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Abstract 

The concept of brain states, functionally relevant large-scale patterns, has become popular in 

neuroimaging. Not all components of such patterns are equally characteristic for each brain 

state, but machine learning provides a possibility of extracting the structure of brain states from 

functional data. However, the characterization in terms of functional connectivity measures 

varies widely, from cross-correlation to phase coherence, and the idea that different measures 

will provide the similar information is a common assumption made in neuroimaging. Here, we 

compare the performance of phase coherence, pairwise covariance, correlation, model-based 

covariance and model-based precision for a dataset of subjects performing five different 

cognitive tasks. We employ multinomial logistic regression for classification and consider two 

types of cross-validation schemes, between- and within-subjects. Furthermore, we investigate 

whether classification is robust for different temporal window lengths. We find that informative 
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links for the classification, meaning changes between tasks that are consistent across subjects, 

are entirely uncorrelated between correlation and covariance. These results indicate that the 

corresponding FC signature can strongly differ across FC methods used and that interpretation 

is subject to caution in terms of subnetworks related to a task.  

Keywords: machine learning, functional connectivity, fMRI, task information, brain states 

 

1. Introduction 

At a macroscopic level the brain may be conceived of as a complex system of regions 

engaging in dynamic, interactive behaviour (Bullmore & Sporns, 2009). Neuroscience has 

developed various quantitative approaches to define stereotypical brain states corresponding to 

cognitive functions. Brain states may refer to purely spatial patterns, activity distribution across 

voxels or brain regions (Cabral, Kringelbach, & Deco, 2017). Alternatively, they may refer to 

spatio-temporal patterns and distributions functional interactions between regions (Vidaurre, 

Smith, & Woolrich, 2017). 

Whole-brain modelling has been widely used to characterise spatio-temporal brain states and 

capture their multivariate distributions. This approach attempts to explain observed functional 

interaction in terms of models of underlying region dynamics as well as structural connections 

between regions. Modelling of the oscillatory behaviour in brain regions has, for instance, 

shown that there are differences in this local parameter across task-dependent brain states 

(Senden, Reuter, van den Heuvel, Goebel, & Deco, 2017). On the other hand, models estimating 

directed connectivity based on the functional interactions between brain regions have also 

revealed differences in network parameters across task-dependent brain states (Pallares et al., 

2018; Senden et al., 2018).  

Recently, the application of machine learning to infer brain states has also gained popularity 

(Naselaris, Kay, Nishimoto, & Gallant, 2011; Pallares et al., 2018; Rahim, Thirion, Bzdok, 

Buvat, & Varoquaux, 2017; Varoquaux et al., 2017; Xie et al., 2017). Machine learning is useful 

since it can extract the relevant feature patterns of brain states from multivariate data and assess 

the generalization capabilities of these brain states to novel data. This approach has been highly 

successful for inferring brain states from functional connectivity (FC). Conventionally, 

functional connectivity (FC) is calculated across the entire duration of a session. Recently, 

however, focus has shifted towards dynamic functional connectivity (dFC) which is calculated 

at shorter time scales in the range of tens of seconds (Gonzalez-Castillo et al., 2015; Hutchison 
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et al., 2013; Preti, Bolton, & Van De Ville, 2017). For example dFC can be calculated with the 

sliding-window approach (Cabral, Kringelbach, et al., 2017), where Pearson correlation or 

covariance is computed between the signals of every pair of region with a small temporal 

window moving along the time series. A studies using the sliding window concept of dFC could 

successfully distinguish between the brain states during five different cognitive tasks 

(Gonzalez-Castillo et al., 2015; Xie et al., 2017). At the opposite end of the spectrum of time-

scales, FC can be obtained instantaneously with phase coherence (Cabral, Vidaurre, et al., 2017; 

Senden et al., 2017). Evidently, there is a multitude of studies using various FC metrics to 

investigate brain states during different tasks (Cabral, Vidaurre, et al., 2017; Gonzalez-Castillo 

& Bandettini, 2017; Senden et al., 2018, 2017). However, the interchangeable use of FC metrics 

rests on the assumption that the results are comparable across metrics. This has not been 

validated since varying methodologies make it impossible to compare them across studies.  

Our aim is test this assumption and to systematically evaluate the task-relevant information 

structure of the corresponding brain states across metrics and time-scale. The tasks include rest, 

a n-Back task, the Flanker task, a mental rotation task, and an Odd-man-out task (Senden et al., 

2018, 2017). Specifically, we want to investigate whether choice in FC metric (Pearson 

correlation, covariance, phase coherence) affects classification performance and whether task-

dependent information is similar across metrics. Secondly, we investigate metrics across 

different time scales, because it is possible that certain time scales do not capture information 

relevant to the classification, which would not be an issue of the metric itself, but of the 

parameter choice for its temporal window. Also, including metrics that reach from 

instantaneous FC (phase coherence) until static FC (global FC) provides a broad systematic 

overview of the temporal spectrum. 

