PLoS Pathogens (12/2018)

Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time

3 Short Title: Aspergillus flavus metabolic responses to oxidative stress

4 Jake C. Fountain^{1,2}, Liming Yang^{2,3}, Manish K. Pandey⁴, Prasad Bajaj⁴, Danny Alexander⁵, 5 Sixue Chen⁶, Robert C. Kemerait², Rajeev K. Varshney⁴, Baozhu Guo^{1,*} 6 7 ¹USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA; 8 9 ² Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; ³ Nanjing Forestry University, College of Biology and Environmental Science, Nanjing 210037, 10 China: 11 ⁴ International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 12 Telangana 502324, India 13 ⁵ Metabolon, Inc., Durham, NC 27713, USA; 14 ⁶University of Florida, Department of Biology, Genetics Institute, and Plant Molecular & 15 16 Cellular Biology Program, Gainesville 32611, FL, USA. 17 18 19 20 Author e-mail addresses: J.C. Fountain: jfount1@uga.edu; L. Yang: vanglim10@163.com; M. 21 Pandey: m.pandey@cgiar.org; P. Bajaj: p.bajaj@cgiar.org; D. Alexander: 22 dalexander@metabolon.com; S. Chen: schen@ufl.edu; R.C. Kemerait@uga.edu; R.K. 23 Varshney: r.k.varshney@cgiar.org; B. Guo: baozhu.guo@ars.usda.gov 24 25 26 27 ***Corresponding Author:** Dr. Baozhu Guo 28 29 baozhu.guo@ars.usda.gov 30 31 32 Key Words: Aspergillus flavus, aflatoxin, drought stress, oxidative stress, metabolomics

33 Abstract

The primary and secondary metabolites of fungi are critical for adaptation to environmental 34 stresses, host pathogenicity, competition with other microbes, and reproductive fitness. Drought-35 derived reactive oxygen species (ROS) have been shown to stimulate aflatoxin production and 36 regulate development in *Aspergillus flavus*, and may function in signaling with host plants. Here, 37 38 we have performed global, untargeted metabolomics to better understand the role of aflatoxin production in oxidative stress responses, and also explore isolate-specific oxidative stress 39 responses over time. Two field isolates of A. flavus, AF13 and NRRL3357, possessing high and 40 41 moderate aflatoxin production, respectively, were cultured in medium with and without supplementation with 15mM H₂O₂, and mycelia were collected following 4 and 7 days in culture 42 for global metabolomics. Overall, 389 compounds were described in the analysis which were 43 examined for differential accumulation. Significant differences were observed in both isolates in 44 response to oxidative stress and when comparing sampling time points. The moderate aflatoxin-45 producing isolate, NRRL3357, showed extensive stimulation of antioxidant mechanisms and 46 pathways including polyamines metabolism, glutathione metabolism, TCA cycle, and lipid 47 metabolism while the highly aflatoxigenic isolate, AF13, showed a less vigorous response to 48 49 stress. Carbohydrate pathway levels also imply that carbohydrate repression and starvation may influence metabolite accumulation at the later timepoint. Higher conidial oxidative stress 50 51 tolerance and antioxidant capacity in AF13 compared to NRRL3357, inferred from their 52 metabolomic profiles and growth curves over time, may be connected to aflatoxin production capability and aflatoxin-related antioxidant accumulation. The coincidence of several of the 53 54 detected metabolites in H₂O₂-stressed A. *flavus* and drought-stressed hosts suggests their

potential role in the interaction between these organisms and their use as markers/targets to
enhance host resistance through biomarker selection or genetic engineering.

57

58 Author Summary

Aspergillus flavus is a fungal pathogen of several important crops including maize and peanut. 59 60 This pathogen produces carcinogenic mycotoxins known as aflatoxins during infection of plant materials, and is particularly severe under drought stress conditions. This results in significant 61 losses in crop value and poses a threat to food safety and security globally. To combat this, 62 63 understanding how this fungus responds to environmental stresses related to drought can allow us to identify novel methods of mitigating aflatoxin contamination. Here, we analyzed the 64 accumulation of a broad series of metabolites over time in two isolates of A. flavus with differing 65 stress tolerance and aflatoxin production capabilities in response to drought-related oxidative 66 stress. We identified several metabolites and mechanisms in A. flavus which allow it to cope with 67 environmental oxidative stress and may influence aflatoxin production and fungal growth. These 68 may serve as potential targets for selection in breeding programs for the development of new 69 cultivars, or for alteration using genetic engineering approaches to mitigate excessive aflatoxin 70 71 contamination under drought stress.

