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Abstract: Virtually all molecular interaction networks (MINs), irrespective of organism or phys-
iological context, have a majority of loosely-connected ‘leaf’ genes interacting with at most 1-3
genes, and a minority of highly-connected ‘hub’ genes interacting with at least 10 or more
other genes. Previous reports proposed adaptive and non-adaptive hypotheses describing suffi-
cient but not necessary conditions for the origin of this majority-leaves minority-hubs (mLmH)
topology. We modeled the evolution of MINs as a computational optimization problem which
describes the cost of conserving, deleting or mutating existing genes so as to maximize (min-
imize) the overall number of beneficial (damaging) interactions network-wide. The model 1)
provides sufficient and, assuming P 6= NP , necessary conditions for the emergence of mLmH
as an adaptation to circumvent computational intractability, 2) predicts the percentage number
of genes having d interacting partners, and 3) when employed as a fitness function in an evolu-
tionary algorithm, produces mLmH-possessing synthetic networks whose degree distributions
match those of equal-size MINs.

Author Summary: Our results indicate that the topology of molecular interaction networks is
a selected-for adaptation that minimizes the evolutionary cost of re-wiring the network in re-
sponse to an evolutionary pressure to conserve, delete or mutate existing genes and interactions.
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1 Introduction

Molecular interaction networks (MINs) are typically represented as graphs where nodes
represent proteins, nucleic acids, or metabolites and edges represent physical or functional. By
‘functional’ we refer to the indirect effect that some gene gi has on another gj . None of the edges
in the networks featured in this study represents a functional relationship, rather each edge rep-
resents a direct and physical interaction between gi and gj . interactions. The steady increase
in scale [1] and resolution [2] of experimentally validated interactions has not been matched
with theoretical progress towards deciphering the underlying evolutionary forces shaping the
structure of MINs. Earlier studies aimed to empirically show that MINs possess a certain prop-
erty (say, small-world connectivity or power-law-fitted degree distribution), and subsequently
advocate for the existence of a universal design principle behind it. However, the robustness of
the observations and conclusions of these studies [3, 4] has been questioned [5, 6, 7, 8], and so
too [9, 10] has the validity of the design principles [11, 12] they inspired. Assuming those prop-
erties were indeed real, the universality of proposed design principles around them would still
need to be justified. The statistical support of a property “is no evidence of universality without
a concrete underlying theory to support it” [13]. Furthermore, a universal theory “must facili-
tate the inclusion of domain mechanisms and details” yet there is a sharp disconnect between
current hypotheses’ high abstractions and actual functional aspects of evolving biological sys-
tems [14]. A ’software’ trait relates to relationships between genes (connectivity, community
clustering, co-expression etc) rather than to their molecular (’hardware’) properties (e.g. their
amino acid sequence or 3D conformation). The assumption that natural selection can lead to the
emergence of advantageous network-level software traits has itself been challenged by the non-
adaptive hypothesis: the topology of MINs could be an indirect result of selection pressure on
other traits [15] or a mere byproduct of non-adaptive evolutionary forces such as mutation and
genetic drift [16, 17]. Both the adaptive and non-adaptive hypotheses present sufficient but not
necessary conditions for the emergence of network traits and therefore one cannot objectively
rule out the plausibility of the other.

2 Perspective

A fundamental property in MINs is the majority-leaves minority-hubs (mLmH) topology1

whereby an overwhelming ∼80% majority of leaf genes interact with at most 1-3 other genes,
and an elite ∼6% minority of hub genes interact with at least 10 other genes2. mLmH is ob-

1mLmH-possessing networks are typically referred to as ’scale-free’ (SF). Because of the association between
the SF term and the controversial proposition [5, 6, 7, 8] that biological networks follow a power-law distribution,
we use the loose term mLmH to emphasize the fact that our model does not assume, require nor advocate for or
against the idea that the degree distribution of MINs follows a power-law in a strict technical sense.

2These figures are the average over the 25 networks featured in this article. To our knowledge, these networks
represent all large-scale experimentally validated networks of direct physical interactions available in the literature.
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served in virtually all MINs irrespective of organism or physiological context as shown in Figure
1. Here we investigate the mLmH topology from a computational complexity perspective and
derive necessary and sufficient conditions for its emergence. We assume that the organism is
under some evolutionary pressure to change. Under this hypothetical scenario, we assume it
critical for the system, in some regulatory state at some particular point in evolutionary time,
that some genes be promoted and some be inhibited. An interaction is deemed beneficial if its
promotional or inhibitory towards a gene that should indeed be promoted or inhibited respec-
tively. Similarly, an interaction is deemed damaging if it is promotional or inhibitory towards
a gene that should rather be inhibited or promoted, respectively. We assign a benefit (damage)
score for each gene gi as the sum of beneficial (damaging) interactions that gi is projecting onto

or attracting from other genes in the network. If gene gi promotes or inhibits gj , we say that gi
is projecting an interaction onto gj , and gj is attracting an interaction from gi. The benefit or
damage scores of both gi and gj is incremented by some some ρ ∈ R If such an interaction is
beneficial or damaging, respectively. ρ signifies the potency of such an interaction. A benefi-
cial/damaging interaction therefore adds ρ to the total benefit or damage score of both the source
and target genes. A gene may for example be projecting very few beneficial interactions while
attracting many damaging interactions (making it more of a liability) and vice versa. Hence the
benefit/damage scoring is not affected by how skewed the in- versus out-degree distribution of
a gene is. Because we have no knowledge of what ρ is (i.e. measure of interaction potency) at
a global scale in MINs, we use ρ = 1 for all interactions in this study.

Given the benefit and damage scores of genes under the current evolutionary pressure sce-
nario, how hard of a computational problem would it be to determine the optimal immediate
“next-move” for the system, i.e. which genes to conserve, mutate or delete, such that the overall
total number of beneficial interactions is maximal while the total number of damaging interac-
tions is minimal to a threshold? We refer to this optimization question as the network evolution
problem (NEP).

