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SUMMARY 52 
Alzheimer’s disease (AD) is a complex and heterogenous brain disease that affects multiple inter-related 53 

biological processes. This complexity contributes, in part, to existing difficulties in the identification of 54 

successful disease-modifying therapeutic strategies. To address this, systems approaches are being used to 55 

characterize AD-related disruption in molecular state. To evaluate the consistency across these molecular 56 

models, a consensus atlas of the human brain transcriptome was developed through coexpression meta-57 

analysis across the AMP-AD consortium. Consensus analysis was performed across five coexpression 58 

methods used to analyze RNA-seq data collected from 2114 samples across 7 brain regions and 3 research 59 

studies. From this analysis, five consensus clusters were identified that described the major sources of 60 

AD-related alterations in transcriptional state that were consistent across studies, methods, and samples. 61 

AD genetic associations, previously studied AD-related biological processes, and AD targets under active 62 

investigation were enriched in only three of these five clusters. The remaining two clusters demonstrated 63 

strong heterogeneity between males and females in AD-related expression that was consistently observed 64 

across studies. AD transcriptional modules identified by systems analysis of individual AMP-AD teams 65 

were all represented in one of these five consensus clusters except ROS/MAP-identified Module 109, 66 

which was specific for genes that showed the strongest association with changes in AD-related gene 67 

expression across consensus clusters. The other two AMP-AD transcriptional analyses reported modules 68 

that were enriched in one of the two sex-specific Consensus Clusters.  The fifth cluster has not been 69 

previously identified and was enriched for genes related to proteostasis. This study provides an atlas to 70 

map across biological inquiries of AD with the goal of supporting an expansion in AD target discovery 71 

efforts.  72 

 73 

INTRODUCTION 74 

Alzheimer’s Disease (AD) is a debilitating neurodegenerative disease affecting more than 5 million 75 

Americans for which we lack effective long-term disease-modifying therapeutic strategies (Cummings et 76 

al., 2014). Several therapeutic mechanisms are under active evaluation in clinical trials (Kumar et al., 77 
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2015) across the field - including the amyloid hypothesis. Because AD is likely to result from molecular 78 

dysregulation across a series of biological systems within the brain (De Strooper and Karran, 2016), there 79 

is some question as to whether therapeutic targeting of a single pathway will be sufficient to completely 80 

address the full burden of this disease.  Furthermore, recent evidence suggests that AD may be a 81 

collection of conditions with multiple underlying causes that lead to similar symptomatic and pathological 82 

end points (Brenowitz et al., 2017; Winblad et al., 2016). For these reasons, there is need to pursue a 83 

diverse set of mechanistic hypotheses for therapeutic intervention.  84 

 85 

Systems biology analysis can provide a rich mapping of the inter-related molecular dysregulations 86 

involved in AD that may be useful to guide drug target discovery towards a diverse set of complementary 87 

therapeutic mechanisms. Several systems-level analyses of human AD brain have been previously 88 

reported (Allen et al., 2018a, 2018b; Lu et al., 2014; Mostafavi et al., 2018; Seyfried et al., 2017; Zhang et 89 

al., 2013a). The importance of neuroinflammation in AD has been described across these (Patrick et al., 90 

2017; Zhang et al., 2013a) and also from genetic studies (Carrasquillo et al., 2017; Efthymiou and Goate, 91 

2017; Guerreiro et al., 2013; Jin et al., 2015; Jonsson et al., 2013; Raj et al., 2014; Sims et al., 2017), 92 

supporting a major focus on this pathway for therapeutic development as is currently underway (Ardura-93 

Fabregat et al., 2017).  In addition to neuroinflammation, other molecular pathways have been identified 94 

from systems biology studies of both RNA and protein abundance including multiple processes related to 95 

oligodendrocytic functions such as myelination (Allen et al., 2018a; McKenzie et al., 2017; Mostafavi et 96 

al., 2018; Seyfried et al., 2017). In several cases, these compelling observations arise from individual 97 

studies and, as of yet, their reproducibility is unknown. 98 

 This project aims to develop an atlas of AD-associated changes in molecular state that provides a 99 

mechanism to evaluate the consistency and robustness of systems analyses and the use of their findings to 100 

support AD target discovery. To this aim, we build on the resources and expertise gathered across the 101 

Accelerating Medicines Partnership in Alzheimer’s Disease Target Discovery and Preclinical Validation 102 

project (AMP-AD – ampadportal.org). AMP-AD focuses on identification of AD disease drivers using 103 
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systems-level evaluation of disease state in human brain tissue. A major early outcome of this consortium 104 

was the generation and public release of RNA-seq data generated across three sizable but distinct human 105 

postmortem brain studies that are distributed through the AMP-AD Knowledge Portal – 106 

https://ampadportal.org (Allen et al., 2016; Jager et al., 2018; Wang et al., 2018). Here, we use 107 

coexpression meta-analysis across these studies to develop a robust systems-level molecular atlas of AD. 108 

Coexpression network analysis is a commonly used data-driven approach to identify gene sets (or 109 

modules) that are similarly co-expressed across samples in a data set (Langfelder and Horvath, 2008a). 110 

These modules are often comprised of genes involved in biological processes that interact and/or exhibit 111 

coordinated activity in response to molecular and cellular states, pathological processes, and other factors 112 

(Gaiteri et al., 2015). Although distinct and important biology may be uniquely represented in any one of 113 

these studies, meta-analysis provides a generalized illustration of the changes in transcriptional state 114 

associated with AD in a manner that is robust to technical confound and study heterogeneity. An atlas 115 

derived of cross-study AD-associated transcriptional modules can support target discovery by (1) 116 

promoting target discovery across multiple distinct biological processes, (2) informing experimental 117 

design for target validation studies, (3) creation of improved experimental models and assessment of 118 

current experimental models (Wan et al., submitted), and (4) evaluating population heterogeneity in 119 

disease pathophysiology that may impact therapeutic efficacy. 120 

 121 

RESULTS 122 

AMP-AD collection of human RNA-seq data. We analyzed existing transcriptional data generated from 123 

post-mortem brain tissue homogenate from three separate sample sets including the Religious Order 124 

Study and the Memory and Aging Project (ROSMAP) (Bennett et al., 2012b, 2012a; Jager et al., 2018), 125 

the Mount Sinai Brain Bank (MSBB) RNA-seq study (Wang et al., 2018), and the Mayo RNA-seq study 126 

(Allen et al., 2016) (Mayo). Samples were collected from seven distinct brain tissues - dorsolateral 127 

prefrontal cortex (DLPFC) in ROSMAP; temporal cortex (TCX) and cerebellum (CBE) in Mayo, and 128 

inferior frontal gyrus (IFG), superior temporal gyrus (STG), frontal pole (FP), and parahippocampal gyrus 129 
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(PHG) in MSBB. Several differences in data collection and processing protocols across studies were 130 

identified and accounted for during data processing and analysis (see Table 1 and Methods).  131 

 132 

Development of AD-related transcriptional modules by consensus coexpression network analysis. To 133 

identify AD-related human transcriptional modules that were robustly observed in a generalized manner 134 

across methods and studies, we performed a consensus analysis for all seven tissue types using five 135 

coexpression analysis methodologies. These five distinct coexpression learning algorithms included: 136 

MEGENa (Song and Zhang, 2015), rWGCNA (Parikshak et al., 2016), metanetwork (Methods), WINA 137 

(Wang et al., 2016) and SpeakEasy (Gaiteri et al., 2015). Independent performance of each of the 5 138 

methods across each of the 7 tissues identified 2,978 tissue-specific coexpression modules (CBE: 458, 139 

