
Plasticity in evolutionary games

Slimane Dridi

Institute for Advanced Study in Toulouse, University of Toulouse 1 Capitole, France
E-mail: slimane.dridi@gmail.com
Website: slimaned.github.io

Abstract

The ability to respond appropriately to environmental cues is fundamental to the success of all forms of life,
but previous theoretical studies of the evolution of plasticity make so diverse assumptions that the conditions
under which plasticity can emerge in evolving populations are unclear when fitness is frequency-dependent. We
study the effect of adding plastic types to symmetric evolutionary games. Since frequency-dependence induces
an evolutionary change in the environment of players, one might expect that plastic individuals who can adapt
their phenotypes to the environment could have a fitness advantage over simpler purely genetically determined
phenotypes. In our model, plastic individuals can detect the type of their opponent before an interaction and
condition their action on it. Even though it might appear as an outstanding advantage, such an ability cannot
guarantee global stability in all games for even the smallest positive plasticity costs. We identify classes of games
where plasticity can or cannot be globally or locally stable. In games where the standard replicator dynamics
converge to a pure state, costly plasticity cannot invade an equilibrium population. Costly plasticity can however
be locally stable, but the way to achieve this is not to play the best-response to any possible encountered type.
Rather, part of the stability success of plastic types is based on establishing Pareto-efficiency as residents; in certain
social dilemma games such as the Prisoner’s Dilemma and the Snowdrift game, this implies that plastic types need
to cooperate with a strictly positive probability in order to ensure their stability against invasion by pure types.
Zero-sum games always allow for the global stability of plastic types. This study offers a more principled way of
thinking about the evolutionary emergence of plasticity in social scenarios, and helps demonstrate that such an
emergence is strongly dependent on the type of game individuals are faced with.

1 Introduction

Most phenotypes are plastic; indeed, in general traits are only expressed in reaction to an environmental
cue. The immune system is programmed to detect pathogens, quorum sensing in bacteria conditions gene
expression on cell density, plant growth depends on external light via photsynthesis, etc. Being plastic
thus seemingly provides a selective advantage to biological organisms. The conditions that favor plasticity
evolution have been studied in detail in evolutionary biology and a general conclusion that can be drawn
from classical theory is that one requires a varying environment for plastic traits to provide a fitness
benefit (Gavrilets and Scheiner, 1993a,b; Gomulkiewicz and Kirkpatrick, 1992). Most of these classical
models however were developed under the assumption that fitness depends on the environment but not on
the phenotype of other organisms in the population, i.e., in the absence of frequency-dependence. It is an
open question under what conditions plasticity emerges in frequency-dependent scenarios. In particular,
it is unclear how the idea that varying environments favor plasticity evolution can be generalized to a
scenario where there is frequency-dependent selection. In order to address this question, one useful way
to think about frequency-dependent evolution is to use evolutionary game theory (Taylor and Jonker,
1978; Hofbauer and Sigmund, 1998; Sandholm, 2011). Interactions between individuals can be described
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as games where every individual has a set of strategies, and the fitness of individuals involved in the
game is dependent on everyone’s strategy. In this context, the idea of a varying environment can take
several forms. A first one is that the rules of the game change over evolutionary time, possibly under
the influence of the population’s behavior itself, which can occur typically under competition for limited
resources (Dridi and Lehmann, 2014; Weitz et al., 2016; Hilbe et al., 2018). A second and simpler form of
environmental variation in social evolution however is to notice that frequency-dependence itself induces
environmental variation for a focal individual or type (Graves and Weinreich, 2017). Indeed, in frequency-
dependent selection, the frequency of other types makes part of the environment, and since the frequencies
evolve over time, the environment of any focal individual can be seen as varying between generations.
Moreover, in models that explicitly use normal-form games to capture social interactions, one generally
needs to make assumptions on how population members are matched to interact in a game. Very often,
random matching between players is assumed, which also creates within-generation fluctuations in the
environment of a focal player because a player is generally assumed to not know who is going to be its
sampled opponent. These observations suggest that even in the absence of changes in the structure of the
evolutionary game determining individuals’ fitness, there is still environmental variation and potentially
a selection pressure in favor of plasticity. In order to further examine this question, one must determine
what it means to have a plastic phenotype in a game theoretical context.

Plasticity in social evolution has been studied to address many different questions, from studies of co-
operation in the iterated prisoner’s dilemma to investigations of signalling, and learning (Axelrod and
Hamilton, 1981; McElreath and Boyd, 2007; Stewart and Plotkin, 2013; Dridi and Lehmann, 2015, 2016).
In studies of the iterated prisoner’s dilemma, focus has been given to repeated game strategies, and in
particular to memory-one automata that condition their action at the current round on the outcome of
the game at the previous round. Well-known strategies such as Tit-for-tat, Win-Stay-Lose-Shift, Zero-
Determinant strategies all belong to this class. In studies of the evolution of signalling, one generally
tries to understand the principles leading to the evolution of the ability to manipulate what others detect
from one’s own type. This goes well beyond our mere interest in the emergence of plasticity, because
for such manipulation to take place, one must assume the pre-existence of plasticity in social strategies.
Other researchers have focused on learning strategies, where the entire history of the game determines the
current action of a player. This focus stems from the observation that reinforcement learning underlies
virtually all animal behaviors. These studies have provided interesting insights into our understanding of
how natural selection shapes complex strategies for repeated interactions. However, complex strategies
that allow an individual to condition behavior on the environment, on opponents’ behavior, or on memory
of past events are only possible if, in the first place, individuals possess the ability to express plastic social
phenotypes. Previous work seemingly does not address the question of the evolutionary emergence of
social plasticity, so it remains unclear what is the main advantage of plasticity in social evolution.