3 The Network Evolution Problem

The nodes in a MIN correspond to a set of genes G = {g1, g2, .., gn}, and the directed
and signed edges represent interactions. The direction of an edge between gj and gk denotes
which of the two genes is the source and which is the target. The nodes in the hypothetical
MIN shown Figure 2 (A), left, represent 7 genes, with promotional and inhibitory interactions
denoted by arrow- and bar-terminated edges, respectively. A hypothetical ‘Oracle advice’ (OA)
on all or some of the genes simulates the evolutionary pressure on the network. The OA is
represented as a ternary sequence A = (a1, a2, . . . , an) where aj = +1 or aj = −1 indicates
that the Oracle says gj should be promoted or inhibited, respectively. aj = 0 implies the
Oracle is neutral towards gj . In Figure 2 (A) example, the OA is A = (0,+1,−1,+1, 0, 0,−1),
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meaning the Oracle says genes g2, g4 should be promoted (notice a2 = a4 = +1) while g3, g7

should be inhibited (a3 = a7 = −1). The Oracle has no opinion towards genes g1, g5 and g6

(a1 = a5 = g6 = 0) in this example.

The adjacency matrix M in Figure 2 (A), centre, is an equivalent representation of the
network graph on the left. There is a non-zero entrymjk for each edge between genes gj and gk.
A promotional or inhibitory interaction is represented in M as a +1 or −1 entry, respectively.
A green- or red-coloured matrix entry mjk denotes whether the interaction is in agreement or
disagreement with the OA on gk, i.e. ak. While mjk describes what the effect of gj on gk

actually is, ak describes what that effect should ideally be.

For example, g1 promotes g2 (m12 = +1) in agreement with the OA that g2 should be
promoted (a2 = +1). On the other hand, g1 inhibits g4 (m14 = −1) in disagreement with
the OA on g4 (a4 = +1). The benefit/damage (b/d) score of a gene gi is calculated as the
sum of green/red interactions along row i (projection) and column i (attraction), as shown in
the right tabular in Figure 2 (A). The benefit and damage scores of g3, and the corresponding
row and column from which they have been summed up, are highlighted with dotted frame in
Figure 2 (A). Notice that although the Oracle is neutral towards g1, g5 and g6, they do have b/d
values depending on their interactions with other genes and whether those interactions are in
agreement with the OA or not. Given the set of genes with non-zero benefit and damage score,
the optimization problem (formally defined in SI 3) is:

What subset of genes should be conserved and which should be mutated/deleted so as

to maximize the total number of beneficial interactions network-wide, while minimizing (to a

threshold) the total number of damaging interactions?

4 The Computational Complexity of NEP

The computational complexity of NEP is equivalent to that of the well-knownNP-complete
knapsack optimization problem (KOP). Figure 2 (B) shows a KOP instance with 7 items, each
tagged with a certain value reflecting its utility, and some weight in pounds. The values and
weights are indicated on items’ tags with green and red numbers respectively. The optimization
question in KOP is how to pack the knapsack with as many items as possible such that the total
value of items included in the knapsack is maximal while their total weight does not exceed
the knapsack maximum capacity, which is 5 pounds in this KOP instance. Some items have
negligible weight and some are useless, such as pen and candle in this example, respectively.
Clearly the pen (candle) should be included in (excluded from) the knapsack regardless of what
other objects’ fate, and as such need not be considered in the optimization search. Among
the remaining objects, a search through the include/exclude combinations must be explored to
determine the optimal solution.
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We say that the KOP instance in Figure 2 (B) is reduced to the NEP instance in (A). Nodes
g1, g2, ..., g7 and their b/d scores in (A) respectively correspond to the items and value/weight
scores of the KOP items (B). For example, KOP’s laptop corresponds to NEP’s gene g2. The
optimal solution to the NEP instance in Figure 2 (A) would be to conserve g2, g4, g5 and g6

and to mutate or delete g1, g3 and g7, assuming the maximum threshold of tolerable damaging
interactions to be 5 (corresponding to the 5 pounds knapsack capacity in (B)). This solutions
respectively translate back to an optimal solution to the KOP instance in (B): include in the
knapsack the laptop, lunch box, pen and water bottle, and exclude the notebook, textbook, and
candle. Generally, any instance of KOP can easily (i.e. with polynomially bounded computa-
tional cost) be reduced into a corresponding NEP instance. A generalized formal KOP-to-NEP
reduction is included in SI 4.

With small number of KOP items it is trivial to find out the optimal solution, but as the
number of items increases the combinatorial search space grows exponentially fast. Whether
there exists a polynomially-bounded algorithm for solving any arbitrary instances of an NP-
complete (NPC) problems is the subject of the P vs. NP question, arguably the most impor-
tant questions in computer science and mathematics today [18, 19, 20]. NPC problems have
defied all attempts aimed at finding algorithms that consume polynomially-bounded amount
of computational resources for solving arbitrary instances. Hence, the increasingly accepted
conjecture is that problems in this class will always require super-polynomial computational
resources, and that this should be accepted as a universal law by the same token that repeatedly
experimentally verified laws in physics are accepted as such [21]. In practice heuristics-based
algorithms do exist and can find good approximation solutions (e.g. by exploiting structures in
practically common instances) [22, 23]. In evolutionary context, however, the only ‘algorithm’
at hand is random variation non-random selection (RVnRS), and the NEP instance difficulty is
measured relative to it.

5 Optimization in Biological Context

Biological systems do not employ sophisticated search algorithms to determine the optimal
conserve or mutate/delete actions from one generation to the next, but rather proceed thru itera-
tions of RVnRS [24]. However, the number of needed RVnRS iterations before the composition
(nodes) and connectivity (edges) of a network has sufficiently been transformed away from a
deleterious state depends directly on network topology. Particularly, the number of RVnRS
iterations is exponential in the number of ambiguous genes (those having non-zero score for
both benefit and damage). The more ambiguous a set of genes are, the less likely it is for
the iterative RVnRS process to alter just the right set of genes such that the total number of
beneficial/damaging interactions is are optimally maximized/minimized in as few evolutionary
iterations as possible.
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The NP-hardness of NEP in and of itself is a rather weak measure of computational diffi-
culty as there are in practice heuristics-based approximation algorithms that can produce fairly
satisfactory solutions that may not be too suboptimal relative to the optimal solution. However,
the efficacy of RVnRS relies on how accumulating improvements with as little ‘backtracking‘
through the search space as possible. The more unambiguously beneficial or damaging genes
there are in a system that is under some evolutionary pressure to alter its MIN, the more effective
RVnRS is at accumulating more beneficial, and cleansing more damaging, interactions.

