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Abstract1

Perceptual processes can be probed by fitting stimulus-response models2

that relate measured brain signals such as electroencephalography (EEG) to3

the stimuli that evoke them. These models have also found application for4

the control of devices such as hearing aids. The quality of the fit, as measured5

by correlation, classification, or information rate metrics, indicates the value6

of the model and the usefulness of the device. Models based on Canonical7

Correlation Analysis (CCA) achieve a quality of fit that surpasses that of8

commonly-used linear forward and backward models. Here, we show that9

their performance can be further improved using several techniques, includ-10

ing adaptive beamforming, CCA weight optimization, and recurrent neural11

networks that capture the time-varying and context-dependent relationships12

within the data. We demonstrate these results using a match-vs-mismatch13

classification paradigm, in which the classifier must decide which of two stim-14

ulus samples produced a given EEG response and which is a randomly chosen15

stimulus sample. This task captures the essential features of the more com-16

plex auditory attention decoding (AAD) task explored in many other studies.17

The new techniques yield a significant decrease in classification errors and an18

increase in information transfer rate, suggesting that these models better fit19

the perceptual processes reflected by the data. This is useful for improving20

brain-computer interface (BCI) applications.21

∗daniel.wong@ens.fr
†diliberg@tcd.ie
‡alain.de.cheveigne@ens.fr

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 31, 2018. ; https://doi.org/10.1101/509307doi: bioRxiv preprint 

https://doi.org/10.1101/509307
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction22

In experiments that record brain responses to stimulation, stimulus-response models23

are useful in providing insight into the cortical components of the response. As these24

models can provide information about auditory attention, they have also been put25

forward for brain-computer interface (BCI) applications, such as the “cognitive”26

control of a hearing aid [Wronkiewicz et al., 2016]. Previous studies have used linear27

system identification techniques to either predict the response from the stimulus28

(forward model) or else infer the stimulus from the response (backward model)29

[Lalor and Foxe, 2010, Ding and Simon, 2012a,b, 2013, 2014]. In addition to these, a30

third form of model projects both stimulus and response into a common subspace via31

weight matrices obtained using Canonical Correlation Analysis (CCA) [Hotelling,32

1936, Dmochowski et al., 2017, de Cheveigné et al., 2018]. As they are applicable to33

responses to arbitrary stimuli, they allow the research to move beyond the standard34

”evoked-response” paradigm that requires repeating the same short stimulus many35

times [Ross et al., 2010]. The quality of the model can be quantified by calculating36

the correlation coefficient between actual and predicted brain response (forward37

model), or between the actual and inferred stimulus (backward model), or between38

canonical correlate (CC) pairs (CCA). Higher correlation values indicate that the39

model better captures the relation between stimulus and response.40

Alternatively, the quality of a model can be quantified on the basis of its per-41

formance in a classification task, in terms of discriminability (d-prime) or percent42

correct classification. This is particularly useful when developing a model for BCI43

applications where classification decisions are made based on short segments of44

data. In this paper, we use a simple “match-vs-mismatch” task based on the cor-45

tical response to a single speech stream [de Cheveigné et al., 2018], in which the46

classifier must decide whether a segment of EEG matches the segment of stimulus47

that evoked it, as opposed to some unrelated segment of the same stimulus. A good48

classification performance is taken to indicate that the model successfully captures49

the stimulus-response relationship.50

Other studies have used the more complex Auditory Attention Decoding (AAD)51

task, in which a subject is presented with two concurrent stimulus streams (for52

example two voices speaking at the same time) and required to attend one stream53

or the other. The classifier attempts to identify which stream was the focus of54

the subject’s attention, given both stimulus streams and the EEG [Hillyard et al.,55

1973, Ding and Simon, 2012b, Mirkovic et al., 2015, 2016, O’Sullivan et al., 2015,56

Akram et al., 2016, O’Sullivan et al., 2017]. Our simpler task allows a more direct57

evaluation of the stimulus-response model that underlies both tasks.58

A previous study from our group found that models based on CCA were superior59

to classic forward and backward models in terms of correlation, d-prime, and classi-60
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fication error rate [de Cheveigné et al., 2018]. Better performance was attributed to61

the ability of CCA to strip both stimulus and EEG of irrelevant dimensions, and to62

the fact that the multiple CCs allow multivariate classifiers to be deployed. In the63

aforementioned study, the various models were constrained to have the same num-64

ber of free parameters so as to ensure a fair comparison between models. Here, we65

relax that constraint and introduce several new schemes to improve model quality.66

Arguably, models that give better performance more accurately capture the cortical67

representation of the stimulus, and good performance is also essential for applica-68

tions. Each strategy is evaluated individually and in combination with others by69

comparison with a baseline (backward model or CCA).70

Apart from the standard backward model, we test the following models and71

classification schemes (each coded by a letter): CCA (C), maximizing component d-72

prime (D), adaptive beamforming (B), linear discriminant analysis (L), multilayer73

perceptron (M), simple recurrent layer (S) and gated recurrent unit (G). Both D74

and B improve the computation of CCA components. D does this during training,75

and B does this during testing. M, S and G use a neural network architecture to76

improve the match-vs-mismatch classification over L.77

2 Methods78

2.1 Evaluation Dataset79

The dataset used to evaluate canonical correlation analysis (CCA) performance80

was presented in [de Cheveigné et al., 2018] and published in [Broderick et al.,81

2018a,b]. The speech stimulus was an audio book recording of the “Old Man and82

the Sea” recorded with a 44100 Hz sampling rate. The recording was divided83

into 32 segments lasting approximately 155s each. The stimulus was presented84

diotically over headphones to 8 subjects, while electroencephalography (EEG) data85

were recorded using a 128-channel Biosemi system with a sampling rate of 512 Hz.86

The subjects heard a single speech stream, in contrast to other studies in which87

subjects were presented with two (or more) concurrent speech streams.88

2.2 Classification Task89

Stimulus-response models were evaluated using a classificaton task that involved90

deciding which of two candidate speech stream segments gave rise to a given EEG91

segment (match-vs-mismatch single-talker classification task). We chose this task,92

based on single-talker data, as it permits the analysis to focus on improving the93

stimulus-response models and decoding algorithms from a signal processing perspec-94

tive rather than dealing with the cortical dynamics of attention that is encountered95

in the commonly used AAD task.96
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2.3 EEG and audio preprocessing97