72

73 Introduction

Abiotic stresses such as drought, heat, and osmotic stress have significant effects on the growth of plant pathogenic fungi, and can hinder their capability of infecting host plants. Drought stress in particular has been shown to have significant effects on both fungal pathogenicity and on host resistance to infection with some degree of specificity. For example, the growth of pathogenic

fungi such as *Botrytis cinerea* causing gray mold, and *Oidium neolycopersici* causing powdery 78 mildew on tomato are reduced or inhibited under drought stress (Achou et al. 2006; Ramegowda 79 and Senthil-Kumar, 2015). Drought can also influence host metabolic composition and affect 80 interactions with invading pathogens (Lecompte et al. 2017). The growth of microbes in soil 81 environments along with their metabolic profiles and development can also be influenced by 82 83 drought stress resulting in altered soil ecology and competition among microbes for limiting resources (Schimel et al. 2007). This shows the importance of metabolite accumulation in fungal 84 environmental stress responses and pathogenicity, and the potential for abiotic stresses to 85 86 regulate host plant immunity.

Members of the genus Aspergillus have been extensively studied using focused and 87 untargeted metabolomics studies given their role as saprophytes in soil environments, their 88 industrial applications, and their potential as human, animal, and plant pathogens. Examination 89 of the metabolic responses of these fungi have been primarily focused on identifying metabolites 90 involved in fungal growth and development, and the discovery of novel secondary metabolites 91 encoded by silent, conserved gene clusters through both genomic prediction, and induced 92 production using applied stressors or epigenetic modifying compounds (Albright et al. 2015) 93 94 Bertrand et al. 2014; Brakhage, 2013; Scherlach and Hertweck, 2009). This has led to the identification of a number of metabolites with potential pharmaceutical applications, and several 95 involved in the regulation of fungal biology (Amare and Keller, 2014; Calvo et al. 2002; Lopez 96 97 et al. 2003). However, application of these techniques to study plant pathogenic species of Aspergillus have been limited. 98

An example of this is *Aspergillus flavus*, a facultative pathogen affecting crops such as
 maize and peanut which produces carcinogenic secondary metabolites termed aflatoxins. Annual

losses can exceed \$1 billion for US growers, particularly in regions susceptible to drought stress 101 which has been shown to exacerbate aflatoxin contamination (Hill et al. 1983; Mitchell et al. 102 2016; Scully et al. 2009). Recent examination of developing maize kernels under drought stress 103 also showed that accumulation of polyunsaturated fatty acids, and simple sugars along with 104 decreases in antioxidants such as polyamines occurred in inbred lines sensitive to drought stress 105 106 and susceptible to aflatoxin contamination (Yang et al. 2018). The same study also showed a greater accumulation of reactive oxygen species (ROS), specifically hydrogen peroxide (H_2O_2) , 107 in kernels of the drought sensitive line compared to the drought tolerant line under drought 108 109 suggesting a correlation between drought tolerance and both ROS accumulation and aflatoxin contamination. Therefore, investigating this correlation between both matrix composition and 110 ROS accumulation with a flatoxin production in A. flavus may provide insights into mitigating 111 drought-induced contamination. 112

Matrix composition has been shown to heavily influence both A. flavus growth and 113 aflatoxin production. For example, carbon sources have been found to have a significant effect 114 on aflatoxin production *in vitro* with simple sugars being able to support aflatoxin production by 115 A. flavus and A. parasiticus while other carbon sources such as peptone can inhibit aflatoxin 116 117 production in a concentration-dependent manner (Fountain et al. 2015; Yan et al. 2012). Carbon source and availability has also been shown to influence conidiation in A. flavus (Fountain et al. 118 119 2015). In addition, the accumulation of lipid compounds such as unsaturated fatty acids, and 120 oxylipins in host tissues have been demonstrated to influence aflatoxin production (Burow et al. 1997; Gao et al. 2009; Xue et al. 2003; Zerinque et al. 1996). 121