A naive greedy strategy could be to impose the OA by conserving every gene gi where ai =
+1, and mutating/deleting every gj where aj = −1. However, conserving gi can inadvertently
conserve OA-contradicting interactions if gj happens to be a promoter or inhibitor of some
gk where ak = −1 or ak = +1 respectively. And deleting/mutating gj can inadvertently
disrupt OA-supporting interactions if gj happens to be a promoter or inhibitor of some gk where
ak = +1 or ak = −1 respectively. In other words, a naive imposition of an OA is complicated
by the reality of network connectivity. NEP optimization in biological evolutionary context is
summarized in Table SI 4. Further details on the notions of gene ambiguity, search space size
under RVnRS, and the role of mLmH topology at reducing it in Subsection 7.3 and 7.4.

6 The Semantics of NEP

The OAs described thus describes a rather blunt opinion about a gene by stating it should
be promoted or inhibited. In reality a gene may ideally have both a promoter and an inhibitor
co-expressed whereby, for example, the latter serves to tone down the potency of the former. A
more fine-tuned OA would therefore be on individual interactions rather than genes. The only
syntactic modifications to NEP definition in this case is that the OA is a matrix that is equal
in dimensions to the interaction matrix M . This is in contrast to a gene-targeting OA which
is represented as a |G|-long sequence where |G| is the total number of genes in the network
(as was the case in the example of Figure 2 A). The complexity and instance difficulty of NEP
remains the same whether the Oracle is stating its advice on genes or interactions, however (see
SI 5 for further details).

An OA can further be interpreted semantically as describing short- or long-term evolution-
ary pressure. Short-term OA is specific to some regulatory state at a specific moment of the
cell’s life cycle for example (Figure 2 (C)). An OA on some gene or interaction indicates an
evolutionary pressure to fine-tune its regulation positively or negatively. Long-term OA on the
other hand indicates a more existential evolutionary pressure for or a against a gene or interac-
tion. In this case, the OA is interpreted as advising on whether a gene or interaction is rather
advantageous or disadvantage to the organism’s survival generally (Figure 2 (D)).
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7 Results

Here we summarize the results presented in subsequent subsections. We empirically study
NEP instances obtained by generating hypothetical OAs on various MINs and compare that
with instances on synthetic networks of various topologies. We assess instance difficulty as-
suming the working algorithm is RVnRS. The results show instances obtained from real MINs
are invariably far easier to satisfy by virtue of the mLmH property, as real MINs have far less
ambiguous genes per instance. The large number of low-degree leaf genes in MINs reduces in-
stance size because such genes are certain (degree 1) or likely (degree 2, 3, .. with exponentially
decreasing likelihood) to have all-beneficial (all-damaging)interactions and should therefore be
conserved (mutated/deleted) regardless. Such unambiguous genes need not be considered in
the computationally costly optimization search. For example, a leaf gene involved in only one
interaction (i.e. it has degree 1) can either be totally beneficial or totally damaging under a
given evolutionary pressure scenario, and as such there is no ambiguity as to whether it should
be conserved or mutated/deleted. A gene of degree 2 has a 50% chance of being unambiguous:
the two interactions it is engaged in are either both beneficial or both damaging (a degree-2 gene
is engaged in two interactions. There are four possibilities of the state of the two interactions
are (0,0), (0,1), (1,0) and (1,1) where 1 or 0 denote an interaction is beneficial or damaging
respectively). In general, a gene of degree d has a 2

2d = 2d−1 probability of being unambiguous.

Based on the fact that the larger a gene’s degree is the exponentially more likely it is to
be ambiguous, the model predicts the expected number of genes of degree d in real MINs.
The prediction formula is parameterized with a value proportional to the edge:node ratio of
the MIN. All existing MINs are currently partial to different degrees of completion (i.e. not
all interactions of all genes have been mapped out). Based on the predictability of the degree
distribution of MINs from a computational intractability perspective, we conjecture that, once
all genes and interactions have been accounted for, there will be a universal edge:node ratio of
∼2 in all MINs regardless of organism or physiological context.

We also simulated the evolution of synthetic networks using an evolutionary algorithm
which, in each generation, selects the top 10% of networks that present the easiest optimiza-
tion task (mainly by having a large number of unambiguous nodes). These top networks breed
the next generation of networks. The degree distribution of the fittest synthetic networks after
∼hundreds - few thousands of generations of simulated evolution very closely match those of
real MINs of equal size. The emergence of mLmH in synthetic networks is not sensitive to
the starting conditions: whether networks are initially empty (and accumulate nodes/edges over
the generations) or randomized (have the same number of nodes/edges as a corresponding real
MIN, but edges are re-assigned over the generations as a form of mutation).
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7.1 simulation of evolutionary pressure:

NEP instances were generated on MINs (previously described in Figure 1, see also SI 2 for
extensive details) as well as various synthetic networks. For each MIN, we computer-generated
synthetic analog networks having the same number of node and/or edges. Figure 3 (A) shows
the degree distribution of an example real network (Drosophila melanogaster (Fly) protein-
protein interaction (PPI) network [25]). A no-leaves (NL) and no-hubs (NH) networks were
generated by reassigning edges in PPI from leaves to nodes (for NL) or vice versa (for NH), so
as to simulate the effect of depriving PPI of either property. Nodes in NL (NH) have a minimum
(maximum) degree ≥ (≤) the average node degree of PPI (d∼3.6e = 4). The redistribution of
edges from leaves to hubs in NL results in some nodes having zero degree, which are eliminated,
resulting in NL being a smaller (943 nodes), more dense network compared to PPI. NL and NH
networks simulate two alternative topologies that biological networks could have evolved into
if minimizing interactions per gene (NH) or total number of genes (NL) were the only driving
forces in their evolution. We also applied the same simulation to a random (RN) analog of
PPI network, whereby each edge in the latter is re-assigned to two randomly selected nodes
(both edge direction and sign randomly assigned), and so nodes’ degrees cluster around the
average degree in PPI network. Figure 3 (B)-(D) respectively show the degree distribution
of analog (NL, NH, and RN) random networks for protein-protein, regulatory, and database-
sourced networks (the degree distribution of corresponding real networks were shown in Figure
1). 1-5K NEP instances are generated for each network by calculating B and D values against
a randomly generated OA on all nodes (for each node ni, ai 6= 0). Each instance is solved
to optimality under a given tolerance threshold, expressed as the % of damaging edges to be
tolerated. Details of the algorithmic workflow of the simulation, and the choice of sampling
threshold, is provided in SI 6, 7, respectively.