We employed the same preprocessing procedures as in [Wong et al., 2018]. In98

short, 50 Hz line noise and harmonics were filtered from the EEG using a boxcar99

(smoothing) filter kernel of duration 1/50 Hz. The data were then downsampled100

to 64 Hz using a resampling method based on the Fast Fourier Transform (FFT).101

To downsample, this method reduces the size of the FFT of the signal by truncat-102

ing frequency components above the Nyquist frequency. An inverse FFT is then103

used to restore the signal to the time domain. The mean was removed from each104

EEG channel. EEG was then highpassed at 0.1 Hz using a 4th order forward-pass105

Butterworth filter for low frequency detrending. The joint diagonalization frame-106

work [de Cheveigné and Parra, 2014] was employed to remove eye artifacts in an107

automated fashion as described in [Wong et al., 2018], using FP3 and FP4 chan-108

nels to detect eyeblink timepoints. For the the backward model, the EEG data109

was further bandpassed between 1-9 Hz using a windowed sync type I linear-phase110

finite-impulse-response (FIR) filter, shifted by its group delay to produce a zero-111

phase [Widmann et al., 2015], with a conservatively chosen order of 128 to minimize112

ringing effects. This frequency range was chosen as it has been shown that the cor-113

tical responses time-lock to speech envelopes in this range [O’Sullivan et al., 2015].114

To obtain broadband audio envelopes, the presented speech stimuli were filtered115

into 31 frequency bands via a gammatone filterbank with a frequency range of 80-116

8000Hz [Patterson et al., 1987]. Each frequency band was fullwave rectified and117

raised to the power of 0.3 before being summed together. This step was intended to118

partially mimic the rectification and compression that is seen in the human auditory119

system [Plack et al., 2008]. The EEG and audio were subsequently downsampled to120

64 Hz and aligned in time using start-trigger events recorded with the EEG. EEG121

channels and audio data were Z-normalized to their mean and standard deviation122

in the training data.123

2.4 Cross-Validation Procedure124

The classifiers described in the following sections were trained and evaluated on125

data for each subject using a 10-fold nested cross-validation procedure. This ensures126

that the test data used to evaluate the classifiers is not used during any part of the127

training process (including hyperparameter tuning). The data were divided into 10128

folds and the outer cross-validation loop iterated over these folds. At each interation,129

1 fold was held-out for testing, and the remaining 9 were used for training and130

hyperparameter tuning. Hyperparameters were tuned via an inner cross-validation131

loop: at each iteration of the inner loop, one fold was held out for validation and132

the remaining 8 were used for training. The objectives used for tuning the model133

hyperparameters are described with each model.134
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2.5 Stimulus-response models135

Commonly-used stimulus-response models are shown in Figure 1. A forward stimulus-136

response model predicts the EEG from the speech envelope, a backward model infers137

the speech envelope from the EEG, and CCA maps both speech envelope and EEG138

data into a common subspace. Here we consider only backward and CCA-based139

models. The backward model, commonly used in decoding studies [Bialek et al.,140

1991, Mesgarani et al., 2009, Mesgarani and Chang, 2012, Ding and Simon, 2012b,141

Mirkovic et al., 2015, O’Sullivan et al., 2015, Van Eyndhoven et al., 2017, Wong142

et al., 2018], serves as a baseline by which other models can be evaluated. The title143

of the subsections describing each model (other than backward) or decoding scheme144

contains a code in brackets, to make it easier to refer to various combinations of145

these schemes.146

A ρ

ρ B

BA

audio

audio

audio

EEG

EEG

EEG

forward:

ρ1
ρ2
ρ3
...

MODEL:

backward:

CCA:

Figure 1: Three main stimulus-response models. The forward model predicts the EEG

from the speech envelope. The backward model infers (“reconstructs”) the speech enve-

lope from the EEG. CCA projects both speech envelope and EEG data onto components

in a common subspace. Correlation coefficients between predicted and actual EEG, in-

ferred and actual stimulus, or canonical component (CC) pairs can be used as classification

features.

2.5.1 Data format and notation147

The audio stimulus envelope is represented as a matrix Y = yt of size T× 1 where148

T is the number of samples. The EEG signal is represented as a matrix X = xt,n149

of size T × N where N is the number of channels. It may be useful to apply to150

each channel a set of F time shifts, or process the each channel by a F -channel151

filterbank. In that case X designates the resulting matrix of size T × FN .152
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2.5.2 Backward Model153

Backward models have been used extensively for the AAD [Akram et al., 2016,154

Mirkovic et al., 2015, 2016, O’Sullivan et al., 2015, 2017] and match-vs-mismatch155

classification tasks [de Cheveigné et al., 2018, Di Liberto et al., In Review]. The156

backward model has been shown to result in better classification accuracy than the157

forward model for these tasks, as it permits a spatial filter to be applied to the EEG158

to take advantage of inter-channel covariance to filter out brain signals unrelated159

to the auditory cortical response [Wong et al., 2018]. Here, we extend this scheme160

to permit a spatiotemporal filter by augmenting the EEG data by applying a set of161

time lags. Time lagged data are concatenated along the channel dimension to form162

a matrix X from which the audio envelope representation is inferred as Ŷ:163

Ŷ = XW (1)

The weights W (spatiotemporal filter) are estimated from the training data us-164

ing ridge regression as in [Crosse et al., 2015, 2016, Holdgraf et al., 2017, O’Sullivan165

et al., 2017, Wong et al., 2018]:166

W =
(
XTX + λI

)−1
XTY, (2)

where λ is the regularization parameter and I is the identity matrix. The regular-167

ization parameter λ is optimized within the inner cross-validation loop to obtain the168

maximum correlation coefficient between the actual and predicted speech envelopes.169

An additional overall time shift parameter is also optimized within the inner loop.170

This time shift serves to absorb any latency mismatch due to filtering or cortical171

processing. The time-shift and λ parameters were optimized independently of each172

other, and in that order, for the purpose of saving time during model training.173