We find that the choice of parameters and metrics for connectivity classification strongly impact 

the task-relevant information retrieved and call for a more careful approach towards the 

interpretation of such results.  

 

2. Material and methods 

2.1 Functional MRI Data 

We use an fMRI resting and task state dataset acquired in 14 subjects (8 females, M = 28.76, 

22 – 43 years old) as described in a previous paper (Senden et al., 2017). The dataset comprised 

the blood-oxygen-level dependent (BOLD) signal of 68 Regions of Interest (ROIs) obtained in 
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five functional runs per subject with 192 data points each. During each run, the subjects were 

either resting, or engaging in one of four tasks: the Eriksen flanker task (Eriksen & Eriksen, 

1974), a n-Back task (Kirchner, 1958), a mental rotation task (Shepard & Metzler, 1971), or a 

verbal Odd-man-out task (Flowers & Robertson, 1985). A detailed description of the stimuli 

used in the task paradigm can be found in Senden et al. (2017). The dataset was acquired at the 

Maastricht Brain Imaging Centre, (Maastricht University) on a 3 Tesla scanner (Tim 

Trio/upgraded to Prisma Fit, Siemens Healthcare, Germany). The data was pre-processed with 

BrainVoyager QX (v2.6; Brain Innovation, Maastricht, the Netherlands) using slice scan time 

correction, motion correction, and a high-pass filter with a frequency cut-off of .01 Hz. After 

subsequent wavelet de-spiking and regressing out global noise signals estimated from the 

ventricles, the average BOLD signal for each region was computed by taking the mean of voxels 

uniquely belonging to one of the 68 ROIs specified by the DK atlas (Desikan et al., 2006) with 

Matlab (2013a, The MathWorks, Natick, MA). 

2.2 Spatiotemporal functional connectivity 

2.2.1 Phase Coherence. To obtain the analytical signal (Smith, 2007), a complex-

valued function that has no negative frequency components, from the BOLD signal the Hilbret 

transformation was applied to the BOLD signal for each ROI. To calculate the instantaneous 

Figure 1. Extracting FC from Bold signal. (A) Bold signal of 68 ROIs for 384 s of a fMRI session. Dots indicating omitted BOLD 

timeseries for visibility purposes. (B) FC matrices extracted from the BOLD signal in window with window length (WL). To eliminate 

identical values a mask is applied and (ROI*(ROI-1))/2 = 2278 features are obtained for each timepoint t. Subsequent timepoints are 

shifted by time step (Δt). (C) Table of FC types calculated from the Bold signal. 
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functional connectivity (iFC) between region i and j for time t the cosine of the phase difference 

of the analytical signal of the two regions, was calculated. 

𝑖𝐹𝐶(𝑖, 𝑗, 𝑡) = cos(𝜃(𝑖, 𝑡) − 𝜃(𝑗, 𝑡)) 

2.2.1.1 Eigenvector. To obtain the connectivity among eigenvectors we calculated the 

outer product of the strongest eigenvector of iFC as previously described in Cabral, Vidaurre, 

et al. (2017).  

𝑒𝑖𝑔𝐹𝐶(𝑖, 𝑗, 𝑡) = 𝑒𝑖𝑔(𝑖𝐹𝐶(𝑖, 𝑡)) ⊗ 𝑒𝑖𝑔(𝑖𝐹𝐶(𝑗, 𝑡)) 

where,   𝑖𝐹𝐶(𝑡) = instantaneous FC at timepoint t. 

  𝑒𝑖𝑔 = largest eigenvector. 

2.2.2 Covariance. The dynamic covariance (dCov) was calculated across window 

lengths of 20 s, 40 s, 60 s, 80 s, 100 s, 120s with a timestep of 4 s. We also computed pairwise 

Cov over the whole session to obtain global functional connectivity (gCov). Dynamic 

covariance between region n and p for time window t was calculated as follows: 

𝐶𝑜𝑣(𝑖, 𝑗, 𝑤) =  (𝑋(𝑖, 𝑤) −𝑋(𝑖)̅̅ ̅̅ ̅̅ ) ∗  (𝑋(𝑗, 𝑤) −𝑋(𝑗)̅̅ ̅̅ ̅̅ ) 

where,   𝑋(𝑘,𝑤) = BOLD in region k in time window w. 

𝑋(𝑘)̅̅ ̅̅ ̅̅ = Mean BOLD in region k. 

