imperfect processing by Drosha and/or Dicer enzymes. There will also be reads              
overlapping the miRNA loop region. In fact, the existence of reads from different parts of the                
miRNA hairpins is the basis of popular prediction tools like miRDeep2 [32]. Thus, as long as we                 
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are able to extend the conserved sequences into a less conserved portion, we should be able to                 
disambiguate them. We therefore explore the possibility of using sRNA-Seq assembly to reduce             
ambiguity through extension of reads. 
 
 
Assembly of sRNA-Seq reads 
 
Most work on RNA sequence assembly has focused on producing full-length transcripts from             
mRNA-Seq data. There are many methods that work in a genome-guided fashion: first mapping              
reads to the genome, then assembling clusters (exons) and connecting them with rules based              
on splicing properties and sequencing depth, e.g. Cufflinks [33] and Stringtie [34]. Analogous to              
these, there are some tools that cluster sRNA-Seq reads where they map to the genome, in                
order to predict sRNA-producing loci: segmentSeq [35], CoLIde [36], and ShortStack [37].            
ShortStack fits our needs quite well, since it analyzes reference-aligned sRNA-Seq reads to             
cluster them in order to predict sRNA genes, which we shall refer to as genome-guided clusters                
from here on. So, we used ShortStack to perform a genome-guided sRNA assembly and              
quantification. 
 
We were also particularly interested in finding out if we could deal with situations in which the                 
genomes for the interacting organisms were not available, or were not of sufficient quality. In               
these cases a de novo assembly approach is the only option. There has been a lot of                 
development regarding de novo RNA-Seq assemblers. These tools do not require genome            
sequences, but rely instead on breaking down reads into k-mers, building a graph, and finding               
paths through the graph to build longer sequences. To our knowledge, these RNA-Seq de novo               
assemblers have not been used before on sRNA-Seq data. This makes sense, since k-mers of               
at least 25 nucleotides are usually used to improve the assembly quality, while functional              
molecules in sRNA-Seq (e.g. miRNAs) are generally smaller than this size. In our case, though,               
we want to extend sRNA sequences beyond the mature RNA, in order to capture sequence               
variation that can help us infer the correct genome of origin. 
 
We tested six popular de novo transcriptome assemblers: Oases [38], rnaSPAdes [39],            
SOAPdenovo [40], Tadpole [41], TransABySS [42] and Trinity [43]. These programs first            
generate contigs by extending k-mers in a graph. This step produces short contigs that are later                
connected into full-length transcripts, but for our purpose of slightly extending sRNAs it could be               
sufficient, so we included the output of this “k-mer extension” step as a standalone method               
when possible (see Methods). One of the most important parameters for all the assemblers is               
the k-mer size, which affected the number of reads that we could remap to the assembly                
(Supplementary Figure 4 ). The optimal k-mer was 19 for all our sRNA-Seq datasets, except for               
the A. thaliana + C. campestris data where 21 was slightly better. 
 
The four assemblies generated with only the first “k-mer extension” step           
(rnaSPAdes-only-assembler, Tadpole, Trans-ABySS-stage-contigs and Trinity-inchworm)     
performed quite differently than the full pipelines (Supplementary Figure 5). They generated a             
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larger number of contigs (Figure 4a), that were shorter (Figure 4b), and mapped better to the                
reference genomes (Figure 4c) than the full transcriptome assemblers. Additionally, library           
re-mapping was higher than with the other evaluated assemblies (Figure 4d). From these,             
Trinity-inchworm showed the highest library re-mapping across the evaluated datasets and is            
therefore used in our subsequent analyses. 
  