2.5.3 Canonical Correlation Analysis (C)174

CCA finds linear transforms to apply to both audio and EEG to maximize mutual175

correlation. CCA has been shown to result in better classification accuracy than176

forward and backward models, as it allows spatiotemporal filters to be applied177

to both audio and EEG representations, stripping both of variance unrelated to178

the other [de Cheveigné et al., 2018]. CCA results in multiple pairs of canonical179

components (CCs), whereby the first has the largest correlation, and the second180

has the largest correlation that is orthogonal to the first, and so on. The audio181

and EEG CCs are computed as CY = YWY and CX = XWX , respectively, where182

Y and X are the audio and EEG data, and WY and WX are the corresponding183

spatio-temporal CCA weights.184

Time lags can be applied to the EEG (as previously described for the backward185

model) as well as the audio representation (as typically applied in forward models)186
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to allow the model to absorb convolutional mismatches between EEG and audio.187

However, to capture long-range temporal structure would require many lags, leading188

to computational issues and overfitting. For that reason, it is useful to replace the189

time lags by a smaller number of filters [de Cheveigné et al., 2018]. Here we use a190

set of F=9 dyadic filterbank kernels that approximate a logarithmic filterbank. The191

square-shaped left-aligned smoothing kernels have exponentially increasing lengths192

from 1 to 32 samples. The resulting audio data matrix Y has dimensions T ×193

F , and the resulting EEG data X has dimensions T × NF , where the boxcar-194

smoothing and EEG channel dimensions are combined into a single dimension.195

Principal component analysis was applied to the filtered EEG data for whitening196

and regularization. For regularization, principal components beyond a certain rank197

were discarded before applying CCA. This is effectively a low rank approximation198

(LRA) regularization scheme [Marconato et al., 2014]. The optimal number of EEG199

principal components to keep was determined as the number that maximized the200

cross-validated sum of correlation coefficients between CC pairs, over all pairs.201

CCA was computed from the eigendecomposition of the covariance matrix R =202

([X,Y]T [X,Y]), within the training dataset. The number of components, ncc is203

equal to the minimum size of the non-time dimension of X or Y. The CCA weights204

for X, WX , are contained within theNF×ncc upper-left sub-matrix in eig(R). Each205

column of WX contains both channel and boxcar-smoothing dimensions, collapsed206

into a single dimension. The CCA weights for Y, WY , are contained within the207

F ×ncc lower-left sub-matrix in eig(R). An illustration of the CCA training inputs208

and outputs is shown in Figure 2.209

(Σ|•|)0.3

(Σ|•|)0.3

...

auditory
filterbank Σ

dyadic
filterbank

CCA

PCA
dyadic

filterbank
pre-

processing

audio

EEG
WY

WX

CCA Training

Figure 2: CCA training diagram. Preprocessed audio and EEG data are passed through

a dyadic filterbank (see text). The CCA training algorithm then computes a set of weights

WY and WX that project the speech envelope and EEG data into a common subspace.

As for the backward model, an additional overall time shift parameter was in-210

troduced to absorb any temporal mismatch between stimulus and response due to211

filtering or cortical processing. This time-shift and the number of EEG principal212

components retained (see above) were determined within the inner cross-validation213

loop. They were determined independently and in that order to save computation.214

Classification schemes that involve the CCA model are indicated with a code that215

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 31, 2018. ; https://doi.org/10.1101/509307doi: bioRxiv preprint 

https://doi.org/10.1101/509307
http://creativecommons.org/licenses/by-nc-nd/4.0/


begins with the letter “C ”.216

2.6 Classification217

The classification task is to decide, from a segment of EEG, which of two speech218

samples gave rise to it, the other being a sample from pseudorandom time window219

(“match vs mismatch” task). The features used for classification are, for the back-220

ward model, the correlation coefficient between the actual stimulus envelope and221

the estimate inferred from the EEG, and the correlation coefficient between the222

pseudorandom stimulus envelope and the estimate inferred from the EEG (bivari-223

ate feature). For the CCA model, the set of correlation coefficients between pairs224

of CCs is used (multivariate feature). The empirical joint distribution of features225

for matched and mismatched segments is estimated during the training phase of226

the classifier. For a new token containing an EEG segment paired with either the227

matching stimulus or a mismatching stimulus segment, the classifier identifies which228

of them corresponds to the match. Classification proceeds by situating the features229

relative to the empirical joint distribution for matched and mismatched pairs.230

The classifier was trained anew on each iteration of the inner-cross-validation231

loop, using the model (backward or CCA) hyperparameters estimated on that it-232

eration. The optimal hyperparameters and classifier found over iterations of the233

inner loop were then applied to classify data within the left-out fold of the current234

iteration of the outer cross-validation loop. The average of classification scores over235

iterations of the outer loop are reported in the Results. To generate classification236

data samples, the position of the decoding segment was stepped by 1s throughout237

the evaluated data. The decoding segment duration was chosen among values 3, 5,238

7, 10 and 15s. These nominal durations include the length of the filtering kernels239

applied to the data (0.5s), as well as the optimal audio-EEG time-lag estimated in240

the hyperparameter estimation stage. Thus, they accurately reflect the duration of241

data used for each decision. The pseudorandom stimulus segment (foil) was drawn242

from a different fold from the actual speech sample. To allow reliable comparison243

between methods, the pseudorandom number generator was reinitialized with the244

same seed for the evaluation of each method.245

For the backward model the classification feature was the correlation coefficient246

between the stimulus envelope and the envelope inferred from the EEG. To decode247

segment d, consisting of D time samples, the correlation coefficient between the248

predicted and actual speech envelope was computed as ρd = ŶTY√
ŶTY/D

√
YTY/D

.249

This feature was calculated for the stimulus segment within the test pair, and for a250

randomly chosen stimulus segment (foil). With this univariate feature, classification251

involves simply taking the larger correlation coefficient.252

For the CCA model the classification feature was the set of correlation coef-253
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ficients between selected CC pairs (9 pairs in the implementation presented here,254

since F = 9), as illustrated in Figure 3. This feature was calculated for the stimulus255

segment within the test pair, and for a randomly chosen stimulus segment (foil).256

These two multivariate values were fed to a multivariate classifier. We consider lin-257

ear discriminant analysis (next section) to obtain baseline classification rates, and258

then proceed to neural network architectures.259

WY

WX

ρ
ρ

...