2.2.3 Pearson’s Correlation. Dynamic pairwise Pearson correlation (dPC) was 

calculated with windows of 20 s, 40 s, 60 s, 80 s, 100 s, 120 s, and with a timestep of 4 s as well 

as within 6 s window with a timestep of 2 s to make the timescale of the PC as similar as 

possible to the timescale of the Hilbert transform. We also computed pairwise PC over the 

whole session to obtain global functional connectivity (gPC). Dynamic Pearson correlation 

between region i and j for time window w was calculated as follows: 

𝐶𝑜𝑟𝑟(𝑖, 𝑗, 𝑡) = 
(𝑋(𝑖, 𝑤) −𝑋(𝑖)̅̅ ̅̅ ̅̅ ) ∗  (𝑋(𝑗, 𝑤) −𝑋(𝑗)̅̅ ̅̅ ̅̅ )

√(𝑋(𝑖, 𝑤) −𝑋(𝑖)̅̅ ̅̅ ̅̅ )
2
 ∗ (𝑋(𝑖, 𝑤) −𝑋(𝑗)̅̅ ̅̅ ̅̅ )

2
 

where,   𝑋(𝑘,𝑤) = BOLD in region k in time window w. 

𝑋(𝑘)̅̅ ̅̅ ̅̅ = Mean BOLD in region k. 

2.2.4 Model-based Precision and Covariance. The model-based precision and 

covariance (Scikit-learn, GraphLassoCV) attempts to estimate the inverse of the covariance 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 31, 2018. ; https://doi.org/10.1101/509059doi: bioRxiv preprint 

https://doi.org/10.1101/509059
http://creativecommons.org/licenses/by-nc/4.0/


TASK INFORMATION ACROSS FUNCTIONAL CONNECTIVITY METHODS  5 
 

 
 

matrix, the precision matrix, which is proportional to the partial correlation matrix.  The 

empirical precision matrix is not included as the covariance matrix is underdetermined, 

meaning it has less timepoints than regions in short time windows, and could not be 

calculated. The GraphLasso algorithm achieves this by enforcing sparsity on the estimation of 

the precision matrix by using an L1 penalty which is automatically estimated with cross-

validation. More specifically, the GraphLasso algorithm (Friedman, Hastie, & Tibshirani, 

2008) minimizes the following function to estimate the precision matrix K and the 

corresponding covariance matrix S. 

�̂� = 𝑎𝑟𝑔𝐾𝑚𝑖𝑛(𝑡𝑟𝑆𝐾 − 𝑙𝑜𝑔𝑑𝑒𝑡𝐾 + 𝛼||𝐾||1) 

where,  𝐾 =precision matrix to be estimated. 

   𝑆 = sample covariance matrix. 

   ||𝐾||1 =sum of absolute values of off-diagonal coefficients of K. 

   𝛼 =L1 penalty parameter. 

2.3 Classification 

2.3.1 Multinomial logistic regression. We use multinomial logistic regression (MLR) with 

a cross-entropy loss. We use an L2 penalization in combination with a limited-memory 

Broyden-Fletcher-Goldfarb-Shannon algorithm solver (Bishop, 2006) and an L1 penalty with 

a SAGA algorithm solver (Defazio, Bach, & Lacoste-Julien, 2014). The SAGA algorithm is an 

incremental gradient method which supports non-strongly convex problems. The penalty 

parameter is optimized with nested cross-validation meaning that the parameters are first 

optimized using cross-validation within the training set before being applied to the entire 

training set. 

2.3.2 Cross-validation.  

2.3.2.1 Within Subject. Due to temporal autocorrelation simple permutation does not give us 

any indication of the stability of the signal within a subject over time. Therefore, we use blocked 

cross-validation. For each task and subject, the samples are divided in 10 consecutive folds. 

The number of samples contained in each fold depends on the metric chosen. Subsequently, the 

decoder is trained on the first fold and tested on the second fold. Then the decoder is trained on 

the first and second fold and tested on the third fold. This procedure is continued until the last 
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fold is reached. The accuracy of the validation procedure is obtained from the mean of the 

testing accuracy over the 10 trained decoders.  

The penalty parameter is optimized using nested cross-validation. More specifically, 

parameters for each training set are optimized with 2-fold temporal cross-validation on the 

training set (see figure 3). 

2.3.2.2 Between Subject. The decoder is trained on 13 of the 14 subjects and tested on the 

remaining subject. This procedure is repeated with each subject being left out once. The 

accuracy of the validation procedure is the mean of the testing accuracy over the 14 trained 

decoders. 

The penalty parameter is optimized using nested cross-validation. More specifically, 

parameters for each training set are optimized with 13-fold subject cross-validation on the 

training set (see figure 3). 

2.3.3 Recursive feature elimination. Recursive feature elimination (RFE) iteratively 

removes the feature that is least important for classification. Features leading to a maximal 

accuracy using temporal and subject cross-validation are then deemed the best features to use 

for the classification. The ranking of all features obtained by the RFE is indicative of the 

structure of the information obtained from each FC. The number of best features was also 

selected within the nested cross-validation before optimizing the penalty parameter. 

The classification pipeline was implemented in python using the Scikit-learn library 

(Pedregosa et al., 2011). 

2.4 Similarity Measures 

Spearman Rank. The Spearman Rank correlation 𝑟𝑠 is a measure of non-linear 

correlation with a value between -1, denoting perfect anti-correlation, and 1, denoting perfect 

correlation (Lehman & Rourke, 2005). It quantifies how well the relationship between two 

variables can be expressed with a monotonic function. 

