Summary
The early mammalian conceptus (blastocyst) comprises an outer trophoblast globe that forms an axis originating from the inner embryonic cells. From the mouse conceptus, Trophoblast stem cells (TSCs) are derived, which are in vitro analogues of early trophoblasts. Here, we show that TSCs contain plastic subpopulations reflecting developmental states ranging from pre- to post-implantation trophoblasts. However, upon exposure to a specific combination of embryonic inductive signals, TSCs globally acquire properties of pre-implantation polar trophoblasts (gene expression, self-renewal) juxtaposing the inner embryonic cells, and an enhanced, homogeneous epithelial phenotype. These lines of polar-like TSCs (pTSCs) represent a transcriptionally earlier state that more efficiently forms blastoids, whose inner embryonic cells then induce the patterning of gene expression along the embryonic-abembryonic axis. Altogether, delineating the requirements and properties of polar trophoblasts and blastocyst axis formation in vitro provides a foundation for the precise description and dissection of early development.