7.2 benefit-damage correlation:

The correlation between benefit and damage scores is used to assess difficulty of NEP in-
stances analogously to values-weights correlation in KOP (see NEP-to-KOP reverse-reduction
in SI 4.3). Figure 4 (A) shows the correlation plot of classical test instances [26]. It has pre-
viously been shown that the more correlated the values and weights in a knapsack instance are
the more difficult the instance is [27]. Strong value-weight correlation increases the ambiguity
as to which items to add/remove from the knapsack (or in NEP context, which genes to con-
serve/delete from the network). Figure 4 (B) shows the average frequency of a (benefit, damage)
pair ((b, d) hereafter) over 1-5K NEP instances for each network. The reduced ambiguity in in-
stances from real PPI networks results by virtue of the large number of genes that are certainly
(degree 1) or likely (degree 2, 3, 4 .. with likelihoods 50, 12.5, 0.125 .. %, respectively) to be
unambiguous: either totally advantageous (b 6= 0, d = 0) or totally disadvantageous (b = 0,
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d 6= 0). In Fly PPI network for example, ∼50% of all (b, d) pairs are unambiguous, with 1:0
and 0:1 pairs (resulting from degree-1 leaf genes) alone representing∼43% of those pairs (large
brown dots). In contrast, ∼15.6,∼3.1, and ∼28% of (b, d) pairs in Fly network’s NH, NL, and
RN analogs are unambiguous. The role of leaves in decreasing (b, d) correlation is especially
highlighted in contrast to leaf-deprived NL network which exhibits the strongest correlation
around its higher mean degree (analysis of degree-to-ambiguity proportional relation is detailed
in “Prediction of degree distribution” section). The symmetry along the diagonal in Figure 4
(B) is expected given that there is an equal probability of 50% that an interaction is beneficial
or damaging under a random Oracle advice on the gene that interaction is targeting.

The signed Fly PPI network distinctly shows more sporadic benefit-damage correlation (red
dots in Fly dot plot in Figure 4) in higher-degree nodes, which results from the asymmetry
of the number of promotional (67.5 %) and inhibitory (32.5 %) interactions. Under random
OA, such asymmetry results in higher likelihood of disparate benefit and damage values. The
asymmetry of signs in Fly PPI network is consistent with a recent report that showed a similar
promotional/inhibitory interaction distribution in yeast [28]. The benefit-damage correlation for
regulatory and DB-sourced networks manifest the same property (see SI 8).

7.3 effective instance size:

Unambiguous genes can a priori be deemed advantageous or disadvantageous and therefore
should be conserved or mutated/deleted, respectively. As such they need not be part of the
optimization search because the optimal evolutionary outcome as to whether to conserve or
alter them is independent of that of other genes in the network. Effective instance size (EIS) is
the fraction of genes in an NEP instance that are ambiguous (b 6= 0 and b 6= 0). The smaller
the |b− d| value the more ambiguous a gene is. Figure 5 (A), left (pie charts) show the fraction
of genes that on average (over 1-5K instances) falls under a certain b:d ratio slice where b:d
= b

b+d : d
b+d for an example network (Fly PPI). NEP instances in PPI have ∼42% EIS (b:d =

90:10, 80:20, .., 10:90%), compared to ∼84, ∼100, and ∼72 % for NH, NL and RN networks
respectively. Compared to NH and NL, EIS in RN is smaller to the extend that it has more leaf
nodes (particularly degree 1-3) which relatively increase the size of its unambiguous slices (b:d
100:0 or 0:100%).

The constituent genes in each pie slice are shown in Figure 5 (A), right bar charts, for
each network, broken down by degree range (bottom legend). Since the likelihood of a gene’s
ambiguity is inversely (and exponentially, see later discussion in the next section) proportional
to its degree, leaf genes (degree ≤ 4) in PPI dominate the unambiguous 100:0 or 0:100%
b:d ratio groups. With virtually all nodes in NH network having a degree 4 (NH bar chart in
Figure 3 (A)), no b:d ratio of any node can fall in certain b:d ratio groups (more specifically,
none of the possible (b,d) pairs 4:0, 3:1, 2:2, 1:3 ... 0:4 falls into any of the b:d ratios 90:10,
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80:20, 10:90, or 20:80 %). Figure 5 (B) shows the EIS for all networks, where the bar height
represents the size of ambiguous pie slices shown in (A) excluding the 100:0 and 0:100 slices.
Each bar group corresponds to a network, with the first bar being the real network and the 2nd,
3rd and 4th (left to right) corresponding to the network’s NH, NL and RN analogs respectively.
EIS is significantly smaller in real networks as compared to synthetic analogs regardless of
physiological context or the source of the network. EIS in RN analogs is comparatively smaller
in networks having smaller edge:node (e2n) ratio since such networks are more likely to have
leaf nodes after random re-assignment of edges (e.g. Human and Yeast PPI networks have 1.45
and 3.24 e2n ratios respectively).

7.4 search space size:

The total search space of a given NEP instance is defined as St = 2O(n) where n is the
number of relevant genes in the instance (those with b 6= 0 and d 6= 0). The base 2 denotes
the two general evolutionary outcome on a relevant gene gi: its state will have been (1) altered
or (2) unaltered after the next round of RVnRS. The alteration to a gene (for example through
mutation) can be (dis-)advantageous relative to the current NEP instance. An advantageous
change includes for example the deletion of a unambiguously damaging gene. The state of an
ambiguous gene can further be affected by the state changes of its interacting partners. For
example, in the NEP instance of Figure 2 (B), a mutation to gene g2 which causes it to lose its
positive interactions with say, g1 and g5 would not only change its benefit/damage (b, d) scores
from (4, 2) to (2, 2) but it would also result in the (b, d) scores of g1 and g5 to change even if
they themselves did not undergo any alteration. g1 and g5 lose 1 benefit as a result of them no
longer positively interacting with g2 due to the latter’s aforementioned mutation.