If the success of plasticity should depend on the exact way it is implemented, these different implementa-
tions can possibly classified according to the complexity of the resulting strategy (e.g., always fleeing when
faced with a predator is probably not as complex as learning to hide food to prevent conspecifics from
stealing it; Emery and Clayton, 2001, 2004, 2009). In order to investigate the evolutionary emergence of
plasticity, one must consider its simplest possible form. In this paper, we will adopt one of the simplest
implementations of plasticity that we can think of, namely we will assume that plastic individuals can
detect the type of their opponent before an interaction takes place, and can condition their action on the
detected type. At first, this might seem as a considerable advantage, but we will see below that even the
smallest cost impedes plastic types to dominate in all circumstances. Being able to detect others’ types
is an assumption that can be justified on several grounds. If the evolving behavioral trait of interest is
linked to morphological or hormonal characteristics, then it could be possible for a plastic type to base
their strategy on, e.g., vision or smell. If outcomes of games are public information and the game is
repeated (but not necessarily with the same partner) during individuals’ lifespan, then our model can
be viewed as a generalisation of studies of the evolution of cooperation through reputation (Nowak and
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Sigmund, 1998). Yet another possibility is that the game is repeated between the same players, and
our implementation of plasticity might correspond to a learning strategy that consists in uncovering the
pure strategy of the opponent, and then playing an appropriate response (Dridi and Lehmann, 2014).
However, in practice when analysing our model we abstract away from details about how the plastic type
reaches its behavioral response.

Even though we try to adopt a simple form of plasticity and do not focus on the mechanistic details
leading to plasticity, one potential concern that may arise at this point is that the genetic and molecular
machinery necessary to perform a combination of strategy detection and appropriate response might be
very complex to evolve, even for the most basic forms of plasticity. A perfect response to existing types
is unlikely to emerge out of a background of pure genetic determination and previous research indeed
suggests that such perfect responses might be very difficult to evolve (McNamara et al., 1999; André
and Day, 2007). For this reason, we will allow our plastic types to adopt any possible response to their
opponents, in contrast to a previous work on the topic (Banerjee and Weibull, 1995), and we will study
how the evolutionary success of plastic types depends on their response to pure types. Moreover, the
perceptual system allowing one to infer others’ strategies might at first also be defective if it evolves from
a state where there was no perceptual system of this kind in the ancestral population. We capture such
imperfections by imposing a fitness cost on the expression of the plastic phenotype.

In the rest of the paper, we define a model that makes our assumptions more precise, and analyze the
evolutionary performance of plastic types when pitted against individuals who can only express a fixed
pure strategy in a normal-form game. We pay particular attention to scenarios where plasticity can invade
a population of pure types and eliminate them such that it becomes the evolutionarily stable strategy.
We also give a special focus to 2×2 games and analyze the replicator dynamics for four standard games of
cooperation: the Prisoner’s dilemma, the Stag-hunt game, the Snowdrift game, and a Mutualism game.
We also provide classes of games where plastic types can or cannot be globally or locally stable under the
standard replicator dynamics.

2 Model

We consider a standard model of a well-mixed population in which players are matched randomly in pairs
to play a 2-player n-action game. We denote the set of actions by A with |A| = n. The population
consists of n + 1 types: the first n types correspond to each pure action while the (n + 1)-th type can
detect others’ type before choosing an action. This plastic type, denoted p, has a strategy described by
the vector z = (z1, . . . , zn, zn+1), where zi = (zi1, . . . , zin) ∈ ∆A is the mixed strategy adopted by p

when faced with type i ∈ A ∪ {p}. The symbol ∆A denotes the n-dimensional simplex, such that zik is
the probability that the plastic type plays strategy k against type i. With these definitions, the cartesian
product

∏n+1
i=1 ∆A = (∆A)n+1 is the strategy set of the plastic type. The mixed strategy zn+1 = zp ∈ ∆A

is the strategy adopted when faced with another plastic individual. The payoff of type i ∈ A against
type j ∈ A is denoted π(i, j). For interactions involving the plastic type p, we mostly write the payoff
π(p, i) = π(zi, i) to emphasize the dependence of the payoff on the mixed strategy zi of type p against i.
We identify the payoffs π(p, i) and π(i, p) with the expected payoff generated by the mixed strategy of
the plastic type, that is

π(p, i) =
∑
j∈A

zijπ(j, i) and π(i, p) =
∑
j∈A

zijπ(i, j). (1)

When two plastic individuals meet, their payoff reads

π(p, p) =
∑
i∈A

∑
j∈A

zpizpjπ(i, j), (2)
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3 Optimizing the success of plasticity 4

where we assumed that both plastic types adopt the same responsive strategy. We do not consider selection
on the plastic response itself, z, in this paper, so all plastic types will always have the same responsive
strategy. We are interested in tracking the vector of frequencies of the types x = (x1, . . . ,xn,xn+1) ∈ ∆n+1

such that
∑n+1

i=1 xi = 1. The frequencies evolve according to the standard replicator dynamics. We write
wi(x), i = 1, . . . ,n, for the fitness of type i when the population is in state x which is calculated as the
average payoff at state x, or

wi(x) =
n+1∑
j=1

xjπ(i, j). (3)

We further assume that type p pays a cost k > 0 for expressing a plastic response so that its fitness
reads

wp(x) =
n+1∑
j=1

xjπ(p, j)− k. (4)

The frequency of any type i evolves according to the replicator dynamics, which are given by the differ-
ential equations

ẋi = xi (wi(x)− w̄(x)) , i ∈ A ∪ {p}, (5)

where

w̄(x) =
n+1∑
i=1

xiwi(x) (6)

is the average fitness in the population at state x. A further element of notation is that we denote by
φ(·,x0) : R → ∆n+1 the global solution trajectory to eq. 5 that passes through x0, which means that
φ(t,x0) is the vector of frequencies at time t given that the vector frequencies passes through x0. We
denote by φ(t,x0)i the ith element of φ(t,x0), with i ∈ A ∪ {p}.