CCCCA CLASSIFICATION:

classify

(Σ|•|)0.3

(Σ|•|)0.3

...

auditory
filterbank Σ

dyadic
filterbank

PCA
dyadic

filterbank
pre-

processing

audio

EEG

Figure 3: CCA classification diagram. Preprocessed audio and EEG data are passed

through a dyadic temporal filterbank, then projected via weights WY and WX learned

by CCA onto CCs. Correlation coefficients computed over a decoding segment duration

between CC pairs are used as features for classifying whether one of two audio streams is

the one that corresponds to the EEG data, or comes from a random segment of speech.

2.6.1 Linear Discriminant Analysis (L)260

Denoting as xi the multivariate correlation coefficient feature (for consistency with261

standard expositions) and yi the class label for token i, the predicted class is com-262

puted as ŷi = signum(w ◦ xi), where w is a weight vector and the y ∈ {−1,+1}.263

LDA finds w such that the separation S between class distributions is maximized.264

S is defined as the ratio of the between class variance σb to the within class variance265

σw:266

S =
σb
σw

=
(w(µ−1 − µ+1))2

wT (Σ−1 + Σ+1)w
, (3)

where µ−1 and µ+1 are the means of the two classes xi|yi=−1 and xi|yi=+1, and Σ−1267

and Σ+1 are their standard deviations. w can be found by solving the generalized268

eigenvalue problem for the matrix S−1
w Sb, where Sw is the within-class scatter matrix269

and Sb is the between-class scatter matrix. Over all classes c, within-class scatter270

matrix is given by Sw =
∑

c

∑
i∈c(xi − µc)(xi − µc)

T . The between-class scatter271

matrix is given by
∑

c(µc−x̄)(µc−x̄)T . The eigenvector corresponding to the largest272

absolute eigenvalue is referred to as the first principal direction, or the weight vector273

w. The LDA classifier was trained on the correlation coefficients between the CCA-274

transformed audio (actual and random) and the EEG. A classification scheme that275

uses the LDA classifier is indicated by a code that ends in “L”.276
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2.7 Improving Classification Rates277

The methods described so far correspond to those used in a previous paper that278

compared forward, backward and CCA models associated with LDA [de Cheveigné279

et al., 2018]. In this section we introduce several schemes that go beyond those280

methods with the aim of improving classification rates. These are of two sorts:281

the first two schemes aim at obtaining better linear transform weight matrices than282

those produced by CCA, the last three schemes make use of neural net architectures283

to make better use of the features for classification.284

2.7.1 D-Prime Maximization (D)285

The cross-validation process described in Section 2.4 (inner loop) chooses hyperpa-286

rameters so as to obtain the highest possible sum of correlation coefficients between287

CC pairs. Large correlation coefficients scores on matched pairs (compared to mis-288

match) might be expected to lead to good discrimination, however discrimination289

also depends on intraclass variance of those coefficients [Wong et al., 2018]. This290

is captured by the d-prime sensitivity metric, calculated as the ratio between the291

inter-class means and intra-class variance. At each iteration of the inner cross-292

validation loop, a different set of CCA weights is computed for each regularization293

parameter sampled. By selecting those CCA weights that maximize the d-prime of294

output of a linear classifier applied to training data, classification error rates on the295

test set can potentially be reduced.296

For each regularization parameter value sampled, the CCs computed on the val-297

idation data were divided into 2.5s segments. A classifier based on Kalman filtering298

was trained on the correlation coefficients between CC pairs for these segments.299

The derivation of this classifier permits a more analytic and stable evaluation of its300

d-prime score, although in practice it does not perform the match-vs-mismatch task301

as well as the LDA classifier. If we assume that the correlation coefficients between302

EEG and mismatching audio CCs have a mean of zero, and zero covariance with the303

correlation coefficients between EEG and matching audio CCs, the Kalman filter304

sensor matrix can be formulated as H = Z̄match − Z̄mismatch = Z̄match when the305

state y = 1 and H = Z̄mismatch − Z̄match = −Z̄match when the state y = −1, where306

Zmatch = atanh(ρmatch) and Zmismatch = atanh(ρmismatch). ρmatch are the set of307

correlation coefficients between EEG and matching audio CCs. Similarly, ρmismatch308

are the set of correlation coefficients between EEG and mismatching audio CCs.309

The hyperbolic-arctan-transform of is used to give Z a Gaussian distribution. The310

Kalman gain can then be written as K = Z̄T [Z̄T Z̄ + cov(Z)]−1, and the estimated311

states for each time sample in Z is then ŷ = tanh(Z ∗KT ), given a previous neutral312

state of 0. The d-prime for the classifier output is thus expressed as d′ = 2¯̂y
std(ŷ)

. For313

simplicity, the same data used to train the Kalman classifier was used to compute314
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the d-prime score.315

Using an initial CCA regularization parameter value, an initial set of CCA316

weights was computed. The corresponding set of correlation coefficients between the317

resulting EEG and audio CCs, computed over 2.5s windows, was used to compute318

a Kalman classifier d-prime score. For each subsequent regularization parameter319

sampled, individual CCs were substituted into the previously established set and320

the d-prime score was recomputed. If an updated CC increased the d-prime score,321

the CCA weight corresponding to the updated CC was accepted as the new CCA322

weight. Abbreviated references to classification schemes implementing this method323

will include “D” in their name. For example, when CCA is applied using d-prime324

maximization and classification performed using LDA, this scheme will be denoted325

as “CDL”.326

2.7.2 Adaptive Beamforming (B)327

Given a training data set, CCA produces a set of spatiotemporal weight matrices328

that optimize correlation between CC pairs on the training data. The EEG weight329

matrix has two characteristics: (a) it preserves the useful brain activity that un-330

derlies the correlation and (b) it suppresses sources of noise that would otherwise331

degrade that correlation. When the trained solution is applied to new data, how-332

ever, the correlation structure of the noise may have changed so the solution is no333

longer optimal. The structure of the useful brain activity is less likely to change334

over time.335

This situation can be addressed by applying a linearly constrained minimum336

variance (LCMV) beamformer. The LCMV beamformer, initially developed for337

antenna arrays, has proven useful to isolate localized neural activity by finding a338

weighted sum of EEG channels that project unit gain on a particular spatial lo-339

cation, while minimizing the contribution from all other locations. This type of340

beamforming is termed “adaptive” because the weights applied to the EEG chan-341

nels are adjusted to minimize the noise based on the covariance structure of the data342

being analyzed. The LCMV beamformer requires knowledge of the forward model343

of the desired source (source-to-sensor matrix). This is usually assumed to require344

computation from knowledge of the source position, together with a geometric de-345

scription of head tissues and tissue conductivity estimates, frequently taken from a346

structural MRI. However the formalism works just as well if the forward model is347

derived by other means. Here we derive it from the CCA solutions learned on the348

training set.349

In this scenario, rather than corresponding to a specific spatial location, each350