Clearly the more interconnected a gene is the more its state alteration, and the alteration
of its interacting partners, changes the optimal evolutionary target for such a gene from one
generation to the next (i.e. whether it should ideally be conserved or mutated/deleted given
the current evolutionary pressure described by the OA). Effective search space is defined as
Se = 2O(m) where m ≤ n =

n∑
i=1

1− δi and δi = |bi−di|
bi+di

is the ambiguity measure of gi under the

current NEP instance. On the one extreme where ∀gi, bi = di 6= 0, then m = n and therefore
Se = St. On the other extreme where all genes are unambiguous, ∀gi, bi = 0|di = 0, then
Se = 0. An unambiguously beneficial or damaging gene gj (dj = 0 or bj = 0, respectively)
does not increase m regardless of the current evolutionary pressure scenario because δj = 1
(gene ambiguity vs. degree is discussed in details in the subsequent section “Prediction of
degree distribution”). Figure 6 shows St (grey) and Se (blue) for all networks. Note that the
y−axis values are logarithmic in base 2, and hence linear differences between bar heights imply
exponential differences in St or Se. The smaller but denser NL networks show smaller St
but suffer from exponentially higher Se:St ratio compared to other networks. This implies
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that, while the search space is smaller, the optimal solution can change radically after each
RVnRS given how deeply interconnected the genes are in such a network. Biological networks
show exponentially smaller Se:St ratio especially for larger more complete (e.g. ENCODE and
Human PPI connectome) and/or curated (e.g. TRRUST) networks.

7.5 gene neutrality:

To test the affect of having a certain fraction of the genes as neutral under a given evolution-
ary pressure, NEP instances were generating assuming 0, 25, 50, and 75% of genes are neutral
(the Oracle has no opinion about them). A gene towards which the Oracle is indifferent may
nonetheless end up having a non-zero benefit and/or damage value depending on its interaction
profile with other genes on which the Oracle has an opinion. Subplots from top-left (0%) to
bottom-right (75%) in Figure 7 (A) demonstrate the resulting effective instance size (EIS) as
pressure decreases (i.e. as the number of neutral genes increases). The bar height represents
the effective instance size (EIS), i.e. the fraction of genes that are ambiguous (in that they are
engaged in both beneficial and damaging interactions in a given NEP instance). EIS shown here
is the average over 1-5K instances. As the pressure increases (bottom to top), the supremacy
of real MINs compared to synthetic analogs (no-hubs (NH), no-leaves(NL) and random (RN)
networks) is more pronounced. Leaf-deprived NL synthetic analogs show the largest EIS across
all settings, while NH and RN networks show decreasing EIS to the extent that they both have
more smaller-degree leaf nodes. The constituent nodes in each b:d bar segments is shown in Fig-
ure 7 (B) for the Fly network and its corresponding random analog. As the pressure decreases
from 0% to 75%, the constituent nodes contributing to a given b:d ratio range remains largely
unchanged as the nodes towards which the Oracle is not indifferent are selected randomly and
as such the relative frequency of nodes of a certain degree remains of the same proportion under
different neutrality assumptions.

7.6 prediction of degree distribution:

We considered whether computational intractability alone can predict the degree distribu-
tion of a biological network. More precisely, we considered whether the likelihood of a gene of
degree d (“degree-d gene” hereafter) to be totally advantageous or disadvantageous (belonging
to green or red pie slices in Figure 5 (A), respectively), which is exponentially inversely propor-
tional to its degree, can predict the expected number of degree-d genes in a biological network.
For a degree-2 gene gi, for example, there are 22 = 4 potential states of benefits/damages that
gi can assume under a given OA: 00, 01, 10, or 11 where 0 or 1 signify the edge (interaction)
as being beneficial or damaging, respectively. States 01 or 10 are “ambiguous”: gi must be part
of the overall optimization search to determine whether to conserve or delete it. In general,
the number of ambiguous states for degree-d gene is 2d − 2, albeit not all of equal ambiguity:
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while the 1000010 and 1111000 states of a degree-7 gene are both ambiguous, the former is
significantly less so. Let k correspond to the number of 1’s in a gene’s given state (equiva-
lently, its benefit score in a given NEP instance). We refer to a given state of a degree-d gene
as k-ambiguous (k-amb hereafter), 0 ≤ k ≤ d, if it has k 1’s. For example, 0111 and 1000
are 3-amb and 1-amb states of a degree-4 gene. As k → d (or k → 0) the ambiguity whether
to conserve (or delete) decreases, while as k → d

2 both the ambiguity and (exponentially) num-
ber of states increases. For a degree-20 gene for example, there are

(
20
3

)
= 1140 3-amb states

compared to
(

20
10

)
= 184756 10-amb states. Assuming an equal probability q = 1

2 for an edge
to be beneficial or damaging, the likelihood of k-amb state for degree-d gene is given by the
expected number of k successes in d Bernoulli trials:

P (k-amb) =
(
d

k

)
qd =

(
d

k

)
2−d

We define the expected frequency of degree-d genes as:

E(d) = α

d+ 1

d∑
k=0

P (k-amb)βlog(d)

where constants α, β ∈ R+ are proportional to node:edge (n2e), edge:node (e2n) ratios, respec-
tively. Figure 8 (A) shows the actual (pink) and predicted (green) degree frequency in Fly PPI
network at α, β = 0.43, 1.9, respectively. Prediction is further applied to all other networks
with accuracy (defined as 100 -

∑ |predicted(d)−actual(d)|) being >= 84% as shown in Fig-
ure 8 (B). Individual prediction plots for all networks is included in SI 9. An accurate account
of all interactions currently is affected by the experimental bias against interactions involving
lesser known genes (an inherent problem to small-scale studies [1]). An accurate account of all
genes is not only limited by experimental coverage but also by alternatively-spliced isoforms of
the same gene (which can have distinct interaction profiles [2]) being treated as a single gene,
hence a gene’s degree may be inflated in experiments where isoforms are not distinguished. For
example, nodes in HumanIso network can be different isoforms of the same gene [2]. The (α,
β) values versus (n2e, e2n) ratios in a partial MIN should indicate how well its coverage and
resolution compares to other standard high-quality MINs. Figure 8 (C) shows (α, β) versus
(n2e, e2n) ratios of networks in (B) (all of which are currently partial, see SI 2). The average
of (α vs. n2e), (β vs. e2n) are (0.43±0.063 vs. 0.526±0.133), (1.96±0.324 vs. 2.06±0.634)
respectively. We conjecture that there is ultimately (as experimental coverage and resolution of
high-throughput interaction-detecting experiments increases) a universal e2n ratio of ∼2 in all
MINs .
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7.7 simulated evolution and adaptation:

We conducted simulated network evolution and adaptation using an evolutionary algorithm
that selects for networks that best minimize the difficulty of NEP instances generated against
them. The simulation aims to assess the potency of NEP as a selection pressure that shapes
network topology, rather than to mirror the details of recombination and mutation processes in
biological systems. We conducted two sets of simulations depending on the starting conditions
of synthetic networks. In the first, we begin with empty networks that grow over the generation
by accumulating more nodes and edges. In the second, we begin by synthetic networks that
have the same size (number of nodes and edges) as corresponding real MINs, which is kept
unchanged from one generation to the next, but with an edges getting re-assigned randomly
in each generation as a form of mutation. We refer to the first and second sets of simulations
as ’evolution’ and ’adaptation’ simulations respectively. In both experiments, the idea is to
examine the degree distribution of synthetic networks after iterations of random mutation non-
random selection, and compare that to the degree distribution of biological networks of equal
size.

