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Abstract
Free recall of random lists of words is a standard paradigm used to probe human
memory. We proposed an associative search process that can be reduced to a
deterministic walk on random graphs defined by the structure of memory
representations. This model makes a parameter-free prediction for the average number
of memory items recalled (RC) out of M items in memory: RC =

√
3πM/2. This

prediction was verified in a large-scale crowd-sourced free recall and recognition
experiment. We uncovered a novel law of memory recall, indicating that recall operates
according to a stereotyped search process common to all people.
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Human memory capacity for storing information is remarkable, but recalling a 1

collection of unrelated events is challenging. To understand human memory one needs 2

to understand both the ability to acquire vast amounts of information and at the same 3

time the limited ability to recall random material. The standard experimental paradigm 4

to address the later question is free recall (e.g. see Kahana 2012). Typical experiments 5

involve recalling randomly assembled lists of words in an arbitrary order after a brief 6

exposure. In these experiments, when the presented list becomes longer, the average 7

number of recalled words grows but in a sublinear way, such that the fraction of words 8

recalled steadily decreases (Binet and Henri 1894, Standing 1973, Murray et al. 1976). 9

The exact mathematical form of this relation is controversial and was found to depend 10

on the details of experimental procedures, such as presentation rate (Waugh 1967). In 11

some studies, recall performance was argued to exhibit a power-law relation to the 12

number of presented words (Murray et al. 1976), but parameters of this relation were 13

extremely variable across different experimental conditions. 14

In our recent publications (Romani et al. 2013, Katkov et al. 2017) we proposed a 15

deterministic step-by-step associative recall algorithm based on two basic principles: 16

• Memory items are represented in the brain by overlapping random sparse 17

neuronal ensembles in dedicated memory networks; 18

• The next item to be recalled is the one with a largest overlap to the current one, 19

excluding the item that was recalled on the previous step. 20
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Figure 1. Associative search
model of free recall.
(A) SM (similarity matrix) for a
list of 16 items (schematic). For
each recalled item, the maximal
element in the corresponding row
is marked with a black spot, while
the second maximal element is
marked with a red spot.
(B) A graph with 16 nodes illus-
trates the items in the list. Recall
trajectory begins with the first
node, and proceeds to an item
with the largest similarity to the
current one (black arrow) or the
second largest one (red arrow) if
the item with the largest similar-
ity is the one recalled just before
the current one. When the pro-
cess returns to the 10th item, a
second sub-trajectory is opened
up (shown with thinner arrows)
and converges to a cycle after
reaching the 12th node for the sec-
ond time.
(C) Comparison between simula-
tions with random symmetric sim-
ilarity matrix (blue line) and SM
defined by random sparse ensem-
bles with sparsity f = 0.01 (yel-
low line), f = 0.05 (magenta line),
f = 0.1 (green line) and N =
100000 number of neurons. Each
point is the mean of 10000 simu-
lations. Black line corresponds to
theoretical

√
3
2πL.
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The first principle is a common ele- 21

ment of most neural network models 22

of memory (see e.g. Hopfield [1982], 23

Tsodyks and Feigel’man [1988]), 24

while the second one is inspired 25

by “Search of Associative Memory” 26

(SAM, elaborated later). More 27

specifically, item representations 28

are chosen as random binary 29

{0,1} vectors where each element of 30

the vector chosen to be 1 with small 31

probability f � 1 independently 32

of other elements. Overlaps are 33

defined as scalar products between 34

these representations. The model is 35

illustrated in Fig. 1 (more details in 36

Supplemental Information), where 37

the matrix of overlaps (‘similarity 38

matrix’, or SM) between 16 memory 39

representations is shown in Fig. 1a. 40

Fig. 1b is a graph that shows the 41

transitions between memory items 42

induced by the SM. When the first item is recalled (say the 1st one in the list), the 43

corresponding row of the matrix, which includes the overlaps of this item with all the 44

others, is searched for the maximal element (14th element in this case), and hence the 45