DLPFC: 450, FP: 393, IFG: 429, PHG: 370, STG: 336, TCX: 502, 10.7303/syn10309369.1). As 140 

expected, similar coexpression structure was observed in each data set across methods, as indicated by 141 

significant overlap in module memberships (Figure S1).  Within each tissue, we next identified AD-142 

related modules that were well-represented across analysis methodologies. This analysis was limited to 143 

those modules that were significantly enriched for differentially expressed genes related to AD based on a 144 

meta-analysis of differential expression across the seven brain regions (Methods). To do this, graph 145 

clustering (Pons and Latapy, 2005) was performed on all modules within a tissue with an edge 146 

betweenness community identification algorithm (Pons and Latapy, 2005) and weights from the Fisher’s 147 

exact test estimate (Methods, Figure S1). This meta-analysis of coexpression modules and differential 148 

expression signatures identified 30 AD associated modules across the seven tissue types (CBE: 4, 149 

DLPFC: 4, FP: 4, IFG: 4, PHG: 5, STG: 4, TCX: 5, 10.7303/syn11932957.1). 150 

To establish confidence that these consensus modules provided an improved and coherent 151 

representation of AD-altered biology, they were evaluated for enrichment of gene sets previously 152 

identified as relevant to AD (Figure 1 and Methods). The consensus modules showed an improved 153 

percentage enrichment for previously published AD related gene sets or pathways relative to (a) the 154 

differential expression meta-analysis gene set (P-value = 0.036, Wilcoxon rank sum test), (b) the modules 155 
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defined by individual coexpression methods (P-value < 2x10-16  Wilcoxon rank sum test) and (c) those 156 

modules defined previously in the literature (Zhang et al., 2013b) (P-value 3.9x10-13 Wilcoxon rank sum 157 

test) (Figure 1).  Evaluation across tissues demonstrated that these 30 consensus modules fell into five 158 

well-defined clusters that were highly preserved across study and tissue type and demonstrated a low 159 

degree of overlap between clusters (Figure 2A) based on a Fisher’s exact test of gene membership 160 

overlap. These five ‘consensus clusters’ were used to represent distinct patterns of AD-related 161 

transcriptional state that were consistently observed. 162 

Because previous studies have identified cell-type specific changes from transcriptional analysis, 163 

we next evaluated enrichment of cell-type specific gene signatures as identified from previously 164 

published cell type specific RNA-seq data from Zhang et al (Zhang et al., 2014). While most of the genes 165 

represented in these consensus clusters were not cell type specific, we did observe that genes represented 166 

in cell-type specific gene signatures were grouped by cluster. As shown in Figure 2B, cell-type specific 167 

gene sets clearly clustered into four of five consensus clusters: the astrocytic signature was enriched in 168 

Consensus Clusters A and B, the endothelia and microglial signatures were enriched in Consensus Cluster 169 

B, the neuronal signature was enriched in Consensus Cluster C, and the oligodendroglial signature was 170 

enriched in Consensus Cluster D.   While we see significant enrichment for cell type specific gene-sets in 171 

Consensus Cluster A-D, these modules are large (2090 ± 1150 genes, Table S3), and show enrichment 172 

for a diverse set of biological processes beyond cell type specific processes (10.7303/syn11954640.1).  173 

Accordingly, Consensus Cluster E was not enriched for cell type specific signatures, but instead was 174 

consistently enriched for genes that were associated with proteostasis – including with the attenuation 175 

phase of the transcriptional response to heat shock (Abravaya et al., 1991; Fabregat et al., 2016), detection 176 

of unfolded protein (GO:0002235) (2015), response to unfolded protein (GO:0006986) (2015), and HSF1 177 

activation (Cotto et al., 1996; Fabregat et al., 2016; Zuo et al., 1995) (Table 2). 178 

 179 

Heterogeneity in expression of consensus clusters between females and males. To evaluate whether 180 

consensus clusters may prove useful in the identification of molecular heterogeneity in disease across 181 
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populations, we evaluated sex-specific differences across clusters in AD-related gene expression. Indeed, 182 

sex-specific differential expression gene (DEG) sets – from a sex specific meta-analysis of differential 183 

expression across the seven tissue types - were differentially enriched across the consensus clusters for 184 

females vs. males (Figure 2D). Consensus Clusters A and B demonstrated similar direction of DEGs 185 

across sex through enrichment was stronger in females vs. males.  This suggests that transcriptional 186 

changes related to neuroinflammatory processes were common across the sexes, albeit more pronounced 187 

in females. In contrast, the Consensus Clusters C and D were strongly enriched for genes altered in 188 

females but not in males, suggesting that the overall association of these clusters with AD-related 189 

differential expression was predominantly driven by females. Consensus Cluster E was enriched for genes 190 

that were down-regulated in both male and female AD cases. This last cluster was moderately enriched 191 

for genes that were up-regulated in male AD cases, with no such enrichment observed in females. These 192 

changes demonstrate that sex-specific changes in AD-related gene expression are heterogenous across 193 

consensus cluster.  194 

 195 

Use of consensus modules as an atlas to evaluate diversity of AD target discovery efforts. The consensus 196 

clusters can be used in aggregate as an atlas to support the selection of a robust and diverse set of AD 197 

therapeutic hypotheses for target discovery. To this aim, we next evaluated the enrichment across clusters 198 

of AD biology under active investigation for target discovery (Figure 2C). Consensus Clusters A, B, and 199 

C were enriched for AD pathways derived from the scientific literature (Amberger et al., 2015; Kanehisa 200 

et al., 2017; Kutmon et al., 2016; Lambert et al., 2013; Mi et al., 2017; Nishimura, 2001; Safran et al., 201 

2010; Tryka et al., 2014), AD gene sets (Lambert et al., 2013; Tryka et al., 2014) derived from genetic 202 

association analyses, and pathways related to therapeutic hypotheses currently undergoing active drug 203 

development including the amyloid secretase pathway (neuronal cluster), the Presenilin amyloid 204 

processing pathway (astrocytic cluster), and deregulation of CDK5 pathway that is implicated in Tau 205 

hyperphosphorylation (neuronal cluster).  206 
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We next evaluated the consensus clusters for enrichment of modules identified for AD target 207 

discovery by the individual teams within the AMP-AD consortium, as part of their systems biology-based 208 

target discovery programs. Each team had identified AD-related modules through study-specific analyses 209 

(Allen et al., 2018a; Johnson et al., 2018; McKenzie et al., 2017; Mostafavi et al., 2018). We evaluated 210 

how the primary findings from these individual analyses mapped onto the consensus clusters. First, we 211 

examined enrichment the results published from independent analysis of the ROS/MAP study (Mostafavi 212 

et al., 2018). This original analysis identified several modules that were associated with rate of cognitive 213 

decline including module 109.  Unlike the modules previously identified within the literature or by the 214 

other teams (see below), module 109 membership did not group into a single consensus cluster.  Instead, 215 

module 109 membership was enriched across 4 of the 5 consensus clusters. Strikingly, module 109 was 216 

the most strongly enriched for genes that are up in AD cases (FET OR, P-value: 9.8, 2x10-72), up in male 217 

AD cases (FET OR, P-value 7.4, 1.1x10-22), and up in female AD Cases (FET OR, P-value: 9.2,2x10-78, 218 

Table S5, Table S7, Table S8) among all AD signatures we tested.  219 

In contrast, the modules identified by the other AMP-AD teams were all enriched within a single 220 

consensus cluster. The Mayo and Mt Sinai teams each identified a separate module that was enriched for 221 

oligodendrocyte signatures and that significantly overlapped with consensus cluster D (Figure 2C, Table 222 

S4). Notably, AD-related decreases in expression of genes within these two modules were reported by 223 

each team.  Because we observed sex-specific differences in AD gene expression in consensus cluster D 224 

but results from sex-specific analyses were not reported by either team, we evaluated the Mayo and Mt. 225 

Sinai modules for sex-specificity. Indeed, the sex-specific pattern of AD-related expression were also 226 

consistently observed in both the Mayo and Mt. Sinai modules.  For the Mayo module, the effect size for 227 