3 Optimizing the success of plasticity

Consider the following evolutionary scenario. The population consists of pure types only and is at
equilibrium of the replicator dynamics (eq. 5). A mutant plastic type with arbitrary response z is
introduced in the population. Will the mutant frequency initially grow? Can this mutant plastic type
reach fixation and eliminate pure types? Clearly, the answer to these questions will depend on the strategy,
z, of the plastic type. A major goal of this paper is to find the conditions under which global stability
of plasticity is possible. Namely we are interested in the conditions for which limt→∞ φ(t,x0) = ep, for
all x0 ∈ int(∆n+1). In this section, we distinguish two different concepts, which will prove useful in the
following analyses aimed at the aforementioned goal: (1) the best outcome that plasticity can achieve in
any game; (2) the minimum strategy required for plasticity to be globally stable in a given game. We will
see in our results below that in some games the best outcome that plasticity can achieve is not enough to
survive natural selection. In other games, plastic types do not need to do their “best” in order to achieve
global stability. Below, we define more precisely what we mean by the plastic types doing their best. But
we already note at this point that the problem of finding a plastic strategy that grants global stability can
be divided into two different tasks. The first one is to maximize the chances of a plastic type invading all
equilibrium populations of the pure type game, and the second one is to find a strategy that guarantees
the stability of the plastic type against pure invaders.

3.1 Optimizing invasion success

It seems obvious that in order to maximize its invasion success of monomorphic populations, a plastic
type must choose the best-response to each existing type, i.e., for each i ∈ A the plastic type should
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3 Optimizing the success of plasticity 5

choose z∗i such that
z∗i = arg max

zi
{π(p, i)} = arg max

zi
{π(zi, i)} = β(i), (7)

where we used β(·) to denote the best-response function. If the strategy indeed maximizes the chances of
invasion of the plastic type, it does not guarantee invasion. Also, it is not necessary to play z∗i = β(i) in
order to invade a monomorphic population of a pure type. In general, the condition for invasion is given
by solving the inequality

wp(ei) > wi(ei),

π(zi, i)− k > π(i, i), (8)

where the i-th basis vector ei ∈ ∆n+1 is the state where the population consists only of type i, i.e.,
such that xi = 1 while xj = 0, i 6= j. The above condition can only be true when strategy i is not a
best-response to itself, i.e., when (i, i) is not a pure symmetric Nash Equilibrium (NE). Hence Proposition
2 below. For a population at a mixed equilibrium, xNE, let π(i,xNE) = π(xNE) = w(xNE) be the fitness or
expected payoff obtained by a pure type i in the support of xNE. Then invasion is equivalent to requiring
that

wp(xNE) > w(xNE),
n∑

j=1

xj,NEπ(zj , j)− k >
n∑

j=1

xj,NEπ(i, j), for i such that xi,NE > 0. (9)

We show in Prop. 3 that there always exists a strategy of the plastic type that allows it to invade the
mixed NE. In particular, playing the best-response to every pure type in support of a mixed NE allows
plasticity to invade this mixed NE. However, and once again, it is not necessary to play the best-response
to pure types in order to achieve this outcome.

3.2 Optimizing stability

To optimize its stability, the plastic type must choose a strategy zS
i that minimizes the payoff of any pure

mutant type when facing the plastic type or

zS
i = arg min

zi
{π(i, p)} = arg min

zi
{π(i, zi)} . (10)

Note that zS
i is different than the best-response because it is focused on minimizing the success of mutants.

To further optimize its stability the plastic type must choose a strategy against itself zS
p such that

zS
p = arg max

zp
{π(p, p)} = arg max

zp
{π(zp, zp)} , (11)

which corresponds to the symmetric Pareto-efficient equilibrium of the underlying symmetric game. We
remark that maximizing invasion success might conflict with maximizing stability, i.e., in general z∗ 6= zS

(we will see that this is so in a Stag-hunt game, for example). Hence, there is no general recipe for the
plastic type to achieve global stability in all games. Moreover, even if z∗ = zS, this does not mean that
the plastic type will achieve global stability (we will see that this is so in a Prisoner’s dilemma game, for
example). It is not necessary to play zS

p, to ensure local stability of plasticity. The condition for stability
against a pure type is

wp(ep) > wi(ep),

π(zp, zp)− k > π(i, zi). (12)

We show in Prop. 4 that eq. 12 implies that a necessary condition for the impossible local stability of
plasticity is that (i, i) is the symmetric Pareto-efficient outcome. This is a necessary but not a sufficient
condition for the instability of plasticity, as we will illustrate when we discuss social dilemma games.
Indeed in social dilemma games, plasticity can always be locally stable.
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4 Conditions for global stability of plasticity 6

4 Conditions for global stability of plasticity

The various observations that we made above put us in the position to state the following result.
Proposition 1 (Sufficient conditions for global stability of plasticity). If ∃z ∈ (∆A)n+1 such that:

(1) π(j, j) < π(zj , j), ∀j ∈ A

(2) π(j, zj) < π(zp, zp), ∀j ∈ A

(3)
∑n

j=1 xj,NEπ(zj , j) > π(xNE), ∀xNE ∈ ∆A

then there exists a k̄ such that, for all 0 < k < k̄, limt→∞ φ(t,x0) = ep, for all x0 ∈ int(∆n+1),

Proof. The set of equilibrium points of the replicator dynamics is the union of the ei, i ∈ A and of the
NE of the game. Adding a plastic type to a game is equivalent to adding an action to the underlying
symmetric game, and thus leaves unchanged the original equilibria of the pure-type game, and adds one
or more equilibria. In particular, it adds at least one equilibrium, namely ep, the equilibrium consisting
of the plastic type only. To show the global stability of plasticity in the game consisting of the n types
and the plastic type, it thus suffices to show that all the original equilibria of the replicator dynamics are
locally unstable, and that the equilibrium ep is locally stable.

Condition (1) guarantees the instability of all ei, i ∈ A. Indeed, condition 1 implies that there exists a k1
such that, for all 0 < k < k1, we have wp(ei) > wi(ei). This inequality in the fitnesses at a monomorphic
population of a pure type implies that the equilibrium ei is unstable (Hofbauer and Sigmund, 1998).