14th item is recalled next. This process continues according to the above rule (black 46

arrows), unless it points to an item that was just recalled in the previous step, in which 47

case the next largest overlap is searched (red arrows). After a certain number of 48

transitions, this process begins to cycle over already visited items. This happens either 49

the first time a previously recalled item is reached again, or the process could make 50

some number of transitions over previously recalled items (items 10, 14, 1 in Fig. 1b) to 51

open up a new trajectory (items 13, 5, 11, 12) until finally converging to a cycle. After 52

the cycle is reached, no new items can be recalled. In our previous publication (Romani 53

et al. 2013) we showed that the average number of recalled items (recall capacity, or 54

RC) scales as a power-law function of the number of items in the list, L with exponent 55

that depends on sparseness parameter f . Here we focus on the sparse limit of this 56

model, f � 1, when one can neglect the correlations between different elements of the 57

SM and replace it by a random symmetric matrix (see e.g. Quian Quiroga and Kreiman 58

[2010], for biological motivation for considering a very sparse encoding). 59

It is instructive to consider the simpler case of a fully random asymmetric SM with 60

independent elements. In this case, transitions between any two items are equally likely, 61

with probability 1/(L− 1). When an item is reached for the second time the process 62

enters into a cycle. Therefore the probability that k out of L items will be retrieved is 63

simply 64

P (k;L) =

(
1− 1

L− 1

)(
1− 2

L− 1

)(
1− k − 2

L− 1

)
k − 1

L− 1

' k

L
e−

∑k
i=1

k
L ' k

L
e−

k2

2L

(1)

where we considered a limit of large number of items in the list (L� 1) and assumed 65
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that L� k � 1, which is confirmed a posteriori below. The average number of recalled 66

words can then be calculated as 67

RC = 〈k〉 =
L∑

k=2

k
k

L
e−

k2

2L

≈
√
L

∫ ∞
0

xe−
x2

2 dx

=

√
πL

2

(2)

which is a well known result in random graphs literature (Harris [1960], Katz et al. 68

[1996]). 69

When the SM is symmetric, as in our case, the statistics of transitions in the 70

corresponding graph is more complicated (see Supplemental Information for more 71

details about the derivation). In particular, the probability for a transition to one of the 72

previously recalled items scales as 1/(2L) rather than 1/L as in the case of asymmetric 73

SMs, and hence the average length of trajectory until the first return converges to
√
πL. 74

Moreover, with probability 1/3 the trajectory then turns towards previous items and 75

opens up a new route until again hitting a previously recalled item, etc. Taken together, 76

the chance that recall trajectory enters a cycle after each step asymptotically equals to 77

1/(2L) · 2/3 = 1/(3L), as opposed to 1/L for the fully random matrix, and hence the 78

RC can be obtained by replacing L by 3L in Eq. (2): 79

RC ≈
√

3π

2
L ≈ 2.17 ·

√
L , (3)

see Fig. 1c for the comparison of this analytical estimate with numerical simulations of 80

the model. We emphasize that Eq. (3) does not have any free parameters that could be 81

tuned to fit the experimental results. Hence, both the exponent and coefficient of this 82

power law expression are a result of the assumed recall mechanism; In other words this 83

equation constitutes a true prediction regarding the asymptotic recall performance for 84

long lists of items as opposed to earlier theoretical studies. Here we present the results 85

of our experiments designed to test this prediction. 86

The universality of the above analytical expression for RC seems to contradict our 87

everyday observations that people differ in terms of their memory effectiveness 88

depending, e.g. on their age and experience. Moreover, it is at odds with previous 89

experimental studies showing that performance in free recall task strongly depends on 90

the experimental protocol, for example presentation rate during the acquisition stage 91

(see e.g. Murdock Jr 1960, 1962, Roberts 1972, Howard and Kahana 1999, Kahana et al. 92

2002, Zaromb et al. 2006, Ward et al. 2010, Miller et al. 2012, Grenfell-Essam et al. 93

2017) and the extent of practice (Klein et al. 2005, Romani et al. 2016). Since most of 94

the published studies only considered a limited range of list lengths, we performed free 95

recall experiments on the Amazon Mechanical Turk R© platform for list lengths of 96

8, 16, 32, 64, 128, 256 and 512 words, and two presentation rates: 1 and 1.5 seconds per 97

word. To avoid practice effects, each participant performed a single free recall trial with 98

a randomly assembled list of words of a given length. The results confirm previous 99

observations that recall performance improves as the time allotted for acquisition of 100

each word increases, approaching the theoretical prediction of Eq. (3) from below (see 101