 
Figure 4. Evaluation of sRNA-Seq de novo assembly by “k-mer extension”. We compared             
the methods using the following criteria: a) total number of generated contigs, b) average length               
of contigs, c) percent of contigs that map perfectly to the reference genomes, and d) percent of                 
initial libraries that map perfectly to the contigs. As a guideline, the mean library read length is                 
shown in b). The full pipelines are compared in Supplementary Figure 5. 
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Assembly reduces ambiguity of host-parasite sRNA-Seq reads 
 
To compare the amount of ambiguity between the original reads (unassembled), de novo             
contigs and genome-guided clusters, we first assigned contigs (when possible) and clusters to             
their genome of origin. We then mapped reads directly to the sequences of the contigs or                
clusters. We used the number of uniquely-mapping reads in each contig or cluster to help               
distribute the reads that could map equally well to more than one contig or cluster (see                
Methods). For this analysis our only question was if the reads could be assigned confidently to                
one of the two interacting genomes. With either type of assembly, many reads previously              
annotated as ambiguous can now be assigned to one of the two interacting genomes (Figure               
5). In general the contigs appear to be more conservative, with a modest increase in the                
parasite component, and maintaining a relatively large portion of ambiguous reads. The            
genome-guided clusters, on the other hand, include higher percentages of parasite reads than             
the de novo contigs which is in part due to the fact that some reads will be distributed randomly                   
if no uniquely mapping reads are found nearby (detailed further below). 
 

 
Figure 5. Percent of ambiguous and parasitic reads before and after assembly. Each             
column represents the average of sRNA-Seq samples for each experiment, first according to             
unassembled reads, then de novo contigs, then genome-guided clusters. Each experiment is            
given the name of the two interacting species, and the Y-axis is scaled independently to               
highlight the percent of parasite (blue) and ambiguous (purple) reads. Host reads (green) in all               
cases make up the remainder of 100%. 
 
 
These results show how the assembled versions of the sRNA-Seq data contain more reads that               
can be assigned to the interacting organisms, and less ambiguity, allowing researchers to use              
more information from their experiments. The recommended assembly strategy (de novo or            
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genome-guided) will depend on particular experiments. If one or both genomes are not available              
or are not of sufficient quality, de novo assembly is the best alternative. For high quality                
genomes, genome-guided assembly yields even less ambiguity. However, the assembled          
sequences could include reads from the wrong genome, due to errors during assembly, or              
because ShortStack randomly distributes a certain number of ambiguous reads between the            
genomes. For these reasons, we ideally want an independent test for validating the origin of the                
assembled sequences mapped to the parasite genome. 
 
 
Differential expression analysis improves detection of parasite sRNAs 
 
Ideally, parasite sRNAs should be present in those samples that were infected with the parasite,               
and be absent (no reads) in uninfected samples. Unfortunately, this does not perfectly hold up,               
due to problems like index-swapping during library preparation [44,45]. Especially for situations            
when the parasite sRNAs can be present in very low numbers, a statistical framework is needed                
to determine which sRNAs are reliably present in the infected compared to the uninfected              
samples. For this, we can use differential expression analysis, which also helps to confirm if our                
assembled sequences behave like parasite or host sequences. 
 
We designed our new H. bakeri extracellular-vesicle (EV) experiment to be amenable to             
differential expression analysis. We collected RNA from three biological replicates of MODE-K            
intestinal epithelial cell cultures treated with H. bakeri EVs, and the corresponding untreated             
controls. Since we do not know the dynamics of import, or the stability of foreign sRNA once                 
inside the cells, we performed RNA extraction at 4 and 24 hours after treatment and following                
extensive washing of cells. We then mapped all the sRNA-Seq reads to our assembled contigs               
and clusters, quantified their expression using ShortStack, and also obtained the simple counts             
of each unique unassembled read for the baseline analysis. For these three types of count               
matrices, we performed the exact same steps of a differential expression analysis (see             
Methods). We also kept track of H. bakeri and M. musculus mapping status for reads, contigs                
and clusters and used this information when visualising our results (Supplementary Figure 6).             
This helps us determine which reads/contigs/clusters may actually come from the host genome,             
despite mapping perfectly and preferentially to the parasite genome. 
 
The process of sequence assembly reduces ambiguity, but another advantage is that it reduces              
the number of statistical tests during differential expression analysis (there are fewer distinct             
contigs/clusters than unassembled reads), reducing a problem known in Statistics as           
multiple-testing. In addition, if the reads are grouped correctly into real biological entities with a               
consistent expression pattern, we should get higher counts, which can increase statistical            
power. 
 