Condition (2) guarantees the local stability of ep for the same reason that condition 1 guarantees the
instability of ei, i.e., there exists a k2 such that, for all 0 < k < k2, we have wp(ep) > wi(ep).

Condition (3) finally guarantees local instability of any xNE ∈ ∆A, for the same reason that condition 1
guarantees the instability of ei, i.e., there exists a k3 such that, for all 0 < k < k3, we have wp(xNE) >

wi(xNE) for any i in the support of the NE. Taking k̄ = min{k1, k2, k3} implies that conditions 1, 2, and
3 will be satisfied at the same time for any 0 < k < k̄, which completes the proof.

Condition 1 of Prop.1 requests that the game possesses no pure symmetric NE, while condition 2 requests
that plastic types can play a secret-handshake strategy when meeting themselves that would overcome the
possible payoffs of pure invaders. Condition 3 finally requests from plastic types that they play a strategy
that guarantees invasion of mixed NE. While we have noted above that playing the best-response to every
pure type allows plasticity to invade a mixed NE, we will see with examples that invading a mixed NE
is not equivalent to invading all monomorphic populations consisting of strategies in the support of the
NE.

5 2×2 games of cooperation

Since the most famous plastic strategies in evolutionary biology are strategies in repeated games that can
sustain cooperation, one is tempted to generalize the idea and ask: Does plasticity generally favor the
evolution of cooperation? Or said differently, do plastic types need to establish cooperation in order to
successfully invade populations of pure types? We consider in this section four 2×2 games of cooperation
traditionally studied in evolutionary biology: the Prisoner’s Dilemma game (PD), the Stag-hunt game
(SH), the Snowdrift game (SD), and the Mutualism game (MG). We label the two possible actions as C
(for Cooperation) and D (for Defection), and this generates a plastic type with a three-dimensional trait
z = (zC , zD, zp) ∈ [0, 1]3, where zi is the probability to cooperate when facing type i ∈ {C,D, p}.
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5 2×2 games of cooperation 7

We perform a sensitivity analysis with respect to the parameters zC , zD, zp. For each value of these
parameters, we determine whether and when plasticity is able to invade equilibrium populations consisting
of pure types and/or can resist invasion by pure types. We will use the standard notation for the payoffs
of 2 × 2 social dilemma games, often used in the biological literature, i.e., π(C,C) = R, π(C,D) = S,
π(D,C) = T , and π(D,D) = P.

5.1 Prisoner’s dilemma game

The payoffs of the Prisoner’s dilemma satisfy T > R > P > S as well as R > (T + S)/2. In this
game, there is one dominant action, D. The outcome (D,D) is the only stable equilibrium of the pure-
type game. From condition 1 of Prop. 1, we thus have that plastic types cannot invade a population of
defectors, which means that the inequality

π(D,D) < π(zD,D)− k
P < zDS + (1− zD)P − k (13)

can never be satisfied. But can plasticity invade cooperators, and is it immune against invasion by pure
types? As to the first question, if plastic types play zC = 0 (always defect) against cooperators, they will
obviously invade a population of cooperators. But any zC that satisfies

π(C,C) < π(zC ,C)− k
R < zCR+ (1− zC)T − k (14)

would guarantee that plastic mutants invade a monomorphic population of cooperators. As to the second
question regarding the ability of plastic types to resist invasion by pure types, we have to set zC , zD, and
zp so that condition 2 of Prop. 1 holds. In other words we first have to solve the inequality

π(D, zD) < π(zp, zp)− k
zDT + (1− zD)P < z2pR+ zp(1− zp)(T + S) + (1− zp)2P − k (15)

for zD and zp. In Fig. 1, we show the regions of the space defined by combinations of (zD, zp) that satisfy
eq. 15, which constitute the set of plastic types that are immune against the invasion by defectors in
the Prisoner’s dilemma game. Note that eq. 15 implies that the plastic type can be immune against the
invasion by defectors only if zp > 0 (this can be shown by setting zp = 0 in eq. 15, which then cannot
be satisfied because T > P). To establish the local stability of plasticity against all pure types, we also
have to solve the same type of inequality involving zC , i.e.,

π(C, zC) < π(zp, zp)− k
zCR+ (1− zC)S < z2pR+ zp(1− zp)(T + S) + (1− zp)2P − k, (16)

which defines the set of plastic types that are immune against the invasion by cooperators in the Prisoner’s
dilemma game.

What are the conditions on the payoffs of the game, (R,S, T ,P), that allow these inequalities to be
satisfied? In Fig. 2, we illustrate the fact that the feasible payoffs of a plastic type as a resident (the
right-hand side of eqs. 15–16) are on the line x = y within the convex hull of feasible payoffs. This means
that the payoff π(zp, zp) satisfies

min{R,P,
T + S

2
} ≤ π(zp, zp) ≤ max{R,P,

T + S
2
}. (17)

Combining the above inequality with eq. 16, we then see that plasticity cannot be locally stable against
mutant cooperators if

max{R,P,
T + S

2
} ≤ min{R,S}. (18)
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Fig. 1: Regions of stability and invasion of plastic types (as defined by eqs. 15–16). (A)–(F) For each social dilemma
game (columns) we show the response of the plastic type, that is the combinations (zp, zC ) (top row) and
(zp, zD) (bottom row) that allow invasion of monomorphic populations of pure types by plasticity (blue), and
the ones that allow stability of plasticity against the invasion by pure types (green). We recall here that zi is
the probability to cooperate of the plastic type against each type i ∈ {C ,D, p}. (G) Combinations of (zC , zD)
that allow plasticity to invade a population of pure types at the mixed ESS of the Snowdrift game. If (zC , zD)
are chosen in the blue region of (G) and (zC , zD , zp) are further chosen at intersection of the green and blue
regions of panels (E)–(F), plasticity is globally stable in the Snowdrift game. Parameter values: Prisoner’s
dilemma game: (R,S, T ,P) = (3, 1, 7, 2); Stag-hunt game: (R,S, T ,P) = (8, 0, 4, 5); Snowdrift game:
(R,S, T ,P) = (3, 0.1, 5,−1).