Fig. 2a). 102

We reasoned that some or all of the variability in the experimentally observed RC 103

could be due to non-perfect acquisition of words during the presentation phase of the 104

experiment, such that some of the presented words are not encoded in memory well 105
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enough to be candidates for recall. It seems reasonable that acquisition depends on 106

various factors, such as attention, age of participants, acquisition speed, etc. One should 107

then correct Eq. (3) for RC, replacing the number of presented words L with the 108

number of effectively acquired words M : 109

RC ≈
√

3π

2
M (4)

Figure 2. Human recall and
recognition performance.
(A) Average number of words re-
called as a function of the number
of words presented. Black line:
Eq. (3). Yellow line: experimen-
tal results for presentation rate 1.5
sec/word. Green line: experimen-
tal results for presentation rate 1
sec/word. The error in RC is a
standard error of the mean.
(B) Estimated average number of
acquired words for lists of different
lengths. Black dashed line corre-
sponds to perfect encoding, yellow
line corresponds to presentation
rate 1.5 sec/word and green line
to presentation rate 1 sec/word.
The error in M is computed with
bootstrap procedure (Efron and
Tibshirani 1994). Blue line corre-
sponds to the results of (Standing
1973).
(C) Average number of words re-
called as a function of the av-
erage number of acquired words.
Black line: theoretical prediction,
Eq. (4). Yellow line: experimen-
tal results for presentation rate 1.5
sec/word. Green line: experimen-
tal results for presentation rate 1
sec/word. The error in RC is a
standard error of the mean, while
the error in M is computed with
bootstrap procedure (see Supple-
mental Information for details).
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To test this conjecture, we performed 110

additional recognition experiments 111

on the same group of participants in 112

order to independently evaluate the 113

average number of words effectively 114

acquired upon presentation 115

of a list of length L, under 116

the same conditions of presentation 117

as in recall experiments. Following 118

Standing [1973], we presented 119

participants with pairs of words, 120

one from the list just presented 121

(target) and one randomly chosen 122

lure, requesting them to report 123

which word was from the list. The 124

average number of words acquired 125

(M) was then estimated from 126

the fraction of correctly recognized 127

words (c) by assuming that if a 128

target word was effectively acquired 129

during presentation, it will be 130

chosen during recognition, otherwise 131

the participant will randomly guess which of the two words is a target: M = L · (2c− 1). 132

Importantly, each participant performed a single recognition test, to avoid the well 133

known effect of ‘output interference’ between subsequent recognition tests for a single 134

list (see e.g. Criss et al. 2011). 135

Fig. 2b shows the estimated average number of acquired words M as a function of 136

list length L, compared to the results of (Standing 1973) who used presentation rate of 137

5.6 seconds per word (see Supplemental Information for details of analysis). Results 138

confirm that acquisition improves with time allotted to presentation of each word. 139

Standard error of the mean for the number of acquired words across participants, for 140

each list length and each presentation speed, was estimated with a bootstrap procedure 141

by randomly sampling a list of participants with replacement (Efron and Tibshirani 142

1994, see Supplemental Information). 143

In Fig. 2c experimentally obtained RC (yellow and green lines) is compared with the 144

theoretical prediction of Eq. (4) (black line), where M is the average number of encoded 145

words, estimated in the recognition experiment. Remarkably, agreement between the 146

data and theoretical prediction is very good for both presentation rates, even though 147

the number of acquired and recalled words is very different in these two conditions for 148

each value of list length. We also performed multiple simulations of our recall algorithm 149

(Romani et al. 2013, Katkov et al. 2017) and found that it captures the statistics of the 150

recall performances as accessed with bootstrap analysis of the results (see Fig. S1 in 151

Supplemental Information). 152
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Discussion 153