𝑟𝑠 =
𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋 ∗ 𝜎𝑟𝑔𝑌
 

where,  𝑟𝑔𝑋 , 𝑟𝑔𝑌 =Ranks of variables X, Y. 

𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌) =Covariance of the rank variables. 
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𝜎𝑟𝑔𝑋 , 𝜎𝑟𝑔𝑌 = Standard deviation of the rank variables. 

 

3. Results 

3.1 Performance of the FC metrics 

3.1.1 Covariance 

Within subject cross-validation accuracy of covariance follows a monotonically increasing 

trend starting from a window length of 20 s and saturates after 80 s (figure 3B). The necessity 

of within-subject CV to quantify the temporal stability of the classes becomes clear when 

compared to cross-validation with permutation sets which disregard the temporal 

autocorrelation (S2). While the permutation CV achieves maximal accuracy for all window 

lengths, within-subject CV shows a break-down of temporal stability which has also been 

Figure 3: Within- and between-subject cross-validation procedure. Covariance outperforms correlation. (A) Within-subject and between-

subject cross-validation. In within-subject cross-validation the data is split in sections along time. (B) Between-subject CV accuracy of 

covariance and correlation. (C) Between-subject CV accuracy of covariance and correlation. 
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shown by other studies (Roberts et al., 2017). Adding variance to covariance only improves 

accuracy for a window length of 80 s but decreases on average by approximately 5% (S1A). 

Global covariance achieves a slightly higher accuracy with 0.8 (figure 3B). 

 Between subject cross-validation accuracy of covariance increases from a window length of 

20s and saturates at 100s with a dip at 80 s (figure 3C). The performance seems to follow a 

growing trend (excluding 80 s) reaching a maximum at a window length of 100 s with an 

accuracy of 77 % and decreasing thereafter. Global covariance achieves a similar accuracy as 

dynamic covariance with a window length of 60 s. 

3.1.2 Pearson correlation 

Within-subject performance of the Pearson correlation increases from a window length of 20 s 

and saturates after 80 s (figure 3B). Global correlation performance is 0.8.  

Between-subject cross-validation accuracy of correlation follows a monotonically increasing 

trend from a window length of 20 s until 120 s. Global Pearson correlation accuracy is ~15% 

higher than performance of dPC with a window length of 120 s. The different trends observed 

in empirical covariance and correlation suggests, that they are affected by the noise in the data 

differently. At windows until 120 s covariance generally performs better possibly because the 

standardization in the Pearson correlation also removes information in the variance at shorter 

time scales. At longer time-scales the variance likely contained more noise and the removal 

increases performance.  

3.1.3 GraphLasso Precision 

Figure 4: Performance of model-based FC measures GraphLasso covariance and precision. (A) Within-subject cross-validation accuracy 

using GraphLasso covariance (green) and GraphLasso precision (pink). (B) Between-subject cross-validation accuracy using 
GraphLasso covariance (green) and GraphLasso precision (pink). Chance level is 0.2. 
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Within-subject performance of the GraphLasso Precision follows an asymptotic trend towards 

the maximal accuracy increasing from a window length of 20 s and reaching maximal accuracy 

at a window length of 100 s (figure 4A). 

Between-subject cross-validation accuracy of GraphLasso precision shows a growing 

monotonical trend continually increasing from a window length of 20 s without saturating. 

Similar to empirical covariance, model-based covariance does not improve at longer window 

lengths, suggesting, that it might be affected by noisy lower frequency fluctuations. 

Interestingly, removing noisy fluctuation by estimating the underlying precision performs much 

better than standardizing it with the variance like in the Pearson correlation.   

3.1.4 GraphLasso Covariance 

Within-subject performance of the GraphLasso covariance increases from a window length of 

20 s and reaches approximately maximal accuracy at a window length of 100 s (figure 4A). 

Model-based as well as empirical metrics follow a similar asymptotic trend towards maximal 

accuracy, suggesting that they are affected by similar noisy temporal fluctuation at shorter time-

scales. 

Between-subject cross-validation accuracy of GraphLasso covariance continually increases 

from a window length of 20 s reaching a maximum at 60 s and decreasing again until 120 s. 

3.1.5 Phase coherence. 

Figure 2: CV Accuracy at short time-scales. (A) Within-subject CV accuracy of the BOLD timeseries, phase coherence (iFC), the largest 

eigenvector of the phase coherence (iFC), Pearson Correlation with a window length of 6s and a time step of 2 s (dPC 6s) and Pearson 
Correlation with a window length or 20s and a time step of 4 s (dPC 20s). (B) Between-subject CV accuracy of the BOLD timeseries, phase 

coherence (iFC), the largest eigenvector of the phase coherence (iFC), Pearson Correlation with a window length of 6s and a time step of 2 s 
(dPC 6s) and Pearson Correlation with a window length or 20s and a time step of 4 s (dPC 20s). Chance level (0.2) indicated with black line. 
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Phase coherence performed poorly for both within- and between-subject CV. The median of 

the within-subject performance for phase coherence was 0.42 with chance level at 0.2 (figure 

2A). The largest eigenvector of phase coherence only scored slightly above 0.32. The median 

of the between-subject performance of phase coherence was 0.33 and for the largest eigenvector 

was 0.27 (figure 2B).  