Although we conservatively performed the differential expression analysis starting with all           
unassembled reads, contigs or clusters, we focused only on the subset that should contain the               
real parasite sequences: those that were assigned to the H. bakeri genome (parasite), and that               
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were up-regulated in the EV-treated samples. With these criteria, the parasite sequences we             
detected with each strategy, included an average of 11,508 counts for the unassembled reads,              
23,553 counts for the de novo contigs, and 64,729 counts for the genome-guided clusters.              
These results show how the assemblies have increased the number of confidently detected             
parasitic sequences: the de novo contigs contain twice as many counts, and the genome-guided              
clusters about 5.6 times more counts, compared to the unassembled reads (Supplementary            
Table 4 ). 
 
Our mapping results (Figure 5) had indicated that all sequences that map perfectly to the               
parasite genome represent genuine parasite sRNAs. Our differential expression results suggest           
that in all cases they can still be divided into those that are genuine parasite sRNAs                
(up-regulated in samples treated with parasite EVs), and those that more likely represent host              
sRNAs (similar expression levels in treated and control samples). Nevertheless, the differential            
expression analysis could be underpowered (due to a small number of replicates and high              
biological variability) leading to false negative predictions. So we next wanted to further validate              
these results. 
 
 
Validation of differentially expressed parasitic sRNAs 
 
A distinctive property of H. bakeri EV sRNAs is that the majority are 22-23 nucleotides in length                 
and begin with a Guanine [25]. This is in stark contrast to endogenous MODE-K sRNAs that are                 
dominated by miRNAs of 22 nucleotides that begin with a Uracil (Supplementary Figure 7). We               
thus have a simple method to determine whether there is a signature in the reads associated                
with true parasite sRNAs: compare the first-nucleotide preference of our predictions. We first             
classified all sRNA reads according to starting nucleotide and length, defining three categories:             
22G (enriched in parasite EVs), 22U (enriched in MODE-K) or other (see Methods). As a               
reference, libraries prepared from untreated MODE-K libraries contain 2% 22G and 34% 22U,             
while pure H. bakeri EVs contain 62% 22G and <1% 22U reads (Figure 6a). The assembled                
contigs and clusters that do not show evidence of differential expression (non-DE) have high              
fractions of 22U reads, similar to mouse MODE-K libraries (Figure 6b). This would suggest that               
some of the assembled sequences are actually chimeras, i.e. they have incorporated a large              
number of sequences that are really from the host. Unfortunately we cannot rule out that some                
of these contain true parasite miRNA sequences that are diluted by the host content and remain                
as false negatives of our differential expression analysis. Nevertheless, all of the sRNAs that are               
significantly upregulated (DE) after treatment with parasite EVs are enriched with 22Gs,            
consistent with them being true parasitic sRNAs (Figure 6b). The unassembled reads classified             
as non-DE also have the 22G pattern of true parasitic sequences, but they are relatively few in                 
number (6,928). Our proposed strategies show that the assembled contigs and clusters allowed             
us to discover a larger number of true parasitic sequences (25,555 22G reads for de novo                
contigs and 33,289 22G reads for genome-guided clusters) than the baseline analysis with             
unassembled reads (22,131 22G reads). In general, our results show that considering mapping             
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information alone can be misleading, and that a differential expression approach is useful to              
separate parasite from host sequences, particularly for the assembled contigs and clusters. 
 

 
Figure 6. First-nucleotide categories for differential expression results. Reads were          
categorized as 22G (yellow), 22U (red), or other (grey) based on length and first-nucleotide. a)               
sRNA profiles of control samples: untreated MODE-K cells and purified H. bakeri Extracellular             
Vesicles (EVs). Bar height represents the fraction of all reads. b) sRNA profiles of unassembled               
reads, de novo contigs and genome-guided clusters. For each of these sets there are two bars,                
the first one represents differentially expressed up-regulated elements (D.E.) and the second,            
elements that lack evidence for differential expression (non D.E.). Bar height represents the             
number of reads (top) or the fraction of reads (bottom) belonging to these categories.  
 