The results presented in this study show that the relation between the number of 154

acquired and recalled words conforms with remarkable precision to the analytical, 155

parameter-free expression Eq. (4), derived from a deterministic associative search model 156

of recall. The relation between these two independently measured quantities holds even 157

though both of them strongly depend on the presentation rate of the words. Hence it 158

appears that memory recall is a more universal process than memory acquisition, at 159

least when random material is involved. Since our theory is not specific to the nature of 160

the material being acquired, we conjecture that recall of different types of information, 161

such as e.g. randomly assembled lists of sentences or pictures, should result in similar 162

recall performance. 163

In the analysis of the model performance,
√
L scaling of recall capacity appears 164

when the underlying similarity matrix is assumed to be fully unstructured. This version 165

of the model is equivalent to a random mapping of a finite set to itself which is used to 166

analyze the properties of hashing algorithms in cryptography or the properties of 167

random number generators (Flajolet and Odlyzko [1989]). Here we presented a simple 168

and intuitive analysis of one of the classical statistical properties of random mappings - 169

the average sum of tail and cycle lengths. In contrast, the symmetric similarity matrix 170

model does not have this simple interpretation, since the use of a symmetric matrix 171

imposes non-trivial constraints on mappings, and the rule prohibiting recall of 172

previously recalled words implies a process with memory. Nevertheless, this additional 173

structure still leads to the same RC scaling, but with a bigger prefactor. We conjecture 174

that additional specific constraints imposed on SM may lead to increased RC, and that 175

human language imposes the set of constraints that lead to dramatic increase of RC. 176

Several influential computational models of recall were developed in cognitive 177

psychology that incorporate interactive probabilistic search processes (see e.g. 178

Raaijmakers and Shiffrin 1980, Gillund and Shiffrin 1984, Howard and Kahana 2002, 179

Laming 2009, Polyn et al. 2009, Lehman and Malmberg 2013). These cognitive models 180

have multiple free parameters that can be tuned to reproduce the experimental results 181

on recall quite precisely, including not only the number of words recalled but also the 182

temporal regularities of recall, such as primacy, recency and temporal contiguity effects 183

(Murdock Jr 1962, Murdock and Okada 1970, Howard and Kahana 1999). However, 184

most of the free parameters lack clear biological meaning and cannot be constrained 185

before the data is collected, hence the models cannot be used to predict the recall 186

performance but only explain it a posteriori. Our recall model can be viewed as a 187

radically simplified version of the classical ‘Search of Associative Memory’ model 188

(SAM), see Raaijmakers and Shiffrin 1980. In both models, recall is triggered by a 189

matrix of associations between the items, which in SAM is built up during presentation 190

according to a rather complex set of processes, while in our model is simply assumed to 191

be a fixed, structure-less symmetric matrix (see Fig. 1). Subsequent recall in SAM 192

proceeds as a series of attempted probabilistic sampling and retrievals of memory items, 193

until a certain limiting number of failed attempts is reached after which recall 194

terminates. In our model, this is replaced by a deterministic transition rule that selects 195

the next item with the strongest association to the currently recalled one. As a result, 196

recall of new items terminates automatically when the algorithm begins to cycle over 197

already recalled items, without a need to any arbitrary stopping rule. Finally, SAM 198

assumes that all the presented words are stored into long-term memory to different 199

degrees, i.e. could in principle be recalled, while in the current study we assume that 200

only a certain fraction of words are effectively acquired to become candidates for recall, 201

the process that we don’t model explicitly but rather access with recognition 202

experiments. We consider it little short of a mystery that with these radical 203

simplifications, the model predicts the recall performance with such a remarkable 204
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precision and without the need to tune a single parameter. This suggests that despite 205

all the simplifications, the model faithfully captures a key first-order effect in the data. 206

Future theoretical and experimental studies should be pursued to probe which aspects 207

of the models are valid and which are crucial for the obtained results. 208
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Supplemental Information

Methods

Recall model
Our recall model is presented in more details in Romani et al. 2013, Katkov et al. 2017. In this contribution we
considered a simplified version of the model, where we approximate the matrix of overlaps between random sparse
memory representations by a random symmetric L by L similarity matrix (SM) with otherwise independently distributed
elements, where L is a number of words in the list. Neglecting the correlations between SM elements is justified in the
limit of very sparse encoding of memory items (see Romani et al. 2013). A new matrix is constructed for each recall trial.
The sequence {k1, k2, . . . , kr} of recalled items is defined as follows. Item k1 is chosen randomly among all L presented
items with equal probability. When n items are recalled, the next recalled item kn+1 is the one that has the maximal
similarity with the currently recalled item kn, excluding the item that was recalled just before the current one, kn−1.
After the same transition between two items is experienced for the second time, the recall is terminated since the model
enters into a cycle.