AD-related increased expression in females was much smaller than the effect size for AD-related 228 

decreased expression in males (Table S8, S10), supporting a modest decrease in expression based on 229 

combined analysis across all AD cases as was reported by the Mayo team (Allen et al., 2018a). The Mt. 230 

Sinai module demonstrated the same AD-related increased expression in females but no significant 231 

changes in males. The genes represented in the Mt Sinai module may be specific to the female signature 232 
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because Mt. Sinai module membership was derived from analysis of a sample set with a preponderance of 233 

female samples. Finally, we evaluated cluster enrichment for an RNA-binding module identified by the 234 

Emory AMP-AD team (Johnson et al., 2018) from systems analysis of proteomic data. This was enriched 235 

in the Consensus Cluster B suggesting that it is co-expressed with genes involved with synaptic function. 236 

Finally, we evaluated enrichment for the one hundred genes nominated by the AMP-AD consortia 237 

as the first set of candidates for AD target evaluation (https://agora.ampadportal.org). Because these 238 

targets were selected in part based on analysis of these data, we expected to observe significant 239 

enrichments within the consensus clusters.  Interestingly, significant enrichment was observed (adjusted 240 

P-value < 0.05), but this was specific to Consensus Clusters A, B, and C – those that were also enriched 241 

for previously known AD biology processes.  This suggests that the initial round of AMP-AD target 242 

nominations was guided by data-driven analysis in combination with evaluation of prior biological 243 

knowledge.  Subsequent nominations would benefit from an expansion into biology represented within 244 

the other consensus clusters that are equally robust but have been less studied in the context of AD – 245 

particularly biology within Consensus Cluster D that was observed across multiple independent analyses. 246 

 247 

DISCUSSION 248 

Identification of therapies for the treatment or prevention of AD has been hampered by many difficulties 249 

including a limited pipeline of well-validated targets (Kumar et al., 2015). In part, this is because target 250 

discovery and validation has been plagued by multiple issues including: (a) poor understanding of the 251 

complex inter-related biological processes that are dysregulated with AD on a systems level (De Strooper 252 

and Karran, 2016), (b) presence of other aging-related neuropathologies that confound interpretation of 253 

differential expression studies(De Jager et al., 2018), (c) evaluation of AD biology in experimental model 254 

systems that do not effectively recapitulate human disease (King, 2018), and (d) reliance on therapeutic 255 

hypotheses that show no efficacy in late stage clinical trials (Makin, 2018). Using molecular data 256 

collected from human brains, this project provides an overview of the systems-level models of AD state 257 

in human brain that can be used to inform identification and assessment of complementary target 258 
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hypotheses. Human brain transcriptional data collected from three cohorts were used to define a robust, 259 

reproducible set of human AD associated coexpression modules by consensus network analysis across 260 

five co-expression network methodologies. Consensus modeling provided a set of generalizable 261 

observations that robustly define AD-associated dysregulation in transcriptional state, and as such provide 262 

a resource to guide target selection and validation strategies.  263 

  The consensus analysis identified 5 consensus clusters that represented distinct patterns of AD-264 

related changes in gene expression. The observed AD-associated changes in transcriptional state were 265 

consistently observed across all brain regions except cerebellum in terms of the differential expression 266 

patterns (the coexpression patterns are conserved). The reason why these signatures are not observed with 267 

AD in cerebellum is unknown but may be caused by region-specific differences in AD-associated 268 

transcriptional dysregulation, in AD pathology, and/or in cellular resilience to AD pathology (Stowell et 269 

al., 2018).  The interpretation of these differences is also confounded by the basic differences between 270 

cerebellar cortex and cerebral cortex in terms of cell composition, cellular architecture, and function (von 271 

Bartheld et al., 2016).   272 

These consensus clusters provide a general framework for evaluating heterogeneity in disease 273 

across populations.  In this analysis, few observed a drastic difference in AD-related expression changes 274 

in females vs. males within each consensus cluster.  For 4 of 5 Consensus Clusters, females exhibited 275 

significantly greater AD-associated expression changes as compared to males. This included greater 276 

increases in expression of the module clusters that were enriched for astrocytic, microglial, endothelial, 277 

and oligodendroglial signatures and greater reduction in expression of those enriched for neuronal 278 

signatures. In contrast, AD-associated alterations in expression of Consensus Cluster E was more 279 

prominent in males than in females. This cluster was enriched for response to unfolded protein and heat 280 

shock response.  281 

Increasingly, the literature supports differences between males and females in AD progression, 282 

although it is unknown whether these are caused by differences in AD-mediated processes, in rate of 283 

progression within comparable processes, in pre-disease state or in some other cause (Mielke et al., 2014; 284 
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[CSL STYLE ERROR: reference with no printed form.]).  Furthermore, we see evidence of sex specific 285 

differences in genetic regulation of disease (Nazarian et al., 2018), including at the level of expression of 286 

the oligodendrocyte myelinating cell module.  A suggestive hypothesis is that AD genetic loci identified 287 

to date are highly enriched in neuroinflammatory modules precisely because they show similar biology (at 288 

least at the transcriptomic level) in both men and women (Figure 2D).  This indicates that genetic 289 

association analyses stratified by sex may further illuminate some of the missing genetic factors 290 

underlying Alzheimer’s disease. Preliminary evidence suggests that this may be the case: a genetic risk 291 

score calculated in ROSMAP based on the 21 IGAP risk loci was associated with an eigengene in the 292 

oligodendrocyte consensus cluster (specifically the DLPFC brown module) (adjusted p-value, Bonferroni: 293 

10-2), but only in females and was significantly different from males.  Further disentangling the role of 294 

sex and genetics in understanding disease heterogeneity will be key to development of efficacious 295 

therapeutic interventions, especially if there are different underlying mechanisms driving disease etiology 296 

between men and women. 297 

 Identification of conserved human AD-related consensus clusters provides several benefits in the 298 

pursuit of AD target discovery.  First, they highlight the distinct aspects of brain biology that are 299 

dysregulated with AD– including several that are not currently under active investigation for drug 300 

development.  While not all dysregulated pathways are likely to be causative, these results suggest that a 301 

broader range of therapeutic hypotheses exist and serves to guide researchers to areas of biology that may 302 

merit further pursuit. In this manner, the consensus clusters were used to demonstrate three major areas of 303 

AD-related biology that are under active pursuit for drug discovery and a fourth area of interest.  This 304 

fourth, represented by Consensus Cluster D, had a complex subcluster architecture that may contain 305 

several biological processes of interest for further pursuit.  Indeed, two of these subclusters were 306 

independently identified and are under active pursuit by the AMP-AD Mayo and Mt. Sinai target 307 

discovery teams respectively. We note that the use consensus methodologies is explicitly designed to 308 

identify signatures of disease that are most robust to technical and study specific heterogeneity and, as 309 

such, can provide evidence to support costly drug discovery programs. This does not preclude the 310 
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relevance of other interesting biology that was not recapitulated across studies due to small effect size or 311 

uneven representation across studies based on differences in sample ascertainment.   312 

In addition to evaluating diversity in AD therapeutic hypotheses, these human AD-related clusters 313 

can be used to identify appropriate experimental model systems for further evaluation.  Traditionally, AD 314 

model systems have been developed through genetic perturbations of one or more AD-related pathways 315 

(King, 2018).  While none of these models provides a complete recapitulation of human disease, many 316 

provide a useful framework to evaluate dysregulation within specific pathways.  Since a subset of human 317 

co-expression clusters display conserved co-expression and/or overlapping differential expression in 318 

brains from AD mouse models, these human clusters may help to assess the appropriateness of AD 319 

experimental models for pathway-specific evaluation – as well as to highlight other genetic perturbations 320 

that may provide useful model systems to complement those that are commonly used(Mostafavi et al., 321 