Similarly, using eq. 15, plasticity cannot be locally stable against mutant defectors if

max{R,P,
T + S

2
} ≤ min{T ,P}. (19)

The two latter inequalities are not satisfied in the Prisoner’s dilemma, which means that plasticity can
always find a strategy that makes it stable against the invasion by pure types.

5.2 Stag-hunt game

We define this game as one with payoffs satisfying R > P > T > S and R+S > T +P, which entails that
(C,C) and (D,D) are two pure NE of the game, with (C,C) being the Pareto-dominant equilibrium, and
(D,D) being the risk-dominant equilibrium. Consequently (C,C) and (D,D) are both asymptotically
stable equilibria of the replicator dynamics in the pure-type game. From condition 1 of Prop. 1, plastic
types cannot invade any monomorphic population of pure types. However, solving inequalities 15 and 16,
we find that plasticity can be locally stable (Fig. 1). This game is a good illustration of the idea that
invasion ability and local stability of our plastic types might be impossible to reconcile. Indeed, the
plastic type needs to anti-coordinate with C and D in order to ensure local stability, but the best it can
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Fig. 2: The convex hull of feasible payoffs (orange region) in games of cooperation, and the line (red) of feasible payoffs
in a monomorphic population of plastic types. (A) Prisoner’s Dilemma game with (R,S, T ,P) = (3,−2, 5, 1).
(B) Stag-hunt game with (R,S, T ,P) = (8, 0, 4, 5). (C) Snowdrift game with (R,S, T ,P) = (3, 0.1, 5,−1).
(D). Mutualism game with (R,S, T ,P) = (5, 6, 0, 0).

do in monomorphic populations of either C or D is to coordinate; and this best effort is not even enough
to be able to invade monomorphic populations.

We finally mention a result in the Stag-hunt game that may be of interest beyond evolutionary biology.
Namely, in our model, costless plasticity in the Stag-hunt game is a solution to the problem of converging
to the payoff-dominant equilibrium. Even though our main focus in this paper is on the case where
the cost of plasticity is positive (k > 0), we mention this result because most evolutionary or learning
processes known to us converge to the risk-dominant equilibrium, (D,D) (or stochastic evolutionary
processes admit a stationary distribution that puts more mass on the risk-dominant equilibrium). Here,
if one sets k = 0 and (zC , zD, zp) = (1, 0, 1), then the face of the simplex such that defectors are at
frequency 0 is globally stable. All points on this face are neutrally stable, i.e., any mix of cooperators and
plasticity is globally stable. In such populations, everyone cooperates and thus achieves the maximum
possible payoff in the Stag-hunt game.

5.3 Snowdrift game

In the Snowdrift game, the payoffs are such that T > R > S > P. This game thus calls for closer
attention because it has a symmetric mixed NE. In order to achieve global stability, a plastic type must
be able to invade any mixture of the pure types, including the NE mixture. This game is in fact an
excellent illustration of the idea that playing the best-response to every pure type does not always yield
the best outcome for a plastic type. Indeed, in this game, playing the best-response to cooperators and
defectors guarantees that plasticity will invade monomorphic populations and the mixed NE, but this
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6 More general games 10

strategy does not guarantee local stability of plasticity. However there exists a strategy, which is not
the best-response, that guarantees global stability of plasticity, provided the payoffs allow it. Such a
strategy is found by solving simultaneously the inequalities in eqs. 13–16, together with the following
inequality

π(xNE) < xC,NEπ(zC ,C) + xD,NEπ(zD,D)− k, (20)

which is the condition for plasticity to invade a population at the mixed NE of the Snowdrift game. It
turns out to be quite difficult to reduce the inequalities in eqs. 13–16 and eq. 20, but we provide in Fig. 1
an example showing that there exists a strategy and payoffs of the Snowdrift game such that they all
hold, i.e., such that plasticity is globally stable.

The Snowdrift game also provides interesting counter-examples to conjectures that one might be tempted
to make: if a plastic type can invade every monomorphic population, it cannot necessarily invade a
population at the mixed NE; in Fig. 1, take for example (zC , zD, zp) = (0.2, 0.4, zp). The converse is also
false: if a plastic type can invade the mixed NE, this does not mean that it can invade every monomorphic
population in the support of the NE. However, in any game with no pure NE, there always exists a strategy
that guarantees invasion of both mixed NE and pure monomorphic populations; in particular, playing
the best-response against every pure type always guarantees such an outcome.

Another statement that can be proved wrong using the Snowdrift game is that games without pure
symmetric NE always make possible global stability of plasticity. In the Snowdrift game, setting T very
large creates a game that has still no pure symmetric NE, but where there is no longer a strategy that
makes plasticity globally stable. The intuitive reason is that setting T very large reduces substantially
the upper bound on zD such that plasticity is locally stable, i.e., the (green) region of local stability of
plasticity in Fig. 1 shrinks and then no longer intersects the (blue) region where plasticity can invade a
monomorphic population of defectors.

5.4 Mutualism game

In this game we assume simply that R > 0 and S > 0, while T = P = 0, such that cooperation is a
dominant action and the only NE of the pure-type game. Despite not being a social dilemma in the sense
that there is no conflict between cooperation and rational behavior, this game is still interesting when
considering the possible evolution of plasticity. Indeed in this game there are values of the payoffs for
which plasticity is neither locally stable nor able to invade a monomorphic population of cooperators, for
any value of (zC , zD, zp), which implies that any share of plastic mutants – irrespective of their strategy
– will be unable to survive natural selection. From our previous analysis, we know that plasticity cannot
invade a monomorphic population of cooperators, since cooperation is a dominant action. Plasticity can
however invade a population of defectors by playing a sufficiently high zD. However, if S ≥ R, then
eq. 18 is satisfied, which means that plasticity cannot be locally stable. If, on the other hand, S < R
then a plastic type can resist invasion by cooperators through defection against them. In Fig. 3, we show
the phase portrait of trajectories in a particular Mutualism game where S ≥ R, but also for all games of
cooperation studied in this section.