Solution of the recall model
The symmetry of SM appears to be a minor difference from the much simpler model of fully random asymmetric SM
presented in the main text, but in fact it significantly impacts the statistics of the transitions in the corresponding graphs
as we will show below.

If retrieval always proceeds from an item to its most similar, as in the asymmetric case, the dynamics will quickly
converge to a two-items loop. The reason is that if item B is most similar to item A, then item A will be most similar to
item B with a probability of approximately 0.5. We hence let the system choose the second most similar item if the most
similar one has just been retrieved, as explained in the main text. When reaching an already visited item, retrieval can
either repeat the original trajectory (resulting in a loop) or continue backward along the already visited items and then
open a new sub-trajectory (see Fig. 1b). Here we show how to calculate the probability of returning from a new item to
any one of already visited items and the probability that the retrieval proceeds along the previous trajectory in the
opposite direction upon the return.

In order to return back from item k to item n, the nth element of the kth row of SM, Skn, has to be the largest of the
remaining L− 2 elements in the kth row (excluding the diagonal and the element corresponding to the item visited just
before the kth one). The probability for this would be ≈ 1

L for an asymmetric matrix. For a symmetric matrix
(Snk = Skn), we have an additional constraint that the element Skn is not the largest in the nth row of S, since we require
that the kth item was not retrieved after the first retrieval of the nth one. The probability of return is then equal to

P
(
Skn = max

(
~Sk

)
|Skn < max

(
~Sn

))
≈ 1

2L
(5)

where ~Sk denotes the vector of relevant elements in the kth row of matrix S. The return probability is therefore reduced
by a factor of two due to the symmetric nature of SM but retains the same scaling with L as in the model with
asymmetric SM. After the first return to an item n (= 10 in Fig. 1b of the main paper), the trajectory may either begin
to cycle, or turn towards previously visited items but in the opposite direction if the original transition from this item
(10→ 7 in Fig. 1) was along the second largest element of ~Sn. The marginal probability for this is 1

2 , but we must impose
the constraint that the kth item was not retrieved after the first retrieval of the nth one. If the item preceding n is j (14
in Fig. 1b), the corresponding probability is given by

P
(
max

(
~Sn

)
< max

(
~Sj

)
|max

(
~Sn

)
> max

(
~Sk

))
≈ 1

3
, (6)

which follows from the observation that any ordering for the maximal elements of three vectors of equal size is equally
probable. From this result, we conclude that the average number of sub-trajectories during the retrieval process is 3

2 . All
together the chance for the process to enter a cycle after each new item retrieved is 1

2L
2
3 = 1

3L and hence the average
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number of items recalled is estimated by replacing L with 3L in the corresponding expression for RC in the model with
fully random asymmetric SM, Eq. (2) of the main text:

RC = k ·
√
L

k ≈
√

3π/2 ≈ 2.17
(7)

Participants, Stimuli and Procedure
In total 723 participants, were recruited to perform memory experiments on the Amazon Mechanical Turk R©

(https://www.mturk.com). Ethics approval was obtained by the IRB (Institutional Review Board) of the Weizmann
Institute of Science. Each participant accepted an informed consent form before participation and was receiving from 50
to 85 cents for approximately 5− 25 min, depending on the task. Presented lists were composed of non-repeating words
randomly selected from a pool of 751 words produced by selecting English words (Healey et al. 2014) and then
maintaining only the words with a frequency per million greater than 10 (Medler and Binder 2005). The stimuli were
presented on the standard Amazon Mechanical Turk R© web page for Human Intelligent Task. Each trial was initiated by
the participant by pressing “Start Experiment” button on computer screen. List presentation followed 300 ms of white
frame. Each word was shown within a frame with black font for 500 or 1000 ms (depending on presentation rate) followed
by empty frame for 500 ms. After the last word in the list, there was a 1000 ms delay before participant performed the
task. The set of list lengths was: 8, 16, 32, 64, 128, 256 and 512 words. Each participant performed experiment A (free
recall) and Experiment B (recognition) with lists of the same length. In more details

• 348 participants performed the two experiments with presentation rate of 1.5 sec/word: 265 participants did both
experiments for only one list length, 54 for two list lengths, 18, 9 and 2 for 3, 4 and 5 list lengths respectively.

