Summary
The recently unveiled extent of cellular heterogeneity demands for single-cell investigations of intracellular metabolomes to reveal their roles in intracellular processes, molecular microenvironment and cell-cell interactions. To address this, we developed SpaceM, a method for in situ spatial single-cell metabolomics of cell monolayers which detects >100 metabolites in >10000 individual cells together with fluorescence and morpho-spatial cellular features. We discovered that the intracellular metabolomes of co-cultured human HeLa cells and mouse NIH3T3 fibroblasts predict the cell type with 90.4% accuracy and revealed a short-distance metabolic intermixing between HeLa and NIH3T3. We characterized lipid classes composing lipid droplets in steatotic differentiated human hepatocytes, and discovered a preferential accumulation of long-chain phospholipids, a co-regulation of oleic and linoleic acids, and an association of phosphatidylinositol monophosphate with high cell-cell contact. SpaceM provides single-cell metabolic, phenotypic, and spatial information and enables spatio-molecular investigations of intracellular metabolomes in a variety of cellular models.