As a final validation of the parasite DE sequences that we detect inside host cells, we checked if                  
they are also found in pure H. bakeri EV libraries. To do so, we first mapped all our pure H.                    
bakeri EV reads to our DE contigs and clusters (for the unassembled reads, we checked which                
ones were identical). We do not expect to recover every sRNA read observed in EV libraries,                
since some EV sRNAs might not get into MODE-K cells, others might be turned over quickly or                 
degraded, and others might not be detected due to insufficient sequencing depth. We reasoned,              
though, that the percent of recovered EV reads is an indication of how good the method is at                  
recovering true parasite sRNAs within host cells. This analysis showed us that 1,811 DE              
unassembled reads correspond to 18.7% of the total reads in EV libraries, while 1,152 DE               
contigs and 1,432 DE clusters receive 29.9% and 42.3% of all EV reads, respectively (Figure               
7). These results again highlight the improvement achieved by both assembly strategies, with             
the genome-guided clusters representing the best results according to all of our criteria. 
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Figure 7. Percent of reads from pure H. bakeri EV libraries, recovered during differential              
expression analysis of MODE-K cells treated with EVs. Each circle represents the total reads              
from H. bakeri EV libraries (average of two replicates). The blue portions represent the fractions               
recovered by detected H. bakeri sequences according to each strategy, the grey portions represent              
EV reads that were not recovered. The number of H. bakeri differentially expressed elements              
detected with each strategy (up-regulated in cells treated with parasite EVs) is shown in parenthesis               
above each circle. 
 
 
 
CONCLUSIONS 
 
We are now realising that the phenomenon of organisms exchanging RNA during their             
interactions is surprisingly widespread. These small RNAs can be produced and secreted by the              
cells of one organism, travel within extracellular vesicles, and perform regulatory functions when             
entering cells of a different species. We know very little about which kinds of RNAs can be                 
secreted, which ones make it inside the cells of the receiving organism, and which have a                
functional role for the interacting organisms. We are just beginning to understand the potential              
functions and applications of this kind of RNA communication. Although the sequencing            
technology is at a state where we can begin to interrogate any pair of interacting species at                 
unprecedented detail, there are no bioinformatic tools to correctly interpret the results. Before             
we can properly study the mechanisms and functions of RNA communication, we need to be               
able to correctly disentangle the sRNA-Seq data that is being acquired. We have shown here               
that the small size of sRNA-Seq sequences, and the large size of genomes, leads to many                
sequences mapping incorrectly or ambiguously to both interacting genomes (Figure 2). Even            
worse, many of the produced sRNAs that can be exchanged include sequences from highly              
conserved miRNAs, rRNA or tRNAs that are even more likely to map well to both genomes                
(Figure 3 ). We first showed that by performing sequence assembly of the sRNA-Seq data, we               
can greatly reduce the problem of ambiguity, and assign more sequences to their correct              
genome of origin (Figure 5). Importantly, we revealed that mapping information can still be              
misleading, and we showed that differential expression analysis can be used to confidently             
detect parasitic sRNAs that have been internalized by host cells. 
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We designed new experiments to detect the parasitic EV sRNAs from H. bakeri that              
successfully enter a mouse epithelial cell line. With our methods, we showed that 2% of the                
sRNA-Seq reads within treated MODE-K cells come from the parasite (Supplementary Table            
4). This is a substantial increase over the simple approach of mapping to the genomes and                
dividing perfect hits between parasite and host, which suggested that only 0.7% of the              
sRNA-Seq reads were parasitic (Figure 1). Our genome-guided assembly increased this           
number to 2.5% (Figure 5) but we showed with differential expression that this was inflated with                
host sequences. The sequences within our final 2% estimate have all the characteristics of true               
H. bakeri EV sequences: they show the expected length and first-nucleotide 22G preference             
(Figure 6 ) and include more than twice the number of reads sequenced from independently              
purified EVs, compared to the approach using unassembled reads (Figure 7). 
 