During *in vitro* experiments, the same ROS detected by Yang et al. (2018) to accumulate in maize kernels under drought have also been shown to stimulate the production of aflatoxin in

both A. flavus and A. parasiticus, and aflatoxin precursors in A. nidulans (Grintzalis et al. 2014; 124 Jayashree and Subramanyam, 2000; Narasaiah et al. 2006; Yin et al. 2013). Variation in 125 oxidative stress tolerance has also been observed among field and mutant isolates of A. flavus 126 with isolates exhibiting greater aflatoxin production and more later-stage precursor production 127 tending to tolerate greater levels of oxidative stress compared to less toxigenic or atoxigenic ones 128 129 (Fountain et al. 2015; Roze et al. 2015). Such variation in stress tolerance and growth patterns may also be characteristic of differences in vegetative compatibility groups (VCGs) which have 130 been shown to vary in host pathogenicity, and competitive ability with other isolates for 131 132 environmental nutrients (Mehl and Cotty, 2010, 2013). Also, ROS function in reproductive signaling in *Aspergillus spp.* with oxidative responses being closely interconnected with the 133 regulation of reproductive development (Roze et al. 2011). Further, oxidative stress results in 134 extensive metabolic profile alterations to fungi with regards to primary metabolism and 135 antioxidant mechanisms following induction by either ROS or ROS-generating compound 136 137 application (Sobon et al. 2018; Xu et al. 2018; Zheng et al. 2015). Previous experimentation examining the oxidative stress responses of field isolates of A. 138 *flavus* with different levels of aflatoxin production and stress tolerance by our group have shown 139 140 a high degree of variability among isolates in overall strategies to remediate stress at both the transcript and protein levels (Fountain et al. 2016a, 2016b, 2018). These studies suggested that 141 highly toxigenic isolates may exhibit earlier, more effective oxidative stress remediation 142 143 mechanisms compared to less toxigenic or atoxigenic isolates. Transcripts and proteins involved in antioxidant protection, carbohydrate metabolism, microbial competitiveness, reproductive 144 145 development, and the production of other secondary metabolites such as kojic acid and aflatrem 146 were among those differentially expressed in response to oxidative stress. Differences in isolate-

specific oxidative stress responses were also proposed to be due to resource allocation and the 147 regulation of primary and secondary metabolic pathways to mitigate oxidative damage. While 148 these studies provided an extensive overview of transcript and protein-level responses to 149 oxidative stress, they are not fully capable of characterizing changes in final biochemical product 150 levels, and resource allocation over time. Therefore, the objectives of this study were: 1) to 151 152 identify differentially accumulating metabolites over time to explain isolate-to-isolate variability in oxidative stress responses; 2) to identify metabolic responses that begin to explain the 153 relationship between oxidative stress and exacerbated aflatoxin production; and 3) to identify the 154 155 metabolites that correspond to host drought responses with potential use in improving host resistance through selection or biotechnology. To accomplish this, we performed a global, 156 untargeted metabolomics analysis of two field isolates of A. flavus with different levels of 157 158 aflatoxin production and their response to oxidative stress over time.

159

160 **Results**

161 Effects of oxidative stress on isolate growth rates

Two isolates of A. flavus, AF13 and NRRL3357, which were previously observed to possess 162 163 relatively high (up to $35 \text{mM H}_2\text{O}_2$) and moderate (up to $20 \text{mM H}_2\text{O}_2$) levels of oxidative stress tolerance and aflatoxin production, respectively (Fountain et al. 2015), were selected for this 164 study. The isolate AF13 is a high aflatoxin producing L-strain (sclerotia size >400µm) with a 165 166 MAT1-2 mating type belonging to the YV-13 vegetative compatibility group (VCG) and relatively high tolerance to oxidative stress (Cotty, 1989; Ehrlich et al. 2007; Fountain et al. 167 2015). The isolate NRRL3357 is a moderately high aflatoxin producing L-strain with a MAT 1-1 168 169 mating type with no currently defined VCG, and moderate tolerance to oxidative stress (Chang et