2018; Neuner et al., 2018, Wan et al. submitted).   322 

 This analysis provides an important first step in developing a molecular framework to evaluate 323 

and promote diversity in AD target discovery. There are a handful of caveats to the approach taken in this 324 

study.  First and foremost, this study focuses on transcriptional measures of disease response in post-325 

mortem brain and, as such, provides an initial but incomplete picture of the molecular response and 326 

triggers of disease – including proteomic, epigenomic, and metabolomic signatures of disease.  Previous 327 

work indicates the correlation between transcriptomic and proteomic signatures of disease is relatively 328 

modest (Pearson’s r = 0.30) (Seyfried et al., 2017), and thus a more thorough integrative analysis is 329 

warranted to determine the full space of molecular signature of disease progression.  Additionally, all of 330 

the samples were from post-mortem tissue which could potentially introduce non-AD specific effects due 331 

to the state of the person at death (e.g. the effect of agonal state or preterminal decline in cognition 332 

immediately prior to death). Because we adopted a case/control analytic strategy to enable a meta-333 

analysis across the three sources of data, each of which has a very different study design, we could not 334 

consider individuals with intermediate phenotypes.  As such, this analysis is limited to a syndromic 335 

diagnosis of pathologic AD, further refined by including cognitive evaluations for the ROSMAP and 336 
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MSSM subjects. Given limitations of available neuropathologic phenotypes, we were not able to consider 337 

the possible impact of other aging-related pathologies on our results.  Finally, because these studies 338 

focused on whole tissue analysis, we cannot resolve which observed changes are driven by differences in 339 

the cellular composition of the tissue samples between AD cases and controls (neuronal death and 340 

reactive gliosis), and which are due to actual differences in the cellular expression levels. In looking for 341 

consensus modules across multiple brain regions that are variably influenced by AD pathology and 342 

further characterizing these modules based on additional evidence for involvement in AD, we have 343 

identified robust changes that may not entirely be driven by the former. However further work is needed 344 

to refine the molecular changes and pathways associated with AD and the implications for specific central 345 

nervous system cell-types. 346 

 These transcriptional AD-related module clusters represent an attractive mechanism to support 347 

translational research. Predictions of genes with an important role within an AD-related module cluster 348 

have been validated experimentally in vitro and ex vivo (Mostafavi et al., 2018; Yu et al., 2018; Zhang et 349 

al., 2013b). Within model systems, gene signatures for human AD clusters can serve as readouts to 350 

evaluate consequences of target engagement that are known to be relevant to human disease (Wan et al., 351 

submitted).  Such experiments could also identify biochemical signatures – or consequences –associated 352 

with changes in human AD clusters that could be used to advance therapeutic hypotheses or identify 353 

endophenotypic biomarkers. While effectiveness of such approaches needs to be tested, such approaches 354 

are already underway in several programs including those using mouse, fly, and cell-based model systems 355 

to evaluate AD biology. An integrated, systems approach to AD target evaluation is a powerful 356 

opportunity to advance the field. 357 
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ACKNOWLEDGEMENTS 359 

The results published here are in whole or in part based on data obtained from the AMP-AD Knowledge 360 

Portal (doi:10.7303/syn2580853). ROSMAP Study data were provided by the Rush Alzheimer’s Disease 361 

Center, Rush University Medical Center, Chicago. Data collection was supported through funding by 362 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

NIA grants P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, U01AG32984, 363 

U01AG46152, the Illinois Department of Public Health, and the Translational Genomics Research 364 

Institute.   Mayo RNAseq Study data were provided by the following sources: The Mayo Clinic 365 

Alzheimer’s Disease Genetic Studies, led by Dr. Nilufer Ertekin-Taner and Dr. Steven G. Younkin, Mayo 366 

Clinic, Jacksonville, FL using samples from the Mayo Clinic Study of Aging, the Mayo Clinic 367 

Alzheimer’s Disease Research Center, and the Mayo Clinic Brain Bank. Data collection was supported 368 

through funding by NIA grants P50 AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 369 

AG006576, U01 AG006786, R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 370 

NS080820, CurePSP Foundation, and support from Mayo Foundation. Study data includes samples 371 

collected through the Sun Health Research Institute Brain and Body Donation Program of Sun City, 372 

Arizona. The Brain and Body Donation Program is supported by the National Institute of Neurological 373 

Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and 374 

Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimer’s Disease Core 375 

Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research 376 

Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the 377 

Arizona Parkinson's Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research. 378 

MSBB data were generated from postmortem brain tissue collected through the Mount Sinai VA Medical 379 

Center Brain Bank and were provided by Dr. Eric Schadt from Mount Sinai School of Medicine.  380 

 Furthermore, Emory study data were supported through funding by NIA grants P50 AG025688, U01 381 

AG046161, and U01 AG061357. 382 

 383 

AUTHOR CONTRIBUTIONS 384 

BAL, TMP, VS, MW, CF, CG, MA, PS, YC, CF, XW performed differential and network expression 385 

analyses.  BAL, JE, KDD, PJE, PS performed bioinformatic analyses.  BAL, TMP, CG, MW, LMM, 386 

SKS, KDD, PE, LMM designed the analysis plan.  BAL, TMP, MA, NET, LMM, AL, DAB, PLDJ, JMS, 387 

GWC wrote the manuscript.  BAL, TMP, LMM, KD, CG, MA, ED, GS, SM, SA, WH, HUK, CP, MD, 388 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

KE, LY, AE, CP, GWC contributed to interpretation of analyses.  DAC, TG, AL, DAB, KE, MD, ZL, 389 

BZ, ES, PLDJ, NDP, NET conceived the human study design.  390 

 391 

DECLARATION OF INTERESTS 392 

All authors declare no competing conflicts of interests. 393 

  394 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

REFERENCES 395 

Abravaya, K., Phillips, B., and Morimoto, R.I. (1991). Attenuation of the heat shock response in HeLa 396 

cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in 397 

growth and in heat shock temperatures. Genes Dev. 5, 2117–2127. 398 

Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., and Vicsek, T. (2006). CFinder: locating cliques and 399 

overlapping modules in biological networks. Bioinformatics 22, 1021–1023. 400 

Ahn, Y.-Y., Bagrow, J.P., and Lehmann, S. (2010). Link communities reveal multiscale complexity in 401 

networks. Nature 466, 761–764. 402 

Allen, M., Carrasquillo, M.M., Funk, C., Heavner, B.D., Zou, F., Younkin, C.S., Burgess, J.D., Chai, H.-403 

S., Crook, J., Eddy, J.A., et al. (2016). Human whole genome genotype and transcriptome data for 404 

Alzheimer’s and other neurodegenerative diseases. Sci. Data 3, 160089. 405 

Allen, M., Wang, X., Burgess, J.D., Watzlawik, J., Serie, D.J., Younkin, C.S., Nguyen, T., Malphrus, 406 

K.G., Lincoln, S., Carrasquillo, M.M., et al. (2018a). Conserved brain myelination networks are altered in 407 

Alzheimer’s and other neurodegenerative diseases. Alzheimers. Dement. 14, 352–366. 408 

Allen, M., Wang, X., Serie, D.J., Strickland, S.L., Burgess, J.D., Koga, S., Younkin, C.S., Nguyen, T.T., 409 

Malphrus, K.G., Lincoln, S.J., et al. (2018b). Divergent brain gene expression patterns associate with 410 

distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathol. 411 

Altay, G., and Emmert-Streib, F. (2010). Inferring the conservative causal core of gene regulatory 412 

networks. BMC Syst. Biol. 4, 132. 413 

Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., and Hamosh, A. (2015). OMIM.org: Online 414 

Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. 415 

Nucleic Acids Res. 43, D789–D798. 416 

Ardura-Fabregat, A., Boddeke, E.W.G.M., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzériat, 417 

K., Dansokho, C., Dierkes, T., Gelders, G., Heneka, M.T., et al. (2017). Targeting Neuroinflammation to 418 

Treat Alzheimer’s Disease. CNS Drugs 31, 1057–1082. 419 

von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S. (2016). The search for true numbers of neurons 420 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–421 