There are still some caveats to the methods we propose. Highly conserved sequences from the               
host, like miRNAs, can be misincorporated into parasitic sequence assemblies. The magnitude            
of this problem will depend on the relative level of expression of the conserved sRNA from both                 
organisms in the sequenced sample. In our nematode-mouse experiment, a few miRNAs that             
we know are present in purified EVs (e.g. let-7, miR-100) are naturally expressed in MODE-K               
cells. Since even equally expressed sRNAs should be present in a ~98/2 mouse/nematode             
ratio, it is not surprising that some mouse sequences erroneously contribute to the nematode              
assemblies. In any case, we believe that there is still room for improving sRNA-Seq assembly               
strategies. Promisingly, programs for de novo RNA-Seq assembly can be used, with appropriate             
parameters, and yield results that are comparable with genome-guided sRNA-Seq cluster           
assembly. 
 
We have come to appreciate the great advantage of designing experiments to study RNA              
communication with differential expression in mind. Ideally this implies sampling from the            
separate organisms, and from the interacting material, all with several biological replicates. We             
realise that this might be a limitation in some cases, due to cost, the availability of sufficient                 
quantity of biological material (e.g. purified EVs) or even the possibility of obtaining certain              
samples (e.g. from an obligate intracellular parasite). Nevertheless, we would like to stress the              
importance of having biological replicates and controls of at least one of the interacting              
organisms, particularly for confidently detecting low-abundance sRNAs. 
 
Regardless of bioinformatic approaches, there may always be some sequences that are 100%             
identical between the interacting organisms. Careful use of chemically modified nucleotides           
might allow one to experimentally confirm the origin of some of these sequences. The most               
interesting next steps, though, will be to focus on understanding the function of the exchanged               
RNAs. Most work until now has focused on the assumption that extracellular sRNAs will behave               
as miRNAs when inside a different organism. Yet there are an increasing number of reports to                
suggest extracellular RNAs can operate through non-canonical mechanisms [46]. Furthermore,          
we have recently shown that H. bakeri EV sRNAs are mainly 5’ triphosphate species that are                
bound to a non-conventional worm Argonaute, which is unlikely to function like a miRNA              
Argonaute [25]. Here, we have now shown that these parasite sRNA sequences are stably              
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detected inside mouse cells and future experiments will focus on understanding what these             
foreign RNA messages are doing to the host. 
 
 
 
METHODS 
 
 
Selected experiments and reference genomes 
 
The list of host-parasite species used in this work is shown in Table 1 . Further information of the                  
sRNA-Seq data processed from these experiments is included in Supplementary Table 1. The             
reference genomes used are described in Supplementary Table 2. For each experiment, in             
addition to the separate reference genomes, a combined genome reference was produced, by             
concatenating the sequences from both genomes. In cases where rRNA was missing, these             
were manually added as an extra contig. A two word label was added to all fasta headers to                  
differentiate parasite form host genome sequences. All genome files were indexed using            
Bowtie-1.2.2 [47]. 
 
 
Small RNA-Seq library processing 
 
The quality of all sRNA-Seq libraries was inspected using FastQC [48]. Raw reads were then               
cleaned and trimmed to remove 3’ adapter using reaper [49] with the following parameters:              
geom no-bc, mr-tabu 14/2/1, 3p-global 12/2/1, -3p-prefix 8/2/1, -3p-head-to-tail 1, -nnn-check           
3/5, -polya 5 -qqq-check 35/10, -tri 35. Finally, only reads between 18-30 nucleotides were kept.               
When needed, reads were collapsed into individual sequences with counts, using tally [49]. One              
replicate of the MODE-K control cells (incubated for 24 hours without treatment) was an outlier               
according to PCA analysis, did not have a clear peak of mouse miRNAs (suggesting degraded               
RNA), and was excluded from further analyses. 
 
 
Calculations of host, parasite and ambiguous reads 
 
Each library was aligned to the separate host and parasite genomes using Bowtie-1.2.2 [47] and               
requiring perfect end-to-end hits (-v 0). Each read was classified as: host if it only hit the host                  
genome, parasite if it only hit the parasite reference and ambiguous if it hit both genomes. 
 