6 More general games

We now state results that hold for more general classes of games than 2 × 2 games of cooperation. In
all of our results, we assume that the pure-type game is generic (i.e., no two outcomes yield the same
payoffs for any player), in order to avoid unnecessary complications that might obscure the main results.
We begin by recalling here a classical result that we will be using throughout this article.
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6 More general games 11

Prisoner’s dilemma Stag-hunt

p

C

D

Snowdrift Mutualism

p

C

D p

C

D

Fig. 3: Replicator dynamics with added plastic types in 4 games of cooperation. Each triangle represents a projec-
tion of the 3-simplex on the 2-dimensional plane, where at each vertex the corresponding strategy (C , D,
or p) is at frequency 1. On the face opposed to a vertex, the corresponding strategy is absent, i.e., it is
at frequency 0. These plots are displayed for the best possible outcome that can be achieved by a plastic
type. Parameter values: Prisoner’s Dilemma: (R,S, T ,P) = (3,−2, 5, 1), and (zC , zD , zp) = (0, 0, 1); Stag-
hunt: (R,S, T ,P) = (8, 0, 4, 5), and (zC , zD , zp) = (0, 1, 1); Snowdrift: (R,S, T ,P) = (2.5, 0.1, 5,−1), and
(zC , zD , zp) = (0.03, 0.45, 0.9) [this strategy is chosen in the regions of invasion and stability of Fig. 1]; Mutu-
alism: (R,S, T ,P) = (5, 6, 0, 0), and (zC , zD , zp) = (1, 1, 1); in all games we used a cost of k = 0.3. Contours
indicate speed with blue corresponding to slower dynamics and red corresponding to faster dynamics. Black
dot: Asymptotically stable equilibrium (a “sink”) of the replicator dynamics; gray dot: an unstable saddle; white
dot: an unstable source.

Theorem (Static equilibria and the replicator dynamics; Hofbauer and Sigmund, 1998; Webb, 2007). Let
A be the set of asymptotically stable equilibria of the replicator dynamics (eq. 5), N the set of symmetric
Nash equilibria of the game, and F the set of equilibria (fixed points) of the replicator dynamics (eq. 5).
We then have

A ⊆ N ⊆ F.

The above theorem’s purpose is mainly to allow us making statements about the replicator dynamics by
using easier arguments based on static payoff comparisons. A simple proposition that we can now prove
is the following one.
Proposition 2 (Impossible invasion of costly plasticity). In games where the replicator dynamics converge
to an equilibrium point in pure strategy, costly plasticity cannot invade a population at the equilibrium of
the pure-type game.

Proof. Using the above theorem, we know that an asymptotically stable point of the pure-type game is
necessarily a NE. Thus, when entering a monomorphic equilibrium population, a plastic player may either
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6 More general games 12

conform to the NE by playing the best-response β(i) = i to the resident i, or not conform to the NE by
playing zi 6= β(i). In the latter case player p will necessarily obtain a lower payoff than the NE payoff,
π(zi,xNE) < π(xNE,xNE) which then implies that wp(xNE) < wi(xNE). If, in the former case, player p
instead chooses the best-response β(i), its payoff will be the NE payoff π(zi,xNE) = π(xNE,xNE) but its
fitness will still be lower than that of the resident because of the cost of plasticity, i.e., π(xNE,xNE)− k <
π(xNE,xNE), so wp(xNE) < wi(xNE).

This result implies that a pure NE of the pure-type game is also a NE of the extended game with plastic
types. While it is impossible for plastic types to invade pure NE, it is always possible to invade a mixed
NE, as the next proposition shows.
Proposition 3 (Coexistence of plasticity and pure types in games with mixed NE). In games with no
pure symmetric Nash equilibrium, there always exists a strategy z ∈ (∆A)n+1 such that plasticity persists
in the population at equilibrium, i.e., there exists a k̄ such that, for all 0 < k < k̄, limt→∞ φ(t,x0)p > 0,
for all x0 ∈ int(∆n+1).

Proof. Since the game has no pure NE, there is always, for each pair of actions j ∈ A, i ∈ A, an action
rj ∈ A such that π(i, j) ≤ π(rj , j). If i = β(j), then rj = i = β(j), while if i 6= β(j), then rj can be any
action that ensures π(i, j) < π(rj , j). If for each j ∈ A, the plastic type chooses to play zj = rj (by a
slight abuse of notation), then ineq. 9 is satisfied, and plasticity can invade the mixed NE. This proves
that any mixed NE can be invaded by a plastic type for sufficiently small plasticity costs. Since the game
has no pure NE, the plastic type can also invade every monomorphic population of pure types, i.e., the
equilibria ei for all i ∈ A are locally unstable. This proves that all equilibria where plasticity is absent
are locally unstable under the replicator dynamics, and that limt→∞ φ(t,x0)p > 0.

We just defined the conditions for plasticity to invade populations of pure types, but these do not guarantee
local stability of plasticity. The following proposition establishes a necessary condition for the inability
of plasticity to be immune against invasion by pure types.
Proposition 4 (Impossible stability of plasticity). If there exists i ∈ A such that plasticity cannot resist
invasion by i, i.e. such that wp(ep) < wi(ep), then (i, i) is the symmetric Pareto-efficient equilibrium of
the game.

Proof. If plasticity cannot resist invasion by i ∈ A, this means that

wp(ep) < wi(ep)

π(zS
p, z

S
p) ≤ π(i, zi), ∀zi ∈ ∆A. (21)

By way of contradiction, suppose that (i, i) is not the symmetric Pareto-efficient equilibrium of the game.
Then there exists z̄p ∈ ∆A such that π(z̄p, z̄p) > π(i, i). Hence a strategy of the plastic type with zp = z̄p
and zi = i would guarantee local stability of plasticity. But, by eq. 21, this contradicts our assumption
that plasticity is not locally stable against the invasion by i. This proves the result.