The BOLD signal does not seem to carry any information to distinguish among tasks and using 

the eigenvector of the phase coherence leads to a decrease in accuracy and likely does not select 

relevant axes of the variability. Interestingly, the Pearson Correlation with a similar time-step 

as phase coherence and window of only 6 s did not outperform phase coherence. 

3.2 Regularisation methods  

Regularization is a commonly used tool to prevent a classifier from overfitting the training set 

leading to low testing accuracy (Bishop, 2006). However, L2 regularization did not reduce 

overfitting adequately as training accuracy was up to 50% higher than testing accuracy (see 

table S4). 

Figure 5. Feature selection performance for covariance. (A) The recurrent feature ranking (RFE) is used to test how many best features give 

the highest within-subject CV and between-subject CV accuracy. (B) Within-subject CV and (C) Between-subject CV accuracy of all features 

versus best features with covariance. 
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Using L1 regularization instead of L2 regularization in our classification did not improve the 

performance of the classifier. Rather it reduced accuracies by approximately 3% on average 

(see S2). Another tool that can be used to reduce dimensionality additionally is feature selection. 

However, this did not lead to a significant increase in within- or between-subject CV accuracy 

(figure 5A – C). 

3.3 Task and rest are highly dissimilar 

The strong decrease of accuracy towards smaller time-scales may be predominantly due to the 

difficulty of differentiating among tasks rather than discriminating task states from rest. Here 

we test this possibility by plotting the silhouette scores of phase coherence and covariance of 

the axes along which activity is most different between tasks, extracted with Linear 

Discriminant Analysis. Silhouette scores quantify if an observation (black dot) is closer to the 

distribution of its own class (black 2) or to the distribution of another class (green 1) as shown 

in figure 6A. If the observations are strongly clustered the silhouette score is high, whereas it  

decreases if the classes are more overlapping such as in the example given in figure 6A. Figure 

6B shows that at smaller time-scales task samples have significantly lower silhouette scores, 

meaning that they are more similar to other classes as opposed to their own, whereas rest is 

more similar to itself than other classes. With increasing window length the silhouette scores 

increase, but the difference between rest and tasks remains except for the time window of 80 s.  

Figure 6. Silhouette scores of linear discriminant analysis (LDA) of rest and task. Features were reduced to four components with LDA and 

the silhouette score was calculated. (A) The first LDA component of covariance with window length 40 s is plotted on the x-axis and the 

second LDA component is plotted on the y-axis. Rest is plotted in black and task is plotted in green. (B) Violinplot of silhouette scores of 

LDA of rest and task for various FC Metrics. The metrics used were phase coherence (-), and covariance corresponding to the window lengths 

on the x axis. Rest is plotted in green and task is plotted in pink. Black bars indicate the inner 50 percentiles. The white dot indicated the 

median. A y-score of 0 indicates no clustering whereas 1 indicates strong clustering. Significance level indicated with symbols, p < 0.0001 

(****), p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), and non-significance (-). 
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3.2 The structure of task-relevant information differs strongly across time-scale and method of 

FC extraction. 

To evaluate the distribution of information structure across various FC methods we perform 

recursive feature elimination for 

each method and compare the 

resulting rankings using 

Spearman rank correlation 

(figure 7). The model-based 

metrics (precision and 

covariance) as well as the 

empirical metrics (Pearson 

correlation and covariance) 

display a similar decrease in 

similarity across time scale. 

GraphLasso precision and 

covariance also retain most 

similarity at similar time scales. 

This pattern is also present for 

GraphLasso covariance and empirical covariance, but not for GraphLasso precision and 

empirical covariance. Most importantly, the feature ranking of covariance (as well as 

covariance-based metrics) and correlation are not correlated at any time-scale, suggesting that 

the task-relevant information structure retrieved by these two methods is very dissimilar. With 

covariance and Pearson correlation the task-relevant information structure becomes more 

dissimilar with increasing difference in window length. At the shortest time-scales, feature 

rankings obtained from iFC are slightly correlated with Pearson correlation metrics and eigFC 

are slightly correlated with covariance metrics. Instantaneous FC and eigFC do not seem to be 

correlated. The decreasing correlation with size of time window suggests task-relevant 

information content also differs across time-scale. Although the concurrent decrease in 

accuracy for shorter time-scales might also indicate that sufficiently long window lengths are 

necessary for a stable estimate for covariance or correlation. 

 

Figure 7. Task-dependent information structure can differ strongly across metric. 