 
Shared k-mers between genomes 
 
The fractions of k-mers between sizes 12-30 that are shared between each pair of genomes               
were calculated using Jellyfish 2.2.10 [27]. 
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Genome-guided sRNA assembly 
 
To perform genome-guided sRNA assembly we used ShortStack 3.8.2 [37] with parameters            
favoring smaller clusters: a minimum coverage of one read, requiring 0 mismatches, using             
unique-mapping reads as guide to assign multi-mapping reads (mmap: u), a padding value of 1,               
reporting all bowtie alignments (bowtie_m: ‘all’), and a ranmax value of 5000 to avoid losing               
reads mapping to multiple sites. The default bowtie cores and sorting memory values were also               
increased to improve processing time. Reads were aligned to the concatenated host and             
parasite reference genomes described above. 
 
 
De novo assembly of sRNA-Seq 
 
To evaluate de novo assembly of small RNA reads, six popular RNA-Seq de novo assemblers               
were selected: Oases [38], rnaSpades [39], SOAPdeNovo [40], Tadpole [41], TransAbyss [42]            
and Trinity [43]. These assemblers were also evaluated using only their first “k-mer extension”              
step: a) rnaSpades “--only-assembler”, Trans-AbySS “--stage contigs” and Trinity         
“--no_run_chrysalis”; b) the equivalent for Oases was to use contigs generated by velvetg, while              
for SOAPdenovo-Trans the .contig was used; c) Tadpole is a simple assembler that only              
performs k-mer extension. Additional parameters for each configuration are available in           
Supplementary Table 3. All the generated contigs were post-processed as follows: 1) all reads              
used to generate the assembly were aligned back to the contigs using Bowtie-1.2.2 (-v 0), and                
2) using the BAM files from these alignments, contig edges that did not have any reads mapping                 
to them were trimmed back. All contigs were then mapped to the reference genomes to decide if                 
they were host, parasite or ambiguous, as described above. 
 
 
Disambiguation of host-parasite mixed samples 
 
After applying the post-processing step to all contigs, reads that aligned to contigs were              
classified into three groups: reads that mapped to multiple contigs (multi-mapping reads), reads             
that mapped exclusively to one contig (support reads) and reads that did not align to any contig. 
In order to disambiguate some of the multi-mapping reads, the following criteria were used.              
Considering all contigs that received each multi-mapping read: 
a) If the two contigs with the highest number of support reads were both from either host or                 

parasite, the counts of the multi-mapping read were divided among the contigs according to              
the proportion of support reads. 

b) If one of the two contigs with the highest number of support reads came from host and the                  
other from parasite, the two numbers of support reads were compared to decide if they were                
significantly different, using a Poisson test (𝝺 estimated as the average of these two              
numbers). The count of the multi-mapping read were distributed according to the proportion             

20 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/508937doi: bioRxiv preprint 

https://paperpile.com/c/8gNCvL/Scxf
https://paperpile.com/c/8gNCvL/ta1q
https://paperpile.com/c/8gNCvL/TEL0
https://paperpile.com/c/8gNCvL/oPZ0
https://paperpile.com/c/8gNCvL/exqH
https://paperpile.com/c/8gNCvL/6Yov
https://paperpile.com/c/8gNCvL/WqO3
https://doi.org/10.1101/508937


 

of support reads in each contig only if the difference of support read counts was significant                
(p-val < 0.05). If not, the counts were considered to remain ambiguous. 

Additionally, all reads that did not align to any contig were collapsed to their unique sequences                
using tally. These new “unitigs” were concatenated to the contig file to be part of the reference.                 
To define which sequences belonged to host, parasite or remain ambiguous, these sequences             
were aligned to both genomes using Bowtie-1.2.2. For a small number of contigs that did not                
align with Bowtie1 (-v 0), Bowtie2 was used with default parameters but allowing up to two                
mismatches (XM:i flag in the SAM file). 
 
 
H. bakeri life cycle and EV isolation 
 
CBA x C57BL/6 F1 (CBF1) mice were infected with 400 L3 infective-stage H. bakeri larvae by                
gavage and adult nematodes were collected from the small intestine 14 days post infection. The               
nematodes were washed and maintained in serum-free media in vitro as described previously             
[25]. To collect H. bakeri EVs, culture media from the adult worms was collected from 24-92                
hours post-harvest from the mouse (the first 24 hours of culture media was excluded due to                
potential host contaminants). Eggs were removed by spinning at 400 g and supernatant was              
then filtered through 0.22mm syringe filter (Millipore) followed by ultracentrifugation at           
100,000 g for 2 h in polyallomer tubes at 4 °C in a SW40 rotor (Beckman Coulter). Pelleted               
material was washed two times in filtered PBS at 100,000 g for 2 h and re-suspended in PBS.                
The pelleted H. bakeri EVs, were quantified by Qubit Protein Assay Kit (Thermo Fisher), on a                
Qubit 3.0. 
 