3895. 422 

Bennett, D.A., Schneider, J.A., Arvanitakis, Z., and Wilson, R.S. (2012b). Overview and findings from 423 

the religious orders study. Curr. Alzheimer Res. 9, 628–645. 424 

Bennett, D.A., Schneider, J.A., Buchman, A.S., Barnes, L.L., Boyle, P.A., and Wilson, R.S. (2012a). 425 

Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 9, 646–663. 426 

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities 427 

in large networks. J. Stat. Mech. Theory Exp. 2008, P10008. 428 

Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., and Del Tredici, K. (2006). Staging of 429 

Alzheimer disease-associated neurofibrillary pathology using paraffin sections and 430 

immunocytochemistry. Acta Neuropathol. 112, 389–404. 431 

Brenowitz, W.D., Keene, C.D., Hawes, S.E., Hubbard, R.A., Longstreth, W.T., Woltjer, R.L., Crane, 432 

P.K., Larson, E.B., and Kukull, W.A. (2017). Alzheimer’s disease neuropathologic change, Lewy body 433 

disease, and vascular brain injury in clinic- and community-based samples. Neurobiol. Aging 53, 83–92. 434 

Carrasquillo, M.M., Allen, M., Burgess, J.D., Wang, X., Strickland, S.L., Aryal, S., Siuda, J., 435 

Kachadoorian, M.L., Medway, C., Younkin, C.S., et al. (2017). A candidate regulatory variant at the 436 

TREM gene cluster associates with decreased Alzheimer’s disease risk and increased TREML1 and 437 

TREM2 brain gene expression. Alzheimers. Dement. 13, 663–673. 438 

Clauset, A., Newman, M.E.J., and Moore, C. (2004). Finding community structure in very large 439 

networks. Phys. Rev. E 70, 066111. 440 

Cotto, J.J., Kline, M., and Morimoto, R.I. (1996). Activation of heat shock factor 1 DNA binding 441 

precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. 442 

Chem. 271, 3355–3358. 443 

Csardi, G., InterJournal, T.N.-, Systems, C., and 2006,  undefined The igraph software package for 444 

complex network research. Necsi.Edu. 445 

Cummings, J.L., Morstorf, T., and Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: 446 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

few candidates, frequent failures. Alzheimers. Res. Ther. 6, 37. 447 

De Strooper, B., and Karran, E. (2016). The Cellular Phase of Alzheimer’s Disease. Cell 164, 603–615. 448 

Efthymiou, A.G., and Goate, A.M. (2017). Late onset Alzheimer’s disease genetics implicates microglial 449 

pathways in disease risk. Mol. Neurodegener. 12, 43. 450 

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., 451 

Korninger, F., McKay, S., et al. (2016). The Reactome pathway Knowledgebase. Nucleic Acids Res. 44, 452 

D481–D487. 453 

Gaiteri, C., Chen, M., Szymanski, B., Kuzmin, K., Xie, J., Lee, C., Blanche, T., Chaibub Neto, E., Huang, 454 

S.-C., Grabowski, T., et al. (2015). Identifying robust communities and multi-community nodes by 455 

combining top-down and bottom-up approaches to clustering. Sci. Rep. 5, 16361. 456 

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., 457 

Kauwe, J.S.K., Younkin, S., et al. (2013). TREM2 Variants in Alzheimer’s Disease. N. Engl. J. Med. 368, 458 

117–127. 459 

Haury, A.-C., Mordelet, F., Vera-Licona, P., and Vert, J.-P. (2012). TIGRESS: Trustful Inference of Gene 460 

REgulation using Stability Selection. BMC Syst. Biol. 6, 145. 461 

Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory networks from 462 

expression data using tree-based methods. PLoS One 5, e12776. 463 

Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., 464 

Jagust, W., Jessen, F., Karlawish, J., et al. (2018). NIA-AA Research Framework: Toward a biological 465 

definition of Alzheimer’s disease. Alzheimer’s Dement. 14, 535–562. 466 

Jager, P. De, Ma, Y., McCabe, C., Xu, J., Vardarajan, B.N., Felsky, D., Klein, H.-U., White, C.C., Peters, 467 

M.A., Lodgson, B., et al. (2018). A multi-omic atlas of the human frontal cortex for aging and 468 

Alzheimer’s disease research. BioRxiv 251967. 469 

De Jager, P.L., Yang, H.-S., and Bennett, D.A. (2018). Deconstructing and targeting the genomic 470 

architecture of human neurodegeneration. Nat. Neurosci. 21, 1310–1317. 471 

Jin, S.C., Carrasquillo, M.M., Benitez, B.A., Skorupa, T., Carrell, D., Patel, D., Lincoln, S., Krishnan, S., 472 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

Kachadoorian, M., Reitz, C., et al. (2015). TREM2 is associated with increased risk for Alzheimer’s 473 

disease in African Americans. Mol. Neurodegener. 10, 19. 474 

Johnson, E.C.B., Dammer, E.B., Duong, D.M., Yin, L., Thambisetty, M., Troncoso, J.C., Lah, J.J., Levey, 475 

A.I., and Seyfried, N.T. (2018). Deep proteomic network analysis of Alzheimer’s disease brain reveals 476 

alterations in RNA binding proteins and RNA splicing associated with disease. Mol. Neurodegener. 13, 477 

52. 478 

Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P. V., Snaedal, J., Bjornsson, S., 479 

Huttenlocher, J., Levey, A.I., Lah, J.J., et al. (2013). Variant of TREM2 Associated with the Risk of 480 

Alzheimer’s Disease. N. Engl. J. Med. 368, 107–116. 481 

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives 482 

on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361. 483 

King, A. (2018). The search for better animal models of Alzheimer’s disease. Nature 559, S13–S15. 484 

Krämer, N., Schäfer, J., and Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene 485 

association networks using graphical Gaussian models. BMC Bioinformatics 10, 384. 486 

Kumar, A., Singh, A., and Ekavali (2015). A review on Alzheimer’s disease pathophysiology and its 487 

management: an update. Pharmacol. Reports 67, 195–203. 488 

Kutmon, M., Riutta, A., Nunes, N., Hanspers, K., Willighagen, E.L., Bohler, A., Mélius, J., Waagmeester, 489 

A., Sinha, S.R., Miller, R., et al. (2016). WikiPathways: capturing the full diversity of pathway 490 

knowledge. Nucleic Acids Res. 44, D488–D494. 491 

Lambert, J.-C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., Jun, G., 492 

DeStefano, A.L., Bis, J.C., Beecham, G.W., et al. (2013). Meta-analysis of 74,046 individuals identifies 493 

11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458. 494 

Langfelder, P., and Horvath, S. (2008a). WGCNA: an R package for weighted gene co-expression 495 

network analysis. BMC Bioinformatics 9, 559. 496 

Langfelder, P., and Horvath, S. (2008b). WGCNA: an R package for weighted correlation network 497 

analysis. BMC Bioinformatics 9, 559. 498 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

Logsdon, B.A., Gentles, A.J., Miller, C.P., Blau, C.A., Becker, P.S., and Lee, S.-I. (2015). Sparse 499 

expression bases in cancer reveal tumor drivers. Nucleic Acids Res. 43, 1332–1344. 500 

Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.-H., Kim, H.-M., Drake, D., Liu, X.S., et 501 

al. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454. 502 

Makin, S. (2018). The amyloid hypothesis on trial. Nature 559, S4–S7. 503 

Marbach, D., Costello, J.C., Küffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., Allison, K.R., 504 

DREAM5 Consortium, M., Kellis, M., Collins, J.J., et al. (2012). Wisdom of crowds for robust gene 505 

network inference. Nat. Methods 9, 796–804. 506 

Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., and Califano, 507 

A. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian 508 

cellular context. BMC Bioinformatics 7 Suppl 1, S7. 509 

McKenzie, A.T., Moyon, S., Wang, M., Katsyv, I., Song, W.-M., Zhou, X., Dammer, E.B., Duong, D.M., 510 