Spearman rank correlation of all FC metrics.  
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4. Discussion 

The aim of this paper was to evaluate if brain states can be classified with FC in a 

systematic manner and whether the extracted brain states are influenced by the choice of FC 

metric (phase coherence, Pearson correlation, covariance, GraphLasso precision, and 

GraphLasso covariance). Among empirical measure covariance outperformed correlation under 

certain conditions, in this five-task classification. Adding variance to covariance did not further 

increase accuracy. GraphLasso precision outperformed all empirical measures and was only 

outperformed by GraphLasso covariance for a window length of 20 s. Within-subject cross-

validation accuracy was generally higher than between-subject cross-validation and can be 

conceptualized as an upper limit on accuracy. Another possibility is that more subjects are 

needed for between-subject cross-validation as suggested in a study by Abraham & al. (2017).  

They also found that accuracy increased with higher parcellation. Within- and between-subject 

cross-validation accuracy increased in proportion with the time-scale, which is likely due to 

high-frequency noise in the signal which is more likely to affect short time-scales (Cabral, 

Kringelbach, et al., 2017; Hutchison et al., 2013). An alternative explanation for the low 

accuracy at shorter time-scales is low task performance (Gonzalez-Castillo et al., 2015). 

Gonzalez-Castillo et al. (2015) showed that large deviations in task performance are correlated 

with substantial errors in classification accuracy. These deviations are more likely to bias 

connectivity measures at shorter time-scales. However, we did not control for this possibility. 

A third explanation could be that stable classification depends on specific frequency bands 

which would require window lengths long enough to capture these functional interactions. A 

study investigating the dependence of community structure on window length has already 

shown that different frequency bands can address distinct neuronal processes (Telesford et al., 

2016). Specific neuronal processes could be better captured by models aimed at specific 

frequency bands such as dynamic causal modelling or the Kuramoto model (Cabral, Hugues, 

Sporns, & Deco, 2011; Friston, Kahan, Biswal, & Razi, 2014).  

Accuracy at shorter time-scales was low for testing data, it was high for training data. 

This finding highlights that proper cross-validation is necessary to draw conclusions regarding 

classification performance since the data tends to get overfit. This is critical, since a high 

accuracy of the classifier on the training set is necessary, but not sufficient for high accuracy 

on the novel testing set. For example, in the study by Xie et al. (2017) the performance of the 

trained classifier was not validated with a novel dataset. Such validation would have been 

informative of whether the learned parameters can distinguish the brain states due to true 
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differences that hold at a population level or due to noise (Varoquaux et al., 2017). The problem 

of overfitting can generally be addressed by feature selection or regularization. Here neither 

feature selection nor L1 penalty regularization lead to an increase in accuracy for between- or 

within-subject CV. While feature selection eliminates features, the L1 penalty forces their 

weights to 0 indicating that the task-relevant signatures may be more distributed, because the 

classification improves of no features are discarded. Note that we did not perform an exhaustive 

search of the parameter space for the optimal combinations of feature number and L2 penalty 

parameter. Instead, we searched the parameter space serially: We optimized the feature number 

and then optimized the penalty parameter. 

The strong decrease of accuracy at shorter time-scales was primarily driven by the difficulty of 

distinguishing tasks from each other rather than distinguish task states from rest. This suggests 

that the brain at rest is very dissimilar to the brain engaging in a task. This is in line with 

previous studies using whole-brain modelling (Ponce-Alvarez, He, Hagmann, & Deco, 2015; 

Senden et al., 2018, 2017). However, it could be argued that this stems from the fact that the 

stimuli used here were all visual, making the classification entirely reliant on non-sensory 

processes. It is, therefore, quite possible for other classification problems to reach better 

accuracies at smaller time-scales and with different FC methods. Another limiting factor could 

be the context-dependence of the features used in the multinomial classification. A feature can 

be crucial for distinguishing between task A and B, but not between task A and C. If the 

classification problem only includes tasks A and C the task-relevant information structure that 

is extracted by the classifier changes depending on the tasks included.  

Task-relevant features that are crucially depends on which tasks are included in the 

classification. le specific functional interactions might be relevant in a pairwise discrimination 

between two tasks, they could become irrelevant in a multinomial discrimination depending on 

the tasks among which the classifier is discriminating. 

The most important finding, however, is that the task-relevant information structure differs 

strongly not only across time-scale, but also across connectivity measures. The absence of any 

similarity in information structure retrieved from correlation and covariance is a 

counterintuitive and problematic result. Correlation is merely normalized covariance and 

evidence that such closely related methods can provide very different information contradicts 

the implicit assumption that similar methods should lead to similar conclusions. That this is not 

the case is problematic for the interpretation of any results obtained for different measures and 
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time-scales since there is no ground-truth on task-relevant functional interactions. For example, 

how would one interpret evidence from studies using network theory to detect communities 

based on different FC methods (Fuertinger & Simonyan, 2016; Najafi, Mcmenamin, Simon, & 

Pessoa, 2016; Sporns, 2013)? This underlines the need for alternative, better defined metrics 

such as model-based FC, where the relationships between the various metrics are better defined 

(Cabral et al., 2011; Friston et al., 2014; Pallares et al., 2018; Senden et al., 2018, 2017). 