The converse is not true. If (i, i) is Pareto-efficient, it might still be possible to find strategies of the
plastic type such that it resists invasion by i. Taking any of the three social dilemmas above, coop-
eration is Pareto-efficient, but it is always possible to find a strategy that guarantees local stability of
plasticity.

6.1 Zero-sum games

From the discussion of the previous sections, it seems that if the two tasks of maximizing one’s own
payoff and minimizing the other’s payoff are two compatible endeavours, plastic types can achieve global
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6 More general games 13

stability. Hence, the class of strictly competitive games would seem to favor plastic types. A game is
strictly competitive if, for all k ∈ A and any pair of strategies i ∈ A, j ∈ A, the inequality π(i, j) > π(k, j)

implies that π(j, i) < π(j, k). In particular, maximizing one’s own payoff is equivalent to minimizing
the other’s payoff. Note that in a strictly competitive game, all strategy pairs are Pareto-efficient since
switching from any action that induces a higher payoff for a focal player induces a loss for his opponent. It
has been shown that strictly competitive games are affine transformations of zero-sum games (Adler et al.,
2009). We next show that in the class of symmetric zero-sum games without pure NE, there always exists
a strategy of the plastic type that guarantees its global stability under the replicator dynamics.
Proposition 5 (Global stability of costly plasticity in zero-sum games). In zero-sum games with no pure
symmetric NE, there always exists a strategy z ∈ (∆A)n+1 of the plastic type such that it is globally stable
under the replicator dynamics.

Proof. In order to show that plasticity is globally stable, we proceed by constructing a strategy that has
the three properties required by Prop. 1:

(1) It invades every monomorphic population of pure types.

(2) It is locally stable against the invasion by pure types.

(3) It invades a population at the mixed NEs of the pure type game.

To construct our winning plastic strategy, we begin by choosing the response of the plastic type against
every pure type. Since the game has no pure symmetric equilibrium, there always exists, for each i ∈ A,
at least one action ji ∈ A, ji 6= i, such that π(ji, i) > 0. Let the response of our plastic type be to
precisely choose such a ji, i.e. zi = ji (note that ji need not be the best-response to i). To completely
specify the strategy of the plastic type, we further need to define zp, the response of the plastic type to
itself. Let us set zp = ei, for arbitrary i ∈ A. We now verify that the three conditions for global stability
are fulfilled by our plastic strategy.

As to condition (1), any pure type obtains a payoff as a resident of π(i, i) = 0, while our plastic type
obtains π(zi, i) = π(ji, i) > 0. This means that π(zi, i) > π(i, i) for all i ∈ A and thus guarantees that
plasticity invades any monomorphic population of pure types.

Regarding condition (2), the payoff of the plastic type as a resident is π(zp, zp) = π(i, i) = 0, for any
i ∈ A, by definition of a symmetric zero-sum game. On the other hand any mutant pure type obtains
π(i, zi) = π(i, ji) = −π(ji, i) < 0 against the plastic type. Hence π(zp, zp) > π(i, zi) for all i ∈ A, which
guarantees local stability against the invasion by pure types.

Finally, condition (3) requires that the plastic type invades a population at the mixed NE. Since our
plastic type obtains a positive payoff against each pure type because π(zi, i) = π(ji, i) > 0, for each
i ∈ A, the expected payoff of a plastic type in any polymorphic population – including the population
at NE frequencies – is also strictly positive, being a convex combination of positive payoffs. However the
expected payoff of a pure type in a population where the frequencies of pure types correspond to the the
mixed NE of the zero-sum game is π(xNE) = 0. Hence wp(xNE) > wi(xNE) for any i in support of the NE,
which guarantees invasion of NE by plasticity. This completes the proof.

Note that the requirement that the game possesses no pure symmetric NE excludes symmetric 2 × 2

zero-sum games, since these games necessarily have a dominant action. Another remark is that the proof
is also valid for strictly competitive games since our argument is independent of affine transformations
to the payoffs of the game. This remark allows us to apply our results to the famous good Rock-Paper-
Scissors game, where winning yields a payoff of a, while loosing induces a loss of b, and a > b (Sandholm,
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6 More general games 14

2011), which entails the payoff matrix


R P S

R 0 −b a

P a 0 −b
S −b a 0

. (22)

In such a game, the interior NE, xNE = (1/3, 1/3, 1/3), is globally stable under the replicator dynamics,
with solution trajectories displaying damped oscillations around this equilibrium. In Fig. 4, we show the
effect of adding a plastic type with a strategy described in the proof of Prop. 5 to the good RPS game. In
this game, this creates a plastic type that plays the best-response to any pure type and plays any i ∈ A
against itself such that zi = β(i) for any i ∈ {R,P ,S} and zp = (1, 0, 0) [the choice of always playing R
is arbitrary, in accordance with the proof of Prop. 5]. Even though the plastic type cannot invade on the
faces of the simplex of dimension 2 (because symmetric 2×2 zero-sum games necessarily have a dominant
action, and hence a pure symmetric NE), it achieves a larger payoff than any fully mixed population.
This explains why it is globally stable in the interior of the simplex.