“source” correspond to the forward model associated with a CC. Due to the orthog-351

onal nature of the CCA weights, the mapping from the CCs to the EEG sensors is352

computed from L = [eig(R)−1]T , where R is the covariance matrix used to compute353
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CCA from training data as described in Section 2.5.3. The first ncc columns and354

NF rows of L correspond to the forward potentials of the ncc CCs. We refer to this355

approach as “blind” in that it does not require knowledge of the actual geometry.356

LCMV beamforming allows for the computation of weights that minimize noise357

within the EEG test data, and not just the training data. A forward model is358

derived from each of the CCs produced by applying CCA to the training data,359

based on which LCMV computes a beamforming weight vector that is used in lieu360

of the corresponding CC weight vector. In contrast to the CC weight vector that361

is fixed (after training) the beamforming weight vector is adaptive. This is useful362

in realtime applications where the nature of the noise is not always predictable,363

and also in batch processing of data with a complex non-uniform noise correlation364

structure.365

In typical applications of LCMV to EEG data, such as neural source imaging,366

the forward potentials only contain a channel dimension, and sufficiently accurate367

forward potentials can be computed from a conductivity model of the head so that368

source localization can be performed. However, the CCA components yielded here369

contain both channel and boxcar-smoothing dimensions, combined into a single370

dimension. This larger dimensionality and the estimation of the source forward371

potentials from the data mean that these forward potentials are inexact. Errors in372

the forward potential can degrade beamformer performance, potentially resulting373

in the source of interest not being detected Dalal et al. [2014]. We use source374

suppression constraints to improve the solution, at the cost of reduced degrees375

of freedom for satisfying the beamforming objective of minimizing signal power.376

Given that each column in L is uncorrelated with each other, and to each CC377

being measured, this relationship can be enforced in the beamformer solution by378

introducing them as source suppression constraints Dalal et al. [2006], Wong and379

Gordon [2009].380

The typical LCMV beamformer constraints are 1) enforce unit gain on the EEG381

source corresponding to a given CCA component and 2) minimize signal power.382

These constraints yield the following beamformer equation [Van Veen et al., 1997]:383

Wbf,X = (LT
XR−1

testLX)−1LT
XR−1

test, (4)

where Rtest is the data covariance matrix computed in a similar way to R, but384

over the validation or test fold. LX is the CCA forward potential column-vector,385

computed from the training data. Given that inaccuracies in the CCA forward386

potential estimate would result in reduced SNR and leakage from other sources, we387

add an additional constraint 3) enforce nulls on the EEG sources corresponding to388

S uncorrelated sources, where S is optimized by cross-validation. This effectively389

minimizes the contribution of noise leakage into the beamformed signal. These390

uncorrelated source constraints are drawn from other columns in L, which are or-391
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thogonal by definition. This third constraint is implemented by structuring LX392

such that the first column is the forward potential corresponding to an individual393

CC being measured, and the remaining columns are the forward potentials of the394

sources to be suppressed. These columns are taken from the NF × S upper-left395

sub-matrix in L.396

Given that a larger number of suppression constraints reduces the degrees of397

freedom available to the beamformer to suppress noise sources, the optimal number398

of suppression constraints S needs to be determined. This is done via the 9-fold399

inner cross-validation described in Section 2.4. S was determined separately for400

each CC. Thus, the beamforming implementation with CCA effectively involves401

tuning three types of regularization parameters to maximize the cross-validated402

sum of correlation coefficients across CC pairs: the number of lags, the number of403

principal components kept when whitening EEG, and the number of suppression404

constraints per CC. The number of lags is determined first, independent of the405

others. The number of principal components to keep and the number of suppression406

constraints are then determined via a grid search. Note that here as with the default407

CCA implementation, the same number of principal components is kept for all CCs.408

Classification schemes implementing this method will include “B” in their name.409

Beamforming and d-prime maximization can be combined. With d-prime maxi-410

mization and no beamforming, while adjusting the number of principal components411

kept during EEG whitening as a regularization parameter, individual CCA weights412

that maximized the validation classifier d-prime were kept. When combined with413

beamforming, rather than keeping the individual CCA weights, the individual CCA414

forward potentials and associated source suppression constraints are kept instead.415

2.7.3 Multilayer Perceptron (M)416

The LDA classifier uses only the principal direction in multivariate space to sep-417

arate the two classes. Other directions, possibly also informative for class sep-418

aration, are ignored. A multilayer perceptron (MLP) neural network can find a419

nonlinear decision function that may be better as it combines information from420

multiple decision planes. We implemented a multilayer perceptron (MLP) neu-421

ral network with hyperbolic tangent activation functions, feeding into a two-unit422

softmax classification layer. An MLP layer performs a nonlinear operation on the423

inputs yi = tanh(Wxi + b), where W is the weight matrix and b is the bias vec-424

tor. Multiple MLP layers can be stacked so that subsequent layers take the output425

from the previous layer as input. A softmax layer takes the output from the last426

MLP layer as its input and computes an output such that each value c in yi, cor-427

responding to each class, is normalized according to yi,c = ex
T
i Wc∑C

j ex
T
i
Wj

. The largest428

of the values c in yi corresponds to the predicted class. The network was trained429

using a categorical cross-entropy cost function. Training was performed using mini-430
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batches, and rmsprop as the gradient descent method [Hinton et al., 2012]. Early431

stopping was used to terminate training when the validation cost function no longer432

improved. Different numbers of MLP layers and units per layer were experimented433

with. Abbreviated references to the CCA classification schemes using an MLP will434

end in “M ”.435

2.7.4 Simple Recurrent Layer (S)436

Up to this point, single correlation coefficients have been computed over the entire437

segment of data used for classification. A correlation coefficient is the dot product438

between two normalized CC time series in which all time points are weighted equally.439