In simulated evolution, networks at the beginning of the simulation are near empty but are
periodically assigned more new nodes and edges, in addition to being mutated by randomly re-
assigning an existing edge to two randomly selected nodes. The simulation begins with a pop-
ulation of 60 near empty synthetic networks (8 nodes and 8r randomly assigned edges, where
r is the edge:node (e2n) ratio to be maintained throughout the simulation). An NEP instance
against each network in the population is obtained by generating a random interaction-targeting
OA, resulting in some interactions in the network being beneficial and others damaging. Nodes’
benefit/damage scores are calculated (as illustrated previously by example in Figure 2, and fur-
ther detailed in SI 5). Assuming a tolerance threshold of 5% of total damaging interactions
network-wide, instances are solved to optimality (detailed further in SI 6).

The fitness of each synthetic network is based on two values averaged over the 60 instances:
1) effective instance size (EIS) as described in Section 7.3 and 2) the effective gained benefits
(EGB) which measures the total number of beneficial interactions than can be obtained with the
least number of nodes having to be conserved/deleted in an optimal NEP instances solution (see
SI 10 for details). The top 6 fittest networks (10% of the population) that best minimize EIS and
maximize EGB survive, while the remaining die. The surviving 6 networks are each mutated
(add-node, add-edge, and re-assign edge) and 10 exact replicas are bred from each for the next
round of mutate-and-select, resulting in a population of 60 networks once again. Another round
starts by generating 100 NEP instances against each of the 60 networks in the population, and so
on. The simulation is terminated when the number of nodes reaches that of a corresponding real
MINs. Throughout the simulation, the add-edge mutation is conducted only if the edge-node
ratio (e2n) of the synthetic network does not exceed that of the corresponding real MIN.
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Figure 9 illustrates a sample of evolved synthetic networks and the corresponding MINs
that have the same e2n ratio (results for all other networks are shown in SI 10). The degree
distributions of simulated networks (blue in Figure 9) closely match their corresponding MINs
(pink). In simulated adaptations, the starting synthetic networks have the same size as the corre-
sponding MIN, and no add-node or add-edge mutations are conducted (i.e. synthetic networks
don’t grow in size from one generation to the next). Only reassign-edge mutation is conducted
in each generation. All other aspects of the mutation/selection process is the same as in the
aforementioned simulated evolution experiments. mLmH property still emerges (see plots in
SI 11). These results show the sufficiency of NEP-based evolutionary pressure to mold the net-
work to mLmH topology within a number of generations that is extremely small (proportional
to the number of genes in the target real MIN, i.e. ∼thousands, see SI 2 for network sizes)
relative to real evolutionary time. These results also confirm findings from previous simulation
and adaptation experiments on a smaller set of networks reported in [29].

8 Concluding Remarks

contribution: The power of random variation and non-random selection to produce fine-
tuned ‘hardware’ has been extensively documented at various biomechanical levels. Classic
examples include allometric scaling and anatomical adaptations (organism), width and mate-
rial of blood vessels (organ), compartmentalization of sub-cellular components (cellular) and
fast-folding and aggressively-functioning enzymes (molecular). Recent reports [30, 31] have
highlighted evidence for ‘software’ optimization in biological systems from a computational
complexity perspective, proposing justification for the evolutionary advantage for the role of
sex for example [32]. Such investigations into evolutionary biology through the lens of com-
putational complexity have hitherto been too high-abstracted. Nonetheless, they do demon-
strate that computational-complexity perspective has potential to be the much-needed theoreti-
cal framework that can guide the process of turning massive volumes of biological datasets into
actionable knowledge [33].

There is currently a gap between the ever increasing scale and quality of molecular in-
teraction networks (MINs) and the oretical understanding of the origin of their architectural
properties. It has long been debated whether properties such as the majority-leaves minority-
hubs (mLmH) is (non-)adaptive. Here we showed how computational intractability can provide
sufficient and necessary conditions for the emergence of mLmH as an adaptation to circumvent
computational intractability. The model predicts and evolves the mLmH based on the fact as a
gene’s degree increases linearly, its optimization “ambiguity” potential increases exponentially
and hence the more computationally expensive is the task of adaptively re-wiring the network
away from a deleterious and into an advantageous state. We conjectured based on predictability
results that there is ultimately a universal edge:node ratio of ∼2 in all MINs. Given the increas-
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ing pace at which the coverage [34, 1] and resolution [35, 2] of high-throughput interaction-
detecting experimental procedures is being reported, we expect the validity of such conjecture
to be tested within a few years.

sufficiency and necessity: We described the need for biological networks to change their
node (gene) and edge (interaction) composition in response to some evolutionary pressure as
a computational optimization problem which we showed to be NP-hard. By itself, the NP-
hardness of a problem is a rather weak measure of computational difficulty. Instances dealt with
in practice may possess exploitable properties and as such their optimal solutions could po-
tentially be routinely found without incurring exponential computational resource expenditure
[22]. There could also exist good approximation algorithms that can solve to various degrees
of optimality while consuming sub-exponential computational resources [23]. However, in the
context of biological evolution, the running algorithm is random-variation and non-random se-
lection (RVnRS) and the instance difficulty of the network re-wiring problem must be assessed
relative to it. Our results show that the search space size for the described network re-wiring
problem would be exponentially orders of magnitude larger were the topology of biological
networks to deviate significantly from mLmH.