Aaker, J., Zhao, Y., et al. (2017). Multiscale network modeling of oligodendrocytes reveals molecular 511 

components of myelin dysregulation in Alzheimer’s disease. Mol. Neurodegener. 12, 82. 512 

Meyer, P.E., Kontos, K., Lafitte, F., and Bontempi, G. (2007). Information-Theoretic Inference of Large 513 

Transcriptional Regulatory Networks. EURASIP J. Bioinforma. Syst. Biol. 2007, 1–9. 514 

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P.D. (2017). 515 

PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data 516 

analysis tool enhancements. Nucleic Acids Res. 45, D183–D189. 517 

Mielke, M.M., Vemuri, P., and Rocca, W.A. (2014). Clinical epidemiology of Alzheimer’s disease: 518 

assessing sex and gender differences. Clin. Epidemiol. 6, 37–48. 519 

Mostafavi, S., Gaiteri, C., Sullivan, S.E., White, C.C., Tasaki, S., Xu, J., Taga, M., Klein, H.-U., Patrick, 520 

E., Komashko, V., et al. (2018). A molecular network of the aging human brain provides insights into the 521 

pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21, 811–819. 522 

Nazarian, A., Yashin, A.I., and Kulminski, A.M. (2018). Genome-wide analysis of genetic predisposition 523 

to Alzheimer’s disease and related sex-disparities. BioRxiv 321992. 524 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

Neuner, S.M., Heuer, S.E., Huentelman, M.J., O’Connell, K.M.S., and Kaczorowski, C.C. (2018). 525 

Harnessing Genetic Complexity to Enhance Translatability of Alzheimer’s Disease Mouse Models: A 526 

Path toward Precision Medicine. Neuron. 527 

Nishimura, D. (2001). BioCarta. Biotech Softw. Internet Rep. 2, 117–120. 528 

Parikshak, N.N., Swarup, V., Belgard, T.G., Irimia, M., Ramaswami, G., Gandal, M.J., Hartl, C., Leppa, 529 

V., Ubieta, L. de la T., Huang, J., et al. (2016). Genome-wide changes in lncRNA, splicing and regional 530 

gene expression patterns in autism. Nature 540, 423–427. 531 

Patrick, E., Olah, M., Taga, M., Klein, H.-U., Xu, J., White, C.C., Felsky, D., Gaiteri, C., Chibnik, L.B., 532 

Mostafavi, S., et al. (2017). A cortical immune network map identifies a subset of human microglia 533 

involved in Tau pathology. BioRxiv 234351. 534 

Pons, P., and Latapy, M. (2005). Computing communities in large networks using random walks (long 535 

version). 536 

Raj, T., Rothamel, K., Mostafavi, S., Ye, C., Lee, M.N., Replogle, J.M., Feng, T., Lee, M., Asinovski, N., 537 

Frohlich, I., et al. (2014). Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles 538 

in Leukocytes. Science (80-. ). 344, 519–523. 539 

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers 540 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–541 

e47. 542 

Rosvall, M., and Bergstrom, C.T. (2008). Maps of random walks on complex networks reveal community 543 

structure. Proc. Natl. Acad. Sci. U. S. A. 105, 1118–1123. 544 

Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, 545 

T., Krug, H., et al. (2010). GeneCards Version 3: the human gene integrator. Database 2010. 546 

Seyfried, N.T., Dammer, E.B., Swarup, V., Nandakumar, D., Duong, D.M., Yin, L., Deng, Q., Nguyen, 547 

T., Hales, C.M., Wingo, T., et al. (2017). A Multi-network Approach Identifies Protein-Specific Co-548 

expression in Asymptomatic and Symptomatic Alzheimer’s Disease. Cell Syst. 4, 60–72.e4. 549 

Sims, R., van der Lee, S.J., Naj, A.C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B.W., 550 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

Boland, A., Raybould, R., Bis, J.C., et al. (2017). Rare coding variants in PLCG2, ABI3, and TREM2 551 

implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384. 552 

Song, W.-M., and Zhang, B. (2015). Multiscale Embedded Gene Co-expression Network Analysis. PLOS 553 

Comput. Biol. 11, e1004574. 554 

Stowell, R.D., Wong, E.L., Batchelor, H.N., Mendes, M.S., Lamantia, C.E., Whitelaw, B.S., and 555 

Majewska, A.K. (2018). Cerebellar microglia are dynamically unique and survey Purkinje neurons in 556 

vivo. Dev. Neurobiol. 78, 627–644. 557 

Traag, V.A., and Bruggeman, J. (2009). Community detection in networks with positive and negative 558 

links. Phys. Rev. E 80, 036115. 559 

Tryka, K.A., Hao, L., Sturcke, A., Jin, Y., Wang, Z.Y., Ziyabari, L., Lee, M., Popova, N., Sharopova, N., 560 

Kimura, M., et al. (2014). NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 561 

42, D975–D979. 562 

Wang, M., Roussos, P., McKenzie, A., Zhou, X., Kajiwara, Y., Brennand, K.J., De Luca, G.C., Crary, 563 

J.F., Casaccia, P., Buxbaum, J.D., et al. (2016). Integrative network analysis of nineteen brain regions 564 

identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s 565 

disease. Genome Med. 8, 104. 566 

Wang, M., Beckmann, N.D., Roussos, P., Wang, E., Zhou, X., Wang, Q., Ming, C., Neff, R., Ma, W., 567 

Fullard, J.F., et al. (2018). The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic 568 

data in Alzheimer’s disease. Sci. Data 5, 180185. 569 

Wilkerson, M.D., and Hayes, D.N. (2010). ConsensusClusterPlus: a class discovery tool with confidence 570 

assessments and item tracking. Bioinformatics 26, 1572–1573. 571 

Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty, H., Cedazo-Minguez, A., 572 

Dubois, B., Edvardsson, D., Feldman, H., et al. (2016). Defeating Alzheimer’s disease and other 573 

dementias: a priority for European science and society. Lancet. Neurol. 15, 455–532. 574 

Yu, L., Petyuk, V.A., Gaiteri, C., Mostafavi, S., Young-Pearse, T., Shah, R.C., Buchman, A.S., 575 

Schneider, J.A., Piehowski, P.D., Sontag, R.L., et al. (2018). Targeted brain proteomics uncover multiple 576 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

pathways to Alzheimer’s dementia. Ann. Neurol. 84, 78–88. 577 

Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A.A., Zhang, C., Xie, T., 578 

Tran, L., Dobrin, R., et al. (2013a). Integrated Systems Approach Identifies Genetic Nodes and Networks 579 

in Late-Onset Alzheimer’s Disease. Cell 153, 707–720. 580 

Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A.A., Zhang, C., Xie, T., 581 

Tran, L., Dobrin, R., et al. (2013b). Integrated systems approach identifies genetic nodes and networks in 582 

late-onset Alzheimer’s disease. Cell 153, 707–720. 583 

Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O’Keeffe, S., Phatnani, H.P., Guarnieri, 584 

P., Caneda, C., Ruderisch, N., et al. (2014). An RNA-sequencing transcriptome and splicing database of 585 

glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947. 586 

Zuo, J., Rungger, D., and Voellmy, R. (1995). Multiple layers of regulation of human heat shock 587 

transcription factor 1. Mol. Cell. Biol. 15, 4319–4330. 588 

Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of 589 

Alzheimer’s disease. Natl. Acad Sci. 590 

(2015). Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056. 591 

  592 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/510420doi: bioRxiv preprint 

https://doi.org/10.1101/510420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

FIGURE LEGENDS 593 

Figure 1 - Percentage of total pairwise module by literature curated AD gene set associations 594 

significantly enriched (FDR <=0.05) for 12 known AD gene sets with standard errors shown. 595 