However, if information could be obtained as to which time points are more reliable,440

it would be more appropriate to apply a non-uniform weight to modulate the amount441

each time point contributes to the final classification. We divided the correlation442

coefficient computation over the entire decoding segment into non-overlapping sub-443

intervals of one second duration. The number of sub-intervals was thus equal to444

the decoding segment duration in seconds. Based on the correlation coefficient445

equation, the sub-interval correlation coefficient computed over a sub-interval s is446

computed as:447

ρs = diag

( CX,s√∑
t C

2
X/D

)T (
CY,s√∑
t C

2
Y /D

) , (5)

where for a total of S sub-intervals, CX,s ≡ CX(t ∈ (s, s + 1]D/S), and similarly448

CY,s ≡ CY (t ∈ (s, s + 1]D/S). This denominators of this equation are computed449

over the entire decoding segment duration, whereas the numerators are computed450

only over the sub-interval. Since the denominator can be seen as a normalization451

factor, computing ρs in this way stabilizes the normalization factor over the entire452

interval.453

To determine the weighting for each sub-interval, we chose to employ a simple454

recurrent network (SRN) layer which takes only the sub-interval correlation coeffi-455

cients as inputs. An SRN takes a set of input vectors over S-time steps, xs. For each456

time step, it computes a new state hs based on its previous state hs−1 and input457

vector xs according to hs = tanh(Whxs+Uhhs−1 +bh). The output of the last SRN458

timestep was passed to a 2-layer MLP, consisting of 3 units each, terminating in a459

softmax output layer for classification. Training was performed using minibatches,460

and rmsprop as the gradient descent method [Hinton et al., 2012]. Abbreviated461

references to the CCA classification scheme using an SRN will end with “S”.462
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2.7.5 Gated Recurrent Unit (G)463

An SRN lacks the ability to store information over long durations due to the vanish-464

ing gradient problem: the SRN time-steps are unfolded into a multi-layer network465

for training, and with the use of sigmoid-like activation functions, the backpropa-466

gated error diminishes across layers, preventing the SRN from learning long-term467

relationships [Pascanu et al., 2013]. In contrast, a gated recurrent unit (GRU) al-468

lows the error to be preserved through time and layers. A GRU updates its internal469

state hs based on two gating functions: the update gate zs and the reset gate rt470

[Cho et al., 2014]. The update gate determines how much of the current state471

hs at timestep s incorporates the previous state hs−1 versus a candidate state h̃s472

computed from xs plus some leakage from hs−1.473

hs = (1− zs) ◦ hs−1 + zs ◦ h̃s (6)

The update gate zt is computed as a sigmoid function of the weighted GRU474

input xt and the previous state ht−1:475

zs = σ(Wzxs + Uzhs−1 + bz), (7)

where Wz and Uz are weights and bz is a bias vector. The candidate state h̃s is476

computed as a hyperbolic tangent function of the weighted GRU input xs and the477

weighed previous state hs−1:478

h̃s = tanh(Whxs + rs ◦Uhhs−1 + bh), (8)

where Wh and Uh are weights and bh is a bias vector. The reset gate, rs determines479

how much leakage from the previous state is incorporated into hs. Similar to the480

update gate, is computed as a function of weighted GRU input and the previous481

state.482

rs = σ(Wrxs + Urhs−1 + br), (9)

where Wr and Ur are weights and br is a bias vector.483

The GRU layer consisted of 8 units. The output of the last GRU timestep484

was passed to a 2-layer MLP, consisting of 3 units each, terminating in a softmax485

output layer for classification. Abbreviated references to the CCA classification486

scheme using an GRU will end with “G”.487

2.8 Classifier Performance Evaluation488

We used two metrics to quantify performance: classification error rate and infor-489

mation transfer rate (ITR). The ITR is the number of correct decisions that can be490

made by the classifier per unit time. Because increased decoding segment lengths491
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result in a reduction in the number of decisions that can be made per unit time,492

this measure allows for the comparison of results across different decoding seg-493

ment lengths. The ITR measure that was used was the Wolpaw ITR [Wolpaw and494

Ramoser, 1998] and is calculated by:495

ITRW = V

[
log2N + P log2 P + (1− P ) log2

1− P
N − 1

]
, (10)

where V is the speed in trials per minute, N is the number of classes, and P is the496

classifier accuracy (1 minus the error rate). Both metrics were averaged across all497

test folds for each subject.498

2.9 Implementation499

Data preprocessing and CCA analyses were performed using the COCOHA Matlab500

Toolbox [Wong et al., 2018]. The scikit-learn implementation of LDA was used,501

and the neural networks were implemented in Keras [Chollet et al., 2015].502

3 Results503

A summary of the classification performance of all methods is shown in Figure 4.504

Performance is quantified here as percent error rate rather than percent correct505

rate as is common: lower is better. The left panel shows the average error rate over506

subjects for a range of decoding segment lengths, and the right panel shows the507

error rate at a 5s decoding segment length for each subject. Moving left to right,508

a clear improvement can be seen as new methods are introduced and combined.509

Taking the backward model as a baseline, the best combination reduces the error510

rate by from 18.9% to 3.0% (i.e. by a factor of 6.3). The contribution of each step511

is detailed in the following. For paired t-test analyses of error rate data, a logit512

transform is applied to the error rates [Warton and Hui, 2011].513

3.1 CCA vs backward model514

CCA+LDA (CL) provides a clear improvement over the backward model, as we515

found previously [de Cheveigné et al., 2018]. At a decoding segment length of 5s516

the error rate decreased by 9.0 percentage points (paired samples t-test, T79 = 21.9,517

p = 2.7×10−35), that is by a factor of 1.89, on average over subjects. The difference518

is of same sign for all subjects, and all durations. It is instructive to see how this519

improvement relates to the original error rate.520

Figure 5 left shows a scatterplot of error rates for the CCA+LDA scheme vs521

the backward model. Each dot represents the error rate for one test fold and one522

subject. The axes are scaled by a logit transform to account for the saturation effect523
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Figure 4: Classification error rate for different classification schemes. Chance is 50%.