• 375 participants performed the two experiments with presentation rate of 1 sec/word: 373 participants did both
experiments for only one list length, 2 for two list lengths.

Experiment A - Free recall. Participants were instructed to attend closely to the stimuli in preparation for the
recalling memory test. After presentation and after clicking a “Start Recall” button, participants were requested to type in
as many words as they could in any order. After the completion of a word (following non-character input) the word was
erased from the screen, such that participants were seeing only the currently typed word. Only one trial was performed by
each participant. The time for recalling depended on the length of the learning set, from 1 minute and 30 seconds up to 10
minute and 30 seconds, with a 1 minute and 30 seconds increase for every length doubling. The obvious misspelling errors
were corrected. Repetitions and the intrusions (words that were not in the presented list) were ignored during analysis.

Experiment B - Recognition task. In recognition trial, participants were shown 2 words, one on top of another. One
word was randomly selected among just presented words (target), and another one was selected from the rest of the pool
of words. The vertical placement of the target was random. After presentation and after clicking a “Start Recognition”
button, participants were requested to click on the words they think was presented to them during the trial. Each list was
followed with 5 recognition trials per participant, but only the first trial was considered in the analysis. Time for all trials
was limited to 45 min, but in practice each response usually took less than two seconds.

Analysis of the results
The average number of recalled words (RC) for each list length and its standard error were obtained from the
distribution of the number of recalled words across participants.

The average number of words acquired for each list length L was computed from the results of recognition experiments
as in (Standing 1973). Suppose that M out of L words are remembered on average after an exposure to the list, the rest
are missed. The chance that one of the acquired words is presented during a recognition trial is then M/L, while the
chance that a missed word is presented is 1−M/L. We assume that in the first case, a participant correctly points to a
target word, while in the second case, she/he is guessing. The fraction of correct responses c can then be computed as

c =
M

L
+

1

2
·
(

1− M

L

)
. (8)
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Hence the average number of remembered words can be computed as

M = L · (2c− 1) . (9)

In order to estimate a standard error of the mean for the number of acquired words across participants, for each list
length, we performed a bootstrap procedure (Efron and Tibshirani 1994). We generated multiple bootstrap samples by
randomly sampling a list of N participants with replacement N times. Each bootstrap sample differs from the original list
in that some participants are included several times while others are missing. For each bootstrap sample b out of total
number B, with B = 500, we compute the estimate for the average number of acquired words, M(b), according to Eq. (9).
The standard error of M is then calculated as a sample standard deviation of B values of M(b):

seB =

√√√√ B∑
b=1

(
M (b)− M̄

)2
B − 1

, (10)

where M̄ =
∑B

b=1
M(b)
B .

Additional figures
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Figure S1. Bootstrap analysis and comparison to model simulations.
(A) 1.5 seconds per word presentation rate; (B) 1 second per word presentation rate.
100 bootstrap samples for each list length are shown with colored dots with coordinates M(b) and RC(b), where RC(b)

is an average number of recalled words computed for each bootstrap sample b. Black dots show corresponding simulation
results, obtained as follows. From the results of recognition experiment, we calculate, for each list length L, the fraction
of correct recognitions across the participants, c, and therefore the probability p = (2c− 1) that a presented word is
acquired. With these two numbers, we simulate multiple recognition and recall experiments. For recognition experiment,
we draw a binomial random variable with probability c for each participant independently, simulating their recognition
answers, from which we compute the number of acquired words averaged for all participants as explained in the Methods.
We then drew L binomial variables with probability p for each participant, simulating the acquisition of words by this
participant during the recall experiment. With the number of acquired words known for each participant, we run the
recall model (see Methods) to obtain the average recall performance over participants. Every simulation described above
produced 7 pairs of results (M,RC), one per list length. We repeated the whole procedure 100 times, same as the number
of bootstrap samples.
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