 
MODE-K uptake assays 
 
MODE-K cells were kindly provided by Dominique Kaiserlian (INSERM) and were maintained as             
previously described [50]. Uptake experiments were carried out with 2.5ug EVs per 50,000 cells              
for 4 and 24 hrs time points, in a 37 oC, 5% CO2 incubator. Cells without incubating with H.                   
bakeri EVs were treated as control with the two-time points. Cells were then washed twice in                
PBS before RNA extraction with a miRNeasy mini kit (Qiagen), according to manufacturer’s             
instructions. The RNA Integrity Number (RIN) was tested with the Agilent RNA 6000 Pico Kit on                
a Agilent 2100 Bioanalyzer. Three biological replicates were included for each of the samples. 
 
 
Small RNA sequencing 
 
Total RNA was treated with RNA 5' Polyphosphatase (Epicenter) following manufacturer's           
instructions, before library preparation. Libraries for small RNA sequencing were prepared using            
the CleanTag small RNA library prep kit according to manufacturer’s instruction. For all             
samples, 1:2 dilutions of both adapters were used with 18 amplification cycles (TriLink             
BioTechnologies). Libraries of the length between 140-170bp were size-selected and          
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sequenced on an Illumina HiSeq 2500 in high-output mode with v4 chemistry and 50bp SE               
reads, by Edinburgh Genomics at the University of Edinburgh (Edinburgh, UK). 
 
 
Differential expression analysis (DEA) 
 
To perform differential expression analysis, a matrix was first built for individual sequences             
using all unique reads in the libraries to be compared. In this matrix rows represent individuals                
sequences and columns represent libraries. Each cell represents the times a sequence was             
found in a given library. A similar procedure was done to obtain matrices for contigs and clusters                 
with the following modifications: each library was aligned to FASTA files of the contigs or               
clusters, and those reads that mapped to more than one sequence were distributed             
proportionally to support counts (see above). 
 
Differential expression analyses were performed using the edgeR package [51]. The sRNA            
elements (individual sequences, de novo assembled contigs or genome-guided clusters) with           
low expression were filtered out: only those with more than one count per million in at least two                  
libraries were kept. The MODE-K vesicle-treated libraries were compared to the control            
untreated MODE-K libraries, regardless of the incubation time (4 and 24 hours). To determine              
differential expression, a generalized linear model (GLM) likelihood ratio test was used, fixing a              
common dispersion value of 1.817 for reads, 2.141 for contigs, and 1.984 for clusters. False               
discovery rates (FDR) were calculated and sequences with a FDR lower or equal to 0.2 and a                 
positive log fold-change were considered parasite sequences according to differential          
expression. 
 
 
Defining sRNA classes by length and first nucleotide 
 
The first nucleotide and length of each sequence mapping to the de novo assembled contigs               
and genome-guided clusters was calculated using custom R scripts and the Rsamtools            
package. The criteria to classify a sequence as “22G” were: reads should begin with a Guanine,                
and be 22-24 nucleotides long. For the “22U” category: reads should begin with a Thymine and                
should be exactly 22 nucleotides long. These criteria were defined observing the properties of              
the pure EV and MODE-K libraries. 
 
 
Expression comparison with H. bakeri EV libraries 
 
To quantify the expression in pure H. bakeri EVs of the contigs and clusters that were                
assembled using the infected MODE-K samples, the EV libraries were mapped onto the contigs              
and clusters using ShortStack. The same parameters were used as for defining sRNA clusters:              
minimum coverage of 1, perfect matches, unique-mapping reads as a guide to assign             
multi-mapping reads (mmap: u), a padding value of 1, and a ranmax value of 5000. 
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