The left panel shows error rates with different decoding segment lengths, averaged over all

subjects. The right panel shows error rates for each subject using a 5s decoding segment

length. The average of all subjects is indicated by the blue line, which also corresponds to

the blue line in the left panel. C = CCA, D = d-prime maximization, B = beamforming,

L = LDA, M = MLP, S = SRN, G = GRU.

as the error rate decreases to 0 [Warton and Hui, 2011]. This transform produces a524

normal distribution and equivariance in regression residuals, which are underlying525

assumptions of linear regression model statistics. On these axes the data follow526

a linear trend with slope m = 1.47 greater than one (CI.95 = [1.29, 1.66]). This527

indicates that the benefit was greater for classification folds that already had a low528

error rate, after accounting for the effects of saturation.529

We now use the CCA+LDA model (CL) as a baseline to evaluate schemes that530

further improve performance. We report the effect of scheme is shown in isolation531

(relative to CL) as well as their best-performing combination (CDBG). We also532

analyze improvement as a function of the baseline error rate, as summarized in533

Figure 5 (center).534

3.2 D-Prime Maximization (D)535

D-prime maximization (see Methods) yielded a 1.4 percentage point (a factor of536

1.16) classification error decrease (paired samples t-test, T79 = 5.9, p = 6.6× 10−8).537

The purple line in Figure 5 (center) represents a linear fit of the scatter plot error538

rates of CDL vs CL. The slope m = 0.96 was not significantly different from 1. In539

other words, maximizing the d-prime scores equally reduces the classification error540

of all folds regardless of the original CCA+LDA classifier (CL) error.541
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Figure 5: Error rate relationships between classification schemes, with lines of best fit.

The graphs are plotted on logit axes in order to compensate for effects of saturation as

error rates approach 0 or 100% [Warton and Hui, 2011]. The left panel shows the error rate

of CCA+LDA (CL) versus that of the backward model. The center panel shows linear fits

to scatter plots of error rates of several enhanced schemes relative to CCA+LDA (CL).

The right panel shows a scatterplot of the error rate for the best combination (CDBG)

relative to the second best (CG). Dots in left and right panels represent classification

errors for test folds, shown for all subjects. Translucent bands around the lines in the

left and right panels indicate the 95% confidence intervals. C = CCA, D = d-prime

maximization, B = beamforming, M = MLP, S = SRN, G = GRU.

3.3 Beamforming (B)542

Beamforming (see Methods) yielded a 1.8 percentage point (a factor of 1.22) clas-543

sification error decrease (paired samples t-test, T79 = 7.1, p = 4.8 × 10−10). The544

red line in Figure 5 (center) represents a linear fit to the scatterplot of error rates545

of (CBL) versus CL. The slope m = 0.91 was not significantly different from 1.546

3.4 Multilayer Perceptron (M )547

A four-layer MLP network, with 8 units in the first layer and 3 units second and third548

layers, followed by a 2-unit softmax classification layer, achieved an 3.6 percentage549

point (a factor of 1.55) classification error decrease over the original CCA+LDA550

classifier (CL) (paired samples t-test, T79 = 12.3, p = 5.2× 10−20). The green line551

in 5 (center) represents a linear fit of the scatterplot of error rates of CM vs CL.552

The slope of m = 0.77 was significantly less than 1 (CI.95 = [0.66, 0.88]), indicating553

that the error rate decreased more for folds that had larger error rates. Increasing554

the number of layers or units per layer did not significantly impact the classification555

performance.556
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3.5 Simple Recurrent Network (S)557

Replacing the first MLP layer with an 8-unit simple recurrent network (SRN)558

achieved a 5.2 percentage point (a factor of 2.04) classification error decrease (paired559

samples t-test, T79 = 11.9, p = 2.4 × 10−19). The yellow line in Figure 5 (center)560

represents a linear fit of the scatterplot of error rates of CS vs textitCL. The slope561

m = 0.41 was significantly less than 1 (CI.95 = [0.26, 0.56]), indicating that the562

error decreased more for folds that had larger error rates.563

It is worth noting that MLP and SRN classifiers perform less well at longer564

durations (Figure 4, left), and at 20 and 30s the SRN classifier (CS ) yields greater565

error rates the original CL scheme. This is possibly a result of the vanishing gradient566

problem which prevents the SRN from learning long-term relationships, and thereby567

impedes performance when the recurrent classifier must make a prediction after568

processing a larger number of sub-intervals.569

3.6 Gated Recurrent Unit (G)570

Replacing the SRN layer by an 8 unit GRU layer yielded a 5.9 percentage point571

(a factor of 2.42) classification error decrease (paired samples t-test, T79 = 15.8,572

p = 4.3 × 10−26). The brown line in Fig. 5 (center) represents a linear fit of the573

scatterplot of error rates of CG vs (textitCL. The slope m = 0.68 was significantly574

less than 1 (CI.95 = [0.47, 0.89]). Again this indicates that the error decreased more575

for folds that had larger error rates, although folds with small error rates also seem576

to benefit (Figure 5 center).577

The classifier with a GRU layer (CG) performed better than a classifer with a578

SRN layer (CG, (paired samples t-test, T79 = 4.4, p = 3.8 × 10−5). To determine579

whether this could be due to the larger number of parameters used in the GRU580

network (693 parameters, including the MLP portion), we implemented also a clas-581

sifier with an SRN layer with 17 units (684 parameters). The classification error for582

the larger SRN was significantly larger than that obtained by the 8-unit SRN by583