However, the optimal metric may still strongly depend on the classification problem itself. 

Consequentially, this will impact the research design, for example when attempting to classify 

switching trials. Here, the task intervals have to be long enough for windows to only contain a 

single task. 

 In conclusion, the following suggestions can be made for classification in neuroscience. 

(1) When one is interested in groups and wished to obtain results which generalize to new 

subjects, accuracy model-based FC metrics should be used and precision should be preferred 

except for window lengths around 20 s. (2) When one is interested in individual subjects, 

empirical covariance should be preferred for classification. (3) Generally, larger window 

lengths should be preferred. (4) For MLR classifiers, L2 regularization should be preferred.  

The pipeline developed here can be applied to other neuroimaging tools as well such as 

electroencephalography (EEG) or functional near-infrared spectroscopy (fNIRS). Quantifying 

the performance of a classifier is furthermore especially important in clinical settings when 

aiming to identify pathological brain states in new patients. Predictive decoders, for example in 

the case of brain-computer interfaces, can be implemented with FC metrics, but should be tuned 

within-subject as the performance is better and more stable. The main result of this study, 

namely, the dissimilarity of information-structure across FC methods, calls for greater care in 

the selection of FC method with respect to the aim of a study as well as a more careful 

interpretation of results in neuroscience using different FC methods in the future. 
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Supplementary Material 

 

Supplementary Figure 1: Adding variance to covariance does not outperform covariance 

alone. (A) Within-subject cross-validation accuracy using only covariance (green) and 

covariance + variance (blue). (B) Between-subject cross-validation accuracy using only 

covariance (green) and covariance + variance (blue). Chance level is 0.2. 

 

Supplementary Figure 2: Using L1 regularization instead of L2 regularization does not 

improve accuracy for covariance. (A) Within-subject cross-validation accuracy using L2 

penalty (green) or L1 penalty (orange). (B) Between-subject cross-validation accuracy using 

L2 penalty (green) or L1 penalty (orange). Chance level is 0.2. 
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Supplementary Figure 3: Random split overestimates the cross-validation accuracy within a 

timeseries. Within-subject cross-validation within a run using covariance with a time series 

split (green) and a stratified shuffle split (orange). Chance level is 0.2. 

 

 

Table S4 

Results of parameters for metric and cross-validation using all features 

Cross-

Validatio

n 

Feature

s (All/ 

Best) 

Metric Penalty 

parameter 

C (Mean) 

Penalty 

parameter 

C (Std) 

Testing 

Accurac

y 

(Median

) 

Testing 

Accurac

y (Std) 

Training 

Accurac

y 

(Median

) 

Training 

Accurac

y (Std) 

T AF Cov20 1012.72 1907.481 0.6768 0.0286 1 0 

S AF Cov20 0.0008 0.0008 0.4989 0.0724 0.8052 0.0956 

T AF Cov40 106.1225 35.3507 0.9224 0.0291 1 0 

S AF Cov40 592400.6 2079076 0.5965 0.087 1 0 

T AF Cov60 59.8244 58.09 0.9888 0.0079 1 0 

S AF Cov60 591719.8 2079269 0.6889 0.0973 1 0 

T AF Cov80 94.332 47.148 0.9878 0.0137 1 0 

S AF Cov80 1155225 2829641 0.6195 0.1389 1 0 

T AF Cov100 70.7443 57.7611 1 0 1 0 

S AF Cov100 577996 2082457 0.7704 0.1128 1 0 

T AF Cov120 24.1652 46.8836 1 0 1 0 

S AF Cov120 757.4603 1661.841 0.7667 0.1172 1 0 

S AF gCov 14186.89 50856.45 0.7 0.229 1 0.0713 

T AF Covvar20 530.6649 1432.906 0.6241 0.0393 1 0 

S AF Covvar20 2324511 3644483 0.4413 0.0751 0.9879 0.0129 

T AF Covvar40 577.2371 1416.75 0.8837 0.033 1 0 

S AF Covvar40 591795.2 2079248 0.5322 0.0897 1 0.0008 

T AF Covvar60 117.906 0 0.9735 0.0118 1 0 

S AF Covvar60 2325932 3643578 0.6 0.1218 1 0 

T AF Covvar80 94.332 47.148 0.9898 0.0106 1 0 
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S AF Covvar80 1155621 2829479 0.6195 0.1347 1 0 