170	al. 2012; Fountain et al. 2015). These isolates were examined for conidial oxidative stress
171	tolerance and the effect of oxidative stress on growth rates. Increasing levels of stress caused
172	significant delays in the initial detection (T _i) of isolate growth for both isolates, but to a greater
173	extent in NRRL3357 compared to AF13 at both inoculum levels (Figure 1, Table S1). For AF13,
174	significant growth delays were observed beginning at 10mM H ₂ O ₂ and increasing up to 25mM
175	where growth was completely suppressed at 20,000 conidia/mL (Figure 1A) but not at 80,000
176	conidia/mL (Figure 1C). However, growth was completely inhibited at 30 mM H ₂ O ₂ even at the
177	higher inoculum concentration (Table S1). For NRRL3357, significant delays in growth were
178	also observed at 10mM H_2O_2 while 15mM was completely inhibitory of growth at 20,000
179	conidia/mL (Figure 1B) but not at 80,000 conidia/mL (Figure 1D). Growth was also completely
180	inhibited at 20mM H_2O_2 at the higher inoculum concentration (Table S1). These inhibitory
181	concentrations of H_2O_2 observed for each isolate were 5 – 10mM less than observed when the
182	isolates were cultured in H ₂ O ₂ amended YES medium in Erlenmeyer flasks with cotton plugs
183	(Fountain et al. 2015).

184

185 Differential metabolic alterations in response to oxidative stress over time

186 Two field isolates of *A. flavus* were selected for global, untargeted metabolomics analysis using

an UPLC-MS/MS approach to examine their responses to drought-related, H_2O_2 -derived

188 oxidative stress over time. This metabolomics analysis identified 389 distinct metabolites.

189 Functional classification for the detected metabolites was performed based on the Kyoto

- 190 Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000). These
- 191 metabolites were grouped into nine super pathways with a majority of metabolites being

classified as either amino acids (163), lipids (84), nucleotides (54), or carbohydrates (43). These 192 super pathways were further divided into 47 sub-pathways which are described in Table S2. 193 Welch's two-sample t-test was used for differential accumulation analyses to identify 194 metabolites significantly different between oxidative stress treatments, between isolates, or over 195 time (Table 1). Data normalization using DNA or protein content was found to introduce 196 197 possible skewing in time and isolate effects on metabolite accumulation. Therefore sample mass per unit volume of extraction solvent was used for normalization and these data were used for 198 analysis and interpretation. Both protein and non-protein normalized datasets, and raw data are 199 200 included in Supplemental File 1. When comparing between stress treatments, AF13 showed 111 and 47 metabolites which differentially accumulated at 4 and 7 DAI, respectively. Of these, 27 201 and 64 metabolites were significantly increased and decreased, respectively, in abundance at 4 202 203 DAI, and 34 and 13 were increased and decreased in abundance, respectively, at 7 DAI. For NRRL3357, 223 and 90 metabolites were differentially accumulated at 4 and 7 DAI, 204 respectively, in response to stress. Of these, 90 and 133 were significantly increased and 205 decreased, respectively, at 4 DAI, and 65 and 25 were increased and decreased in abundance, 206 respectively, at 7 DAI. Time was a highly significant influence on metabolite accumulation with 207 208 AF13 showing 257 metabolites with significant differences in abundance between 4 and 7 DAI without H₂O₂treatment and 268 with H₂O₂ treatment. In NRRL3357, this was also apparent with 209 243 and 261 metabolites being significantly altered in abundance between 4 and 7 DAI either 210 211 with or without H_2O_2 treatment, respectively. Comparisons between the isolates are more likely to reflect genetic differences rather than stress response, but more stark differences in numbers of 212 213 differentially accumulating metabolites could be observed between AF13 and NRRL3357 at 4 214 DAI regardless of H₂O₂ treatment.