1.3 percentage points (paired samples t-test, T79 = 7.2, p = 3.1× 10−10) suggesting584

overfitting. The advantage of the GRU is thus unlikely to be related to its larger585

number of parameters.586

3.7 Combined Methods (CDBG)587

The GRU (CG) yielded the largest decrease in error rate over the basic CCA+LRA588

implementation for durations up to 10s (Figure 4 left). However, combining it589

with several of those schemes yielded a yet greater improvement (CDBG). Adding590

d-prime maximization and beamforming reduced the error rate by 1.2 percentage591

points (paired samples t-test, T79 = 2.49, p = 0.015), that is a factor of 1.39.592
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Interestingly, this benefit extended also to long durations (Figure 4 left), attaining593

an error rate of 0.1% for 30s duration segments (compared to 3% for the backward594

model).595

Figure 5 (right) shows a scatterplot of error rates for CDBG relative to CG. The596

slope m = 0.14 is significantly smaller than 1 (CI.95 = [−0.04, 0.34]), indicating that597

the improvement is greatest for folds/subjects for which error rates were relatively598

high.599

3.8 Information Transfer Rate (ITR)600

From Figure 4 (left) it is obvious that there is a tradeoff between error rate and601

segment duration, shorter segments yielding greater error rates. An alternative602

metric of performance is ITR (roughly, the number of decisions that can be made603

per unit time, see Methods). Such a metric is relevant for BCI applications that604

require decisions to be both accurate and timely.605

Figure 6 plots values of the ITR for the backward model (red), CCA+LDA606

(CL, blue), and CCA with d-prime maximization, beamforming, and GRU neural607

network improvements (CDBG, green). As expected from the error rate metric, the608

more sophisticated schemes yield higher ITR rates. The maximum ITR is reached609

at 5s for the backward model, 3s for CL and 1s for CDBG).610
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Figure 6: Information transfer rate comparison over different decoding segment dura-

tions for the backward model, the baseline CCA implementation using an LRA classifier

(CL), and the CCA implementation with all enhancements: d-prime maximization, beam-

forming and a GRU classifier (CDBG).
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4 Discussion611

In previous work we found that a CCA-based model yielded more accurate clas-612

sification than standard backward or forward models [de Cheveigné et al., 2018],613

presumably thanks to the ability of CCA to factor out irrelevant information from614

both audio and EEG, and to provide multiple components to support multivariate615

classification. In the present paper, we observed that the benefit over the backward616

model (in relative terms) was smaller for folds where the backward model gave617

larger classification errors (Figure 5 left), suggesting that performance might be618

limited by poor EEG data quality on those folds. Thus, we focused on improving619

the CCA classification framework to be more robust to noise (defined as any feature620

of the data that increases classification error). This encompasses EEG artifacts, but621

it might also include points in the audio that do not yield reliable EEG response,622

such as silences. The solutions explored were methods to improve estimation of the623

CCA weights, and to allow a classifier to utilize temporal information.624

4.1 Improving CCA Weights625

When applied to CCA+LDA, both d-prime maximization and beamforming reduced626

classification errors equally across classification folds, regardless of the original error.627

Maximization of component d-prime yielded EEG spatial filter weights that were628

superior to those provided by CCA. This operation was performed individually for629

each CC. An alternative approach, not explored in the present study, could be to630

maximize the d-prime output or the loss function of a classifier via tuning of all631

components in combination.632

Beamforming is another approach to improve spatial filter weights. It requires633

knowledge of the forward potentials of sources to preserve. Typically this knowledge634

is computed from anatomical data and models of head tissue conductivity, but635

here we use forward potentials associated with optimal components computed from636

CCA. Beamforming adaptively suppresses activity other than that associated with637

the forward potentials, effectively addressing the time-varying structure of the noise.638

We did not make full use of this flexibility in our simulations: beamforming was639

applied on the basis of the covariance matrix calculated over the full length of the640

cross-validation fold, which is roughly 9 minutes. An alternative, not explored in the641

present study, is to recalculate the beamformer solution based on shorter intervals.642

There is, however, a limit to which the time window can be shortened as sufficient643

data is needed to accurately estimate the covariance matrix R.644
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4.2 Improving the Classifier645

A multilayer perceptron (MLP) network reduced classification errors slightly com-646

pared to an LDA classifier, suggesting that there is some advantage that can be647

gained from a nonlinear decision function. However, the recurrent neural networks648

(SRN and GRU) showed the largest reduction in classification error over an LDA649

classifier. The recurrent networks yielded the greatest benefit for folds with higher650

CCA+LDA classification errors, suggesting that they can tackle noise features for651

which the other classifiers fail. The recurrent layers are likely able to handle shorter-652

term variations in the noise, compared to d-prime maximization or beamforming,653

that are calculated over the entire cross-validation/test dataset. The time-scale of654

variations in the noise that can be handled by the SRN or GRU are related to the655

length of the sub-intervals used to compute the correlation coefficients fed to these656

neural network layers. While the GRU provided the largest reduction in classifi-657

cation error over CCA+LDA, combining it with component d-prime maximization658

and beamforming provided a significant additional reduction.659

4.3 Relation between same-different and AAD tasks660

The results reported in this paper were obtained for a match-vs-mismatch classifi-661

cation task, that allowed us to focus on the quality of the stimulus-response model.662

We preferred this task to the more complex AAD task, as it is not vulnerable to663

mislabeling of the database. In the AAD task an “error” might be the result of664

attention drift, making it hard to explore the performance in the region of low error665

rates (of use for applications). Cortical responses to concurrent speakers have been666

shown to have slightly different dynamics than those to a single speaker. [Ding667

and Simon, 2012b] found that the attended talker shows a stronger representation668

than the unattended talker at longer latencies (≈200ms), whereas both attended669

and unattended talkers are equally represented at shorter latencies (≈80ms). We670

expect our methods to be effective also in the AAD task, but it would be useful to671

confirm this in future studies.672

Extrapolating from our results, and considering the many paths that remain to673

be explored, we believe that further improvements may be possible.674

4.4 Summary675

Previous studies showed that the relation between stimulus and brain response can676

be captured by a linear model fit using system identification techniques, extending677

classic ERP studies to allow continuous stimuli such as speech [Lalor et al., 2006,678

2009, Lalor and Foxe, 2010, Power et al., 2012]. Such a linear model can be used679

by a classifer in a BCI application, for example to decide whether a listener is at-680
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tending to one or the other of two concurrent voices (AAD), but poor classification681

reliability and the amount of data required by each decision limit the practical use682

of such a scheme [O’Sullivan et al., 2017, Zink et al., 2017, Wong et al., 2018].683

In previous work we showed that the stimulus-response model can be significantly684

improved using CCA [de Cheveigné et al., 2018], and here we showed that classifica-685

tion performance can be further enhanced by improving the quality of EEG linear686

filters over CCA, or improving the classifier over LDA. Overall, the error rate was687

divided by 6 over the standard backward model, for a 5s segment of data. This688

brings us closer to the goal of reliable “cognitive control” of a device based on brain689

responses.690
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