“Good” Rock-Paper-Scissors game

R

P

S

With added plastic type

Fig. 4: Replicator dynamics in the original good RPS (top), and with added plastic type (bottom). The 3-strategy
simplex was produced using our own code (available), while the 4-strategy simplex was produced using Dynamo
(Franchetti and Sandholm, 2013). Parameter values: Payoff matrix of eq. 22 with a = 2 and b = 1; zR =

(0, 1, 0); zP = (0, 0, 1); zS = (1, 0, 0); zp = (1, 0, 0).
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7 Discussion

In this work, we considered the introduction of plastic types in populations consisting of simple individuals
adopting pure strategies in evolutionary symmetric games. We showed that despite having the capacity of
responding in any possible way to other types in the population, there does not exist a general strategy for
plasticity to eliminate pure types from the population. There are several explanations to this. The first
one is that in games with pure symmetric Nash equilibria, costly plasticity cannot invade an equilibrium
population. Moreover, we demonstrated that there is often a conflict between optimizing invasion success
and optimizing stability for plastic types, the best illustration of this result being the Stag-Hunt game,
where these two tasks (optimizing invasion ability versus stability) lead to totally different behavioral
responses of the plastic types. We also saw that the success of plasticity is dependent on the class of
games played in the population. There are games, such as zero-sum games without pure symmetric NE,
where there always exists a strategy that grants plasticity global stability under the replicator dynamics.
On the other hand, there are games, such as certain Mutualism games, where plasticity can neither invade
an equilibrium population nor be stable against the invasion by pure types.

In our more detailed investigation of games of cooperation, we found that in the Prisoner’s Dilemma and
the Snowdrift game, plastic types should cooperate with themselves with a strictly positive probability
in order to be immune against the invasion by pure types. However, invasion success of pure populations
by plasticity is generally uncorrelated to playing a cooperative strategy. In the Stag-hunt game it is just
impossible for costly plasticity to invade an equilibrium population. However, costless plasticity is able
to do so, and can even establish cooperation (the payoff-dominant outcome) in a population that was
initially at equilibrium for defection (the inferior risk-dominant outcome). This result is similar to what
Robson (1990) found in an earlier work (we compare our work with that of Robson, 1990, in more detail
below).

It is insightful to look at our results through the lens provided by previous studies of the evolution of
plasticity. In particular, previous work (e.g., Gomulkiewicz and Kirkpatrick, 1992) has revealed that
variance in fitness is a key factor driving the evolution of plasticity. In our setting, we notice that
in games with pure Nash equilibria (NE), the population does not experience variance in payoffs at
equilibrium. Hence, it makes sense that there is no advantage to adapt behavior to different circumstances
(in accordance with Prop. 2), since there is only one circumstance which is to face the pure type that
is evolutionary stable. However, in games without pure NE, there is always variance in payoffs because
one might be matched with any type in the support of the mixed NE of the game. This explains why
plasticity can always invade a mixed NE, because it has the possibility to express different responses to the
different existing types, while everyone else is forced to the NE payoff. Altogether, these results suggest
that in general the ability to collect more fitness-relevant information is not always beneficial, as long as
this information is costly to acquire, as other studies of the evolution of learning have previously shown
(Wakano et al., 2004; Nakahashi et al., 2012; Aoki and Feldman, 2014; Dridi and Lehmann, 2015).

The proposition that individuals with more information may have an evolutionary advantage in social
interactions is not new. Robson (1990) developed a model where his plastic type could only distinguish
between plastic and non-plastic types and condition their action on this signal. He assumed that plasticity
was costless and found in particular that plasticity can invade a population at the inferior equilibrium
of a coordination game, and lead to the superior payoff-dominant equilibrium; however his plastic type
could not co-exist with the superior pure type that plays the payoff-dominant action, in contrast to what
we found. Banerjee and Weibull (1995) studied a very similar model to ours, but constrained the plastic
type to play a best-response to every pure type. We saw that this best-response assumption is not the
best strategy for plastic types when it comes to evolutionary stability. This phenomenon is exemplified
by the Snowdrift game, where playing the best-response to every pure type does not allow plasticity to
be locally stable against the invasion of pure mutants; but there are Snowdrift games where playing a
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7 Discussion 16

strategy different than the best-response allows plasticity to be not only locally but globally stable. Our
model is thus an extension of the ideas developed in these two earlier studies (Robson, 1990; Banerjee
and Weibull, 1995).

From a broader perspective, given the recent renewed interest for the evolution of strategies in the repeated
Prisoner’s dilemma (Stewart and Plotkin, 2016; Adami and Hintze, 2013; Press and Dyson, 2012; Stewart
and Plotkin, 2013), our work helps bridge the gap between these recent studies and classical work on
the evolution of pure non-plastic strategies in one-shot games (Hofbauer and Sigmund, 1998). Indeed,
in order to be able to express a repeated-game strategy, an organism must first have the capacity to
express a plastic social phenotype. Another recent trend is the focus on environmental variation in social
evolution (Ashcroft et al., 2014; Dridi and Lehmann, 2014; Weitz et al., 2016; Estrela et al., 2018), and
our study reminds that environmental variation is already embedded within social evolution through
frequency-dependent payoffs (Graves and Weinreich, 2017), which is why we find that plasticity may
evolve even in the absence of variation in the game payoffs.

Our model finally introduces new questions and calls for further research on the topic. Most notably,
we ignored evolution of the plastic response itself, but it is natural to imagine that if one plastic type
successfully invades, other plastic mutants with a different behavioral response might appear and displace
the original plastic type; there is then no guarantee that the optimal plastic type will also be evolutionarily
stable. Indeed, Robson (1990) showed that in the Prisoner’s dilemma, if a first plastic mutant might
successfully invade and establish cooperation, the introduction of further plastic mutants might lead to
the loss of cooperation. A possible avenue for future research would be to see if this result applies to our
setting as well, in the Prisoner’s dilemma and other games. Another extension of our work would be to
consider the possibility that the game payoffs change as a function of time, and in this setting a plastic
type would be able to condition its action not only on the type of the opponent but also on the type of
game being played. Heller (2004) modelled a situation where some individuals could detect the state of
the environment and the opponent’s type in a context of a fluctuating game, but she assumed that plastic
types (that she calls learning agents) only play the best-response to pure types. It would be interesting
to see what would happen if we do not constrain the plastic response to be the best-response, since we
saw in our model that the best-response does not always yield the best outcome for plasticity. These and
other extensions will help us better understand the evolution of complex strategies in realistic changing
environments.
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