While the model sufficiently predicts and generates the mLmH topology, it also provides
a necessary condition for the emergence of mLmH as an adaptation around inescapable com-
putational intractability considering that (1) the computational cost of the network rewiring
problem is, in the general case, universally insurmountable (assuming P6=NP) and (2) RVnRS
does not endow the organism with any heuristic-based approximation shortcuts that offer better
than brute-force exploration of the search space. A sparse MIN where a gene has at most one
interacting partner produces the easiest possible instances of the network-rewiring problem: re-
gardless of the nature of the current evolutionary pressure, any gene can either be beneficial
or damaging depending on whether the interaction it is engaged in is beneficial or damaging
to the network as a whole. There is therefore no ambiguity as to which genes to conserve and
which to delete/mutate in such a fully sparse network. However, such networks would neces-
sarily contain more genes, since functions that could have otherwise been accomplished by a
single hub gene (e.g. a phosphatase targeting multiple proteins) must now be handled by a large
number of specialty genes. This clearly leads to an explosion of genome size. On the other
extreme, a dense network where functions are concentrated in as few multi-tasking hub genes
as possible would lead to an exponential search space. Particularly, the number of iterations
of random-variation non-random selection needed before the network has been re-wired away
from a deleterious and into an advantageous state would be exponential in the number of unam-
biguous genes given some evolutionary pressure. That all genes in such a network are engaged
in more than one interaction exponentially decreases their likelihood of being unambiguously
advantageous or disadvantageous for the organism under a given evolutionary pressure scenario.
An exponential number of iterations of random-variation and non-random selections are needed
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before the right set of genes have been conserved, deleted or mutated such that the total number
of damaging interactions network-wide is under a tolerable threshold.

mLmH topology is the middle ground between the two aforementioned extremes (the to-
tally sparse but large, and the highly dense but unadaptable networks): essential functions are
concentrated [34] in ‘hub’ genes that are unlikely to be damaging in and of themselves [36]
while continuous (and cheap) experimentation (e.g. fine-tuning micro-RNA regulation [34]) is
conducted at the periphery of the network [37] with loosely connected leaf genes.

applications and extensions: An immediate application of the model is to complement
statistical tests used to infer the quality and coverage of large-scale interactome-mapping wet
experiments [1] or in-silico network inference [38], by testing whether the resulting networks
over- or under-represents real interactions relative to the prediction. There are aspects of the
model that should be extended. In this work we treated all interactions as equal, but in reality
some interactions are more potent than others. Future work could extend the model by con-
sidering the potency of each interaction, a not so trivial task since no large-scale data exist yet
to facilitate its inference. The model is also static, in that assigning benefit/damage to a gene
is based on immediate neighbours only. The implication is that all genes are equal, but in re-
ality a central gene (many shortest paths pass through it) has much more effect network-wide
than a gene residing at the periphery of the network. Trivially, implementing a dynamic variant
(where the cascading effect of a gene’s beneficial (damaging) effects are accounted for) does
not change the complexity class of NEP, although its simulations will be more computationally
demanding.
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Abbreviations:

Figure 1: The majority-leaves minority-hubs (mLmH) topology in biological networks. Each
dot represents the percentage of genes in the network having a given degree (number of inter-
acting partners). On average, an overwhelming majority (∼80%) of leaf genes interact with
at most 1-3 other genes, and a small elite minority (∼6%) of hub genes interact with at least
10 other genes. All networks originate from experimental procedures (i.e. none contains in-
silico-inferred interactions), and all interactions are direct and physical. PPI and Regulatory
networks are obtained from large-scale experimental studies reported in a single source in the
literature, while interactions in database-sourced networks may have originated from more than
one source (see SI 2 for details and literature references of each networks). Directed and signed
networks are marked with ∗ and ± respectively. The direction and sign were assigned at ran-
dom (coin flip) in undirected/unsigned networks; some interactions in TRRUST are unsigned
and hence were also assigned as random. Data and source code pertaining of all networks are
publicly available in [39].
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Figure 2: The network evolution problem (NEP). (A) Left: an example network of seven genes
G = g1, g2, .., g7 that is under some hypothetical evolutionary pressure described by an Oracle
advice (OA) A = (0,+1,−1,+1, 0, 0,−1) indicating that genes g2, g4 and g3, g7 should be pro-
moted and inhibited respectively (notice +1 and -1 values in OA; ai ∈ A is the Oracle’s opinion
on gene gi). Centre: the network graph in an equivalent adjacency matrix representation; green
or red entry indicates the interaction is in agreement or disagreement, respectively, with the OA
(e.g. m14 = −1 in disagreement with a4 = +1). Right: benefit/damage scores equal the sum
of beneficial/damaging interactions gi is projecting onto or attracting from other genes (count-
ing along row i for projection and column i for attraction; g3’s scores highlighted by dotted
frames as an example). (B), a knapsack optimization problem (KOP) instance; the challenge is
to determine the objects to include in and exclude from the limited-capacity knapsack so as to
maximize the overall total value while keeping the overall total weight of included items under
the knapsack’s capacity threshold (5 lb). This KOP instance is reducible to the NEP instance in
A; objects/values/weights/capacity correspond to the genes/benefits/damages in A (e.g. laptop
in B corresponds to gene g2 in A). Solving the question ‘which genes to conserve and which to
delete’ in A translates into a solution to the KOP instance in B. NEP instance optimal solution,
with a threshold ≤5 damaging interactions, is to conserve genes g2, g4, g5, g6 and delete g1, g3
g7, which respectively translate back to an optimal solution to the KOP instance: include in
the knapsack the laptop, lunch box, pen and water bottle, and exclude from it the notebook,
textbook, and candle. (C) and (D), NEP can semantically be interpreted in the context of (C)
regulation (which genes or interactions should be fine-tuned positively or negatively) or (D)
evolution (which genes or interactions represent an asset or a liability to the system long-term).
The formal definition of NEP and a generalized reduction of KOP to NEP are included in SI
3 and 4 respectively. See main text and SI 5 for interaction-targeting OA (as opposed to gene-
targeting OA here in A).
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(A) Degree distribution of an exam-
ple MIN (Fly protein-protein inter-
action (PPI) network) and its corre-
sponding synthetic analogs; orange
(blue) bars represent the % of nodes
with degree = d (> d). NL (NH)
networks have a minimum (maxi-
mum) degree > (≤) the average de-
gree in the PPI network (∼ = 4).
PPI nodes have majority low-degree
nodes (∼78% with degree ≤ 4); de-
grees in RN cluster around the av-
erage degree due to re-assignment
of each edge in PPI to two nodes
selected uniformly randomly. (B-
D) The degree distribution of syn-
thetic analog networks correspond-
ing to each real MIN from the
protein-protein (B), regulatory (C),
and database-sourced (D) categories
as shown in Figure 1.