 596 

Figure 2 - A) Overlap between identified 30 AD associated coexpression modules - there are 5 597 

predominant clusters identified across brain regions – Consensus Cluster A, B, C, D, and E.  B) Cell type 598 

enrichments of the 30 AD associated coexpression modules. C) Enrichment for curated AD gene sets 599 

within the 30 AD associated coexpression modules. D) Enrichments for differentially expressed genes 600 

based on the meta-analysis in the 30 AD associated coexpression modules.  601 
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TABLE LEGENDS 602 

Table 1 - Data characteristics of the AMP-AD human RNA-seq datasets. 603 

 604 

Table 2  - Enrichment for heat shock response and unfolded protein response pathways for non-cell type 605 

specific modules.  Fisher’s Exact Test odds ratio and adjusted p-values of gene set enrichment are shown. 606 
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METHODS 607 

Study design and data collection. Details of sample collection, postmortem sample descriptions, 608 

tissue and RNA preparation, library preparation and sequencing, and sample QC are provided in 609 

previously published work (Allen et al., 2016; Jager et al., 2018; Wang et al., 2018). 610 

 AD definition and cross-study harmonization.  Sub-samples were selected to harmonize the 611 

LOAD case - control definition across the three studies for all differential expression analyses. To 612 

compare analysis results across studies and to get an understanding of LOAD biology across different 613 

tissues, we harmonized the LOAD definition across three studies.  The motivation was to define LOAD 614 

cases as those with both clinical and neuropathological evidence for definitive late onset Alzheimer’s 615 

disease - i.e. a high burden of neurofibrillary tangles, neuritic amyloid plaques, and cognitive impairment 616 

with little evidence of other pathology (Jack et al., 2018). Controls were concordantly defined as patients 617 

with a low burden of plaques and tangles, as well as no evidence of cognitive impairment if available. As 618 

such, for the ROSMAP study, we had individuals with a Braak neurofibrillary tangle (NFT) score (Braak 619 

et al., 2006) greater than or equal to 4, CERAD score less than or equal to 2, and a cognitive diagnosis of 620 

probable AD with no other causes as LOAD cases, Braak less than or equal to 3, CERAD score greater 621 

than or equal to 3, and cognitive diagnosis of ‘no cognitive impairment’ as LOAD controls. For MSBB, 622 

we analogously defined LOAD cases as those with CDR score greater than or equal to 1, Braak score 623 

greater than or equal to 4, and CERAD neuritic and cortical plaque score greater than or equal to 2 as 624 

LOAD cases, and CDR scores less than or equal to 0.5, Braak less than or equal to 3, and CERAD less 625 

than or equal to 1 as LOAD controls. It is to note here that the definitions of CERAD differs between 626 

ROSMAP and MSBB studies.  For the Mayo Clinic RNASeq study, cases were defined based on 627 

neuropathology, with LOAD cases being based on Braak score greater than or equal to 4 and CERAD 628 

neuritic and cortical plaque score greater than 1 whereas LOAD controls being those defined as Braak 629 

less than or equal to 3, and CERAD less than 2.  Further details concerning the diagnosis in the Mayo 630 

RNASeq study have been previously published (Allen et al., 2018a). 631 
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 RNA-Seq Reprocessing, library normalization and covariates adjustment. To avoid some of the 632 

technical variabilities arising due to RNA-seq alignment and quantification, and also to account for some 633 

of the technical variabilities we reprocessed and realigned all the RNA-Seq reads from the source studies 634 

(Allen et al., 2016; Jager et al., 2018; Wang et al., 2018). The reprocessing was done using a consensus 635 

set of tools with only library type-specific parameters varying between pipelines. Picard 636 

(https://broadinstitute.github.io/picard/) was used to generate FASTQs from source BAMs. Generated 637 

FASTQ reads were aligned to the GENCODE24 (GRCh38) reference genome using STAR and gene 638 

counts were computed for each sample. To evaluate the quality of individual samples and to identify 639 

potentially important covariates for expression modeling, we computed two sets of metrics using the 640 

CollectAlignmentSummaryMetrics and CollectRnaSeqMetrics functions in Picard.   641 

To account for differences between samples, studies, experimental batch effects and unwanted 642 

RNA-Seq specific technical variations we performed library normalization and covariate adjustments for 643 

each study separately using fixed/mixed effects modeling. The workflow consist of following steps: (i) 644 

gene filtereing: Genes that are expressed more than 1 CPM (read Counts Per Million total reads) in at 645 

least 50% of samples in each tissue and diagnosis category was used for further analysis, (ii) conditional 646 

quantile normalisation, was applied to  account for variations in gene length and GC content, (iii) sample 647 

outlier detection using principal component analysis and clustering, (iv) Covariates identification and 648 

adjustment,  where confidence of sampling abundance were estimated using a weighted linear model 649 

using voom-limma package in bioconductor (Ritchie et al., 2015). For most analyses, we perform a 650 

variant of fixed/mixed effect linear regression as shown here: gene expression ~ Diagnosis + Sex + 651 

covariates + (1| Donor) or gene expression ~ Diagnosis x Sex + covariates + (1|Donor), where each gene 652 

in linearly regressed independently with Diagnosis, variable explaining the AD status of an individual, 653 

identified covariates and donor information as random effect. Observation weights (if any) were 654 

calculated using the voom-limma (Ritchie et al., 2015) pipeline. So that observations with higher 655 

presumed precision will be up-weighted in the linear model fitting process.  All these workflows were 656 

applied separately for each of the three studies. 657 
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Meta-Differential Expression Analysis. All the differential and meta-differential expression analysis were 658 

performed as weighted fixed/mixed effect linear models using the voom-limma (Ritchie et al., 2015) 659 

package in R. For each gene, linear regression was fit with biological and technical covariates that were 660 

associated with the top principal components of the expression data, as identified above. Two of the three 661 

studies -  MSBB and Mayo RNAseq - obtained more than one tissue from the same donors. Therefore, 662 

except ROSMAP study, donor-specific effects were explicitly modeled as random effects. Different 663 

models were built for understanding the effects of diagnosis and sex-specific diagnosis effects. Depending 664 

on the model, coefficients related to either diagnosis or diagnosis time sex was statistically tested for 665 

being non-zero, implying an estimated effect for the primary variable of interest is above and beyond any 666 

other effect from the covariates. This test produces t-statistic (then moderated in a Bayesian fashion) and 667 

corresponding p-value. P-values were then adjusted for multiple hypothesis testing using false discovery 668 

rate (FDR) estimation, and the differentially expressed genes were determined as those with an estimated 669 

FDR below, or at, 5% with a corresponding absolute expression and fold-change cutoffs. To identify 670 

genes with evidence for change in expression across studies, we next performed a meta-analysis using a 671 

random effect and fixed effect models using rmeta r package (https://cran.r-672 

project.org/web/packages/rmeta/index.html). The random effect model was selected as a conservative 673 

approach to correct for variation across studies.   674 

Network Inference and Module Identification. We apply five distinct network module 675 

identification methodologies to each of the seven tissue specific expression data sets.  This includes 676 

MEGENa (Song and Zhang, 2015), WINA (Wang et al., 2016), metanetwork, rWGCNA (Parikshak et al., 677 

2016), and speakEasy (Gaiteri et al., 2015) to characterize a comprehensive landscape of transcriptomic 678 

variation across the seven brain regions and three studies.  Briefly, MEGENa (Song and Zhang, 2015) is a 679 

method that infers a sparse graph based on a distance to define multiscale module definitions from 680 

coexpression data.  Speakeasy is a label propagation method to identify robust coexpression modules that 681 

are identified both top up and bottom down (Gaiteri et al., 2015), rWGCNA  is a version of WGCNA 682 

(Langfelder and Horvath, 2008b) that includes bootstrapping to identify robust modules, WINA is also a 683 
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variation on WGCNA that includes a modified tree cutting method to identify modules (Wang et al., 684 

2016).  The metanetwork inference methodology is inspired by the DREAM5 method (Marbach et al., 685 