T AF Covvar100 59.8244 58.09 0.9988 0.0035 1 0 

S AF Covvar100 578701.7 2082262 0.6417 0.1353 1 0 

T AF Covvar120 71.0459 57.3969 1 0.0015 1 0 

S AF Covvar120 578365.5 2082355 0.6299 0.1443 1 0 

T AF PC6 828418.9 2420044 0.3765 0.0365 0.9205 0.0647 

S AF PC6 0.0016 0.0004 0.2931 0.0365 0.8337 0.0692 

T AF PC20 59.5502 58.3639 0.6589 0.034 1 0 

S AF PC20 14455.62 50797.02 0.4297 0.0716 0.9877 0.0044 

T AF PC40 117.906 0 0.901 0.0242 1 0 

S AF PC40 14119.31 50875.18 0.5395 0.109 0.9991 0.0004 

T AF PC60 83.1174 53.1455 0.9796 0.0094 1 0 

S AF PC60 42.1202 56.4874 0.6012 0.1339 0.9999 0.0003 

T AF PC80 106.4035 34.5077 0.9976 0.0042 1 0 

S AF PC80 16.8893 41.2399 0.6145 0.1448 1 0 

T AF PC100 82.8226 53.596 1 0.0024 1 0 

S AF PC100 8.6683 30.3058 0.6394 0.1538 1 0 

T AF PC120 48.0339 57.0611 1 0.0019 1 0 

S AF PC120 14144.6 50868.18 0.6561 0.1779 1 0.0052 

S AF gPC 362.2131 1238.769 0.8 0.1767 1 0 

T AF iFC 0.8653 1.3192 0.4185 0.0301 0.8386 0.0943 

S AF iFC 0.0015 0.0006 0.3318 0.0448 0.7501 0.0773 

T AF eigFC 808640.7 2425920 0.3239 0.0181 0.7442 0.1186 

S AF eigFC 577600.3 2082567 0.2724 0.0299 0.633 0.0026 

T AF Bold 0.2888 0.8639 0.1895 0.0384 0.252 0.0267 

S AF Bold 8.6388 30.3142 0.2391 0.0224 0.2575 0.004 

T BF Cov20 59.5502 58.3639 0.6679 0.0259 1 0 

S BF Cov20 14110.8827 50877.5085 0.4824 0.0732 0.8012 0.1035 

T BF Cov40 83.1174 53.1455 0.9173 0.0315 1 0 

S BF Cov40 1170345.44

5 

2823915.00

9 

0.6151 0.0889 1 0.0002 

T BF Cov60 82.8295 53.5854 0.9867 0.0083 1 0 

S BF Cov60 578315.028

2 

2082369.07

4 

0.6605 0.104 1 0 

T BF Cov80 94.332 47.148 0.9867 0.0133 1 0 

S BF Cov80 577970.316

3 

2082464.37

8 

0.6039 0.1353 1 0 

T BF Cov100 70.7443 57.7611 1 0 1 0 

S BF Cov100 412.5183 1225.3701 0.7718 0.1126 1 0 

T BF Cov120 24.1652 46.8836 1 0 1 0 

S BF Cov120 592442.954

3 

2079064.26

5 

0.75 0.1155 1 0 

T AF Prec10_GL 39510.52 79020.91 0.876 0.0127 0.9963 0.0035 

S AF Prec10_GL 0.0017 0 0.5275 0.1068 0.9867 0.0014 

T AF Prec20_GL 0.6255 1.1277 0.9934 0.002 0.9992 0.0003 

S AF Prec20_GL 0.0213 0.031 0.6581 0.1298 0.9986 0.0005 

T AF Prec30_GL 0.0223 0.0315 1 0.0007 1 0 

S AF Prec30_GL 101.4738 40.2506 0.7321 0.159 1 0 

T AF Prec40_GL 0.0017 0 1 0 1 0 
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S AF Prec40_GL 51.5701 57.458 0.7645 0.17 1 0 

T AF Prec50_GL 0.0086 0.0206 1 0.0008 1 0 

S AF Prec50_GL 59.9869 57.9263 0.8169 0.1697 1 0 

T AF Prec60_GL 0.0017 0 1 0 1 0 

S AF Prec60_GL 14498.76 50784.77 0.8591 0.1859 1 0 

T AF Cov10_GL 0.9134 1.2877 0.9349 0.0081 0.9963 0.0002 

S AF Cov10_GL 345.5998 1242.707 0.5527 0.1188 0.9965 0.0005 

T AF Cov20_GL 519.7243 1436.427 0.9967 0.0022 0.9992 0.0001 

S AF Cov20_GL 1413.447 2158.975 0.6337 0.1353 0.9991 0.0001 

T AF Cov30_GL 507.0977 1440.45 1 0.0012 1 0 

S AF Cov30_GL 117.906 0 0.6951 0.1365 1 0 

T AF Cov40_GL 0.0566 0.0275 1 0.0012 1 0.0006 

S AF Cov40_GL 413.1352 1225.163 0.6882 0.1519 1 0 

T AF Cov50_GL 0.3102 0.8573 1 0 0.9998 0.0001 

S AF Cov50_GL 577651.8 2082552 0.6831 0.1412 1 0 

T AF Cov60_GL 0.2896 0.8636 1 0.0009 0.9995 0.0002 

S AF Cov60_GL 43.961 55.1154 0.6667 0.1351 1 0 
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