Figure 3: Case study networks.
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Figure 4: Benefit-damage correlation as an instance difficulty measure. (A) Value-weight cor-
relation in classical knapsack instances; the stronger the correlation the computationally harder
the instances [27]. (B) Benefit-damage correlation in NEP instances from PPI networks and
corresponding synthetic analogs. The % of genes having a given (benefit,damage) score, (b, d),
in an NEP instance (averaged over 1-5K instances). Size and colour of each dot reflects fre-
quency of that (b, d) pair (see bottom-right legend). ∼50% of all (b, d) pairs in Fly PPI network
for example are unambiguous (b = 0,d 6= 0 or b 6= 0,d = 0) largely due to leaf genes of degree 1
(alone contributing on average∼43%, large yellow dots in Fly subplot). In contrast, the fraction
of unambiguous (b, d) pairs in NH, NL, and RN are ∼15.6,∼3.1, and ∼28%, respectively, as
their most frequent (b, d) pairs cluster around dominant degrees (a (b,d) pair is contributed by
nodes of degree d=b+d). Leaf-deprived NL network manifests the strongest (b, d) correlation
given the range of ambiguity that most of its nodes (clustered they are around NL’s relatively
higher mean of∼12) can assume. The symmetry along the diagonal is expected given that there
is an equal probability of 50% that an interaction is beneficial or damaging under a random
Oracle advice on the gene that interaction is targeting.
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Figure 5: Effective instance size (EIS). (A) left pie charts: fraction of nodes in NEP instances
having a certain benefit:damage (b:d) ratio (bottom legend) in the Fly PPI network and its syn-
thetic analogs. The subset of nodes that need to be optimized over (those in all but 100:0,
0:100 slices) is significantly smaller in leaf-rich PPI (Fly) instances. Virtually all nodes in
leaf-deprived NL network are ambiguous (∼0% nodes under 100:0 or 0:100 b:d ratios); right
bar charts: break down of genes contributing to each b:d ratio slice in the corresponding pie
chart, broken by gene degree (bottom legend); leaves dominate 100:0 and 0:100 slices in PPI.
Because all nodes in NH network have degrees ≤ 4, no b:d ratio of any gene can fall in the
90:10/10:90 or 80:20/20:80 slices. (B) EIS for all networks; bar height represents the ambigu-
ous pie slices in (A); each bar group corresponds to a MIN along with its corresponding NH,
NL and RN analogs. In all networks, EIS is significantly smaller in real MINs compared to
synthetic analogs. RN networks have more leaves (by sheer random re-assignment of edges in
their creation) and therefore have smaller EIS compared to NL and NH.
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Figure 6: Search space size. The total search space (grey) of a given NEP instance is quantified
as St = 2O(n) where n is the number of genes in the instance with either benefit score b > 0
or damage score d > 0. Effective search space (blue) is defined as Se = 2O(m) where m ≤
n =

n∑
i=1

1− δi and δi = |bi−di|
bi+di

is the ambiguity measure of gi under the current NEP instance

(bi, di are the benefit,damage scores of gene gi). Networks are grouped by size for better y-axis
readability. Note that the y−axis values are logarithmic in base 2, and hence linear differences
between bar heights imply exponential differences in St or Se. Smaller but denser NL networks
have smaller St relative to other networks but suffer from having extremely high Se:St ratio due
to the high ambiguity of its nodes under NEP instances. Biological networks have exponentially
smaller Se:St ratio relative to corresponding NL, NH, and RN random analogs by virtue their
having a higher number of leave nodes, particularly genes of degree 1-3, which are more likely
to be unambiguously beneficial or damaging under a given NEP instance, and as such have
relatively higher δ values (= smaller m exponent overall).
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Figure 7: Neutrality of genes under evolutionary pressure. (A) NEP instances are generated with
0, 25, 50, and 75% of genes being neutral (the Oracle has no opinion on them). A neutral gene
may nonetheless end up having a non-zero benefit and/or damage score in an NEP instance
depending on its interactivity with non-neutral genes. The bar height represents the average
EIS (see Figure 5). As the pressure increases (i.e. as the percentage of neutral genes decreases),
the supremacy of real MINs compared to random analogs (no-hubs (NH), no-leaves(NL) and
random (RN) networks) is more pronounced. (B) A zoomed-in view to the constituent nodes
in each b:d ratio range for the Fly simulations. In the real MIN (Fly), as the pressure increases
from 75% to 0% of genes being neutral, the utility of leaf genes becomes more pronounced as
they dominate the 100:0 and 0:100 slices.
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Figure 8: Computational intractability as a predictive tool of degree distribution. (A) The
percentage of nodes having a degree d in Fly PPI network; the fraction of degree-d nodes
is inversely proportional to the potential optimization ambiguity that a degree-d node adds to
instances of NEP (see text). (B) Accuracy of predicting the degree distribution of PPI (top), reg-
ulatory (middle) and DB-sourced (bottom) networks (degree distribution plots of all networks
is included in SI 9). Accuracy = 100 -

∑ |predicted(d) − actual(d)| over each degree d in the
network (predicted(d) = E(d) (see text) and actual(d)=the fraction of genes having degree
d). (C) Proportionality of α, β to edge:node (e2n) and node:edge (n2e) ratios (n2e = e2n1),
respectively, in the prediction formula E(d). The average±SD of (α vs. n2e), (β vs. e2n) are
(0.43±0.063 vs. 0.526±0.133), (1.96±0.324 vs. 2.06±0.634) respectively.
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Figure 9: Evolvability under NEP selection pressure. Networks start empty and periodically
undergo reassign-edge, add-node, add-edge mutations. An evolving network grows by adding
one node, and one or more edges while maintaining an edge:node ratio equalling that of the
corresponding real MIN. The simulation terminates when networks reach the same size (number
of nodes) as that of the corresponding real MIN. The final degree distribution of the fittest
network is illustrated (vertical blue dashes) against that of the corresponding MIN (horizontal
pink dashes). Networks in row 1, 2 and 3 are protein-protein, regulatory, and database-sourced,
respectively. The complete results for all other networks is included in SI 10.
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