2012), where ensemble inference methodologies were identified as more robust for identification of gene-686 

gene interactions from coexpression data (Marbach et al., 2012). 687 

Metanetwork coexpression graph learning algorithm. We construct a statistical network of gene 688 

co-expression using an ensemble network inference algorithm. Briefly, we apply nine distinct gene co-689 

expression network inference methodologies ARACNe (Margolin et al., 2006), Genie3 (Huynh-Thu et al., 690 

2010), Tigress (Haury et al., 2012), Sparrow (Logsdon et al., 2015), Lasso (Krämer et al., 2009), Ridge  691 

(Krämer et al., 2009), mrnet (Meyer et al., 2007), c3net (Altay and Emmert-Streib, 2010) and WGCNA 692 

(Langfelder and Horvath, 2008b) and rank the edge lists from each method based on the method specific 693 

edge weights, identify a mean rank for each edge across methods, then identify the total number of edges 694 

supported by the data with Bayesian Information Criterion for local neighborhood selection with linear 695 

regression.  The ensemble approach is inspired by work DREAM consortia (Marbach et al., 2012) 696 

showing that ensemble methods are better at generating robust gene expression networks across 697 

heterogeneous data-sets. 698 

Metanetwork module identification methodology.  We identify metanetwork modules in each 699 

tissue type based on the inferred network topology with a consensus clustering algorithm (Wilkerson and 700 

Hayes, 2010) applied to multiple individual module identification methods.  We ran individual network 701 

clustering methods applied to each of the seven network topologies.  These methods included CFinder 702 

(Adamcsek et al., 2006), GANXiS (Gaiteri et al., 2015), a fast greedy algorithm (Clauset et al., 2004), 703 

InfoMap (Rosvall and Bergstrom, 2008), LinkCommunities (Ahn et al., 2010), Louvain (Blondel et al., 704 

2008), Spinglass (Traag and Bruggeman, 2009), and Walktrap (Pons and Latapy, 2005), methods.  All 705 

implementations are from the igraph package (Csardi et al.) in R. 706 

Aggregate module identification. For all 2978 modules identified across tissues (Supplementary 707 

Table S1, 10.7303/syn10309369.1), we first identify which modules are enriched for >=1 AD specific 708 

differential expressed gene set from the DEG meta-analysis (10.7303/syn11914606).  This restricts the 709 
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total number of individual modules to 660 that show evidence of differential expression as a function of 710 

disease status.  Next, we construct a within tissue module graph using a Fisher’s exact test for pairwise 711 

overlap of gene sets between each pair of these 660 individual modules.  An example of this graph is 712 

shown in Figure S1. We then apply the edge betweenness graph clustering method (Pons and Latapy, 713 

2005) to identify aggregate modules from these module graphs that represent meta modules that are both 714 

differentially expressed and identified by multiple independent module identification algorithms.  With 715 

this approach we identify 30 aggregate module definitions (10.7303/syn11932957.1) across the seven 716 

tissue types and three studies. 717 

Enrichment analyses. Aggregate modules were interpreted using functional and cell type 718 

enrichment analysis. We performed a battery of enrichment tests to understand biological functionality, 719 

including evaluating primary hypotheses previously implicated by genetic findings in AD research, 720 

performing exploratory analyses of a large number of gene sets (such as those obtained from Gene 721 

Ontology), and performing enrichment for brain tissue specific cell types. We started by curating three 722 

categories of gene sets for analyzing the differential expression data and network modules: 1) a small 723 

group of pathways and gene sets previously implicated in genome-wide genetic studies of AD 724 

(“hypothesis-driven”), 2) a collection of thousands of “hypothesis-free” gene sets from large databases 725 

like GO, Wikipathways and Reactome, that would allow us to potentially characterize novel biology 726 

arising in brain expression related to AD, and 3) Brain specific cell type markers to potentially understand 727 

the changes in various cell type fractions (Zhang et al., 2014).  AMP-AD specific gene sets were 728 

constructed by taking the union of gene set definitions reported in each of the following reports: RNA-729 

binding protein modules (Johnson et al., 2018), oligodendroglial modules from MSSM (McKenzie et al., 730 

2017), AD vs Control oligodendroglial modules in the Mayo RNAseq study (Allen et al., 2018a), and 731 

Module 109 from the ROSMAP study (Mostafavi et al., 2018). 732 

Genes not measured in our data are filtered from the annotated gene sets. Annotated gene sets 733 

with less than 10% of genes expressed in our data sets were removed. Fisher’s exact test was used to test 734 

enrichment of each gene set with the annotated set. Resulting p-values were corrected independently for 735 
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each set using Benjamini-Hochberg method for significance testing, owing to the differences in their 736 

hypothesis. Gene sets that had a minimum overlap of at least 3 genes were considered for further 737 

interpretation. 738 

Statistics, code and data availability.  All computation and calculations were carried out in the R 739 

language for statistical computing (version 3.3.0 - 3.5.1). Significance levels for p-values were set at 0.05 740 

(unless otherwise specified), and analyses were two-tailed.  An R package with all code for the 741 

metanetwork algorithm is available at https://github.com/Sage-Bionetworks/metanetwork, and a toolkit 742 

for integrating metanetwork with AWS high performance compute cluster cfncluster, and Synapse is 743 

available here https://github.com/Sage-Bionetworks/metanetworkSynapse.  Furthermore, all code used to 744 

generate aggregate modules and figures are available in this R package: https://github.com/Sage-745 

Bionetworks/AMPAD, with the following notebook collating the primary results: 746 

https://github.com/Sage-Bionetworks/AMPAD/blob/master/manuscript_analyses.Rmd. 747 
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SUPPLEMENTAL INFORMATION LEGENDS 748 

 749 

Figure S1 - Clustering of individual AD coexpression modules. Similar coexpression structure 750 

was observed within each data set across methods, as indicated by significant overlap in module 751 

memberships.  This module graph shows individual modules that are significantly enriched for at 752 

least one DEG meta-analysis signature in DLPFC (ROSMAP).  Each node is a module, and an 753 

edge is drawn between modules if there is a statistically significant overlap of genes between the 754 

two modules.  The edge betweenness clustering algorithm identifies four robust meta modules, 755 

which are colored green, purple, red and blue respectively. 756 

 757 

Table S1 -  Counts of number of individual coexpression modules identified by method and brain 758 

region (10.7303/syn10309369.1). 759 

 760 

Table S2 – Study demographics for each of the AMP-AD studies for samples with available 761 

bulk homogenate RNA-seq data. 762 

 763 

Table S3 – Module assignment to consensus clusters and module size. 764 

 765 

Table S4 – Gene set enrichment results for aggregate modules compared to AMP-AD derived 766 

gene sets. 767 

 768 

Table S5 – Gene set enrichment results for aggregate modules and AD gene sets against genes 769 

up-regulated in AD from the differential expressed gene sets from the random effect meta-770 

analysis of differential expression. 771 
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 772 

Table S6 - Gene set enrichment results for aggregate modules and AD gene sets against genes 773 

down-regulated in AD from the differential expressed gene sets from the random effect meta-774 

analysis of differential expression. 775 

 776 

Table S7 - Gene set enrichment results for aggregate modules and AD gene sets against genes 777 

up-regulated in male AD from the differential expressed gene sets from the random effect meta-778 

analysis of differential expression. 779 

 780 

Table S8 - Gene set enrichment results for aggregate modules and AD gene sets against genes 781 

up-regulated in female AD from the differential expressed gene sets from the random effect 782 

meta-analysis of differential expression. 783 

 784 

Table S9 - Gene set enrichment results for aggregate modules and AD gene sets against genes 785 

down-regulated in female AD from the differential expressed gene sets from the random effect 786 

meta-analysis of differential expression. 787 

 788 

Table S10 - Gene set enrichment results for aggregate modules and AD gene sets against genes 789 

down-regulated in male AD from the differential expressed gene sets from the random effect 790 

meta-analysis of differential expression. 791 

 792 
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