215	These differences in metabolite accumulation were also observed in principal
216	components analyses (Figure 2). The first component was dominated primarily by time effects
217	reflecting significant differences between the 4 and 7 DAI time points. Significant stress effects
218	could also be observed between the isolates with more stark differences observed at 4 DAI.
219	Samples from 7 DAI did not segregate into distinct clusters as seen in samples from 4 DAI. A
220	higher degree of variability between biological replicates was also observed in the 7 DAI
221	samples compared to 4 DAI.

222

223 Carbohydrate metabolic responses to oxidative stress

Significant variation in carbohydrate metabolite accumulation was observed in response to 224 225 oxidative stress in both AF13 and NRRL3357. AF13 showed significant changes in glycolytic 226 compounds glucose and pyruvate with significant decreases (p < 0.05) in both compounds at 4 DAI in response to stress with glucose and fructose levels showing marginally significant 227 increases at 7 DAI (p < 0.10; Figure 3). NRRL3357 showed significant decreases in both glucose 228 and pyruvate at 4 DAI in response to stress with a significant decrease in pyruvate also detected 229 at 7 DAI. Fructose levels in NRRL3357 were also increased at both time points in response to 230 stress (Figure 3). Time effects showed that pyruvate accumulated in NRRL3357 over time 231 regardless of H₂O₂ treatment, and glucose and fructose were significantly decreased over time 232 233 with reductions in glucose only seen in non-stressed samples (Supplemental File 1). 234 Intermediates in the tricarboxylic acid (TCA) cycle were also significantly affected by oxidative stress. NRRL3357 showed significant reductions, particularly at 4 DAI, in citrate, 235 isocitrate, alpha-ketoglutarate, fumarate, and malate in response to oxidative stress (Figure 3). 236 237 Conversely, AF13 showed no significant changes in TCA intermediate levels in response to

oxidative stress with the exception of a significant increase in succinate at 4 DAI. These 238 compounds were, however, seen to generally accumulate over time in the stressed samples when 239 comparing time points (Supplemental File 1). 240 In addition to these pathways, AF13 and NRRL3357 showed significant reductions in 241 trehalose, arabitol, and xylitol in response to oxidative stress at 4 DAI with less significant 242 243 decreases or no significant differences being observed in response to stress at 7 DAI (Supplemental File 1). Additional metabolic products of arabinose and xylinose, arabinate and 244 xylinate were increased in accumulation in response to stress in both isolates and time points 245 246 (Supplemental File 1). Increases in amino sugars were also observed in both isolates, particularly at 4 DAI in response to stress (Supplemental File 1). 247 248 Amino acid metabolic responses to oxidative stress 249 Significant changes in the accumulation of amino acids and their derivatives were observed in 250 both isolates in response to oxidative stress over time. Changes in primary amino acids were 251 proportional to changes in their precursors with more significant changes occurring in 252 NRRL3357 compared to AF13 (Figure 3; Supplemental File 1). In particular, changes in 253 254 aromatic amino acid precursors in the tryptophan and histidine pathways were observed in NRRL3357 in response to oxidative stress although the levels of tryptophan and histidine were 255 unchanged or reduced, respectively, in the same conditions (Supplemental File 1). In addition, 256 257 the tryptophan derivative kynurenine was increased in NRRL3357 at both time points in response to oxidative stress, but not in AF13 (Supplemental File 1). Proline levels were also 258 increased in NRRL3357 at 7 DAI in response to stress (Supplemental File 1). Among the amino 259

260	acid derivatives, those involved in glutathione, polyamine, and sulfur metabolism were among
261	the most differentially accumulating in response to oxidative stress.

262	Glutathione metabolism was significantly regulated in both isolates but to a greater extent
263	in NRRL3357 compared to AF13 (Figure 3). Significant increases in 5-oxoproline, ophtalmate,
264	oxidized glutathione (GSSH), and cysteine-glutathione disulfide were observed in NRRL3357 in
265	response to increasing stress (Figure 3). AF13 showed marginally significant ($p < 0.10$) increases
266	in accumulation of only 5-oxoproline and ophtalmate were see at 7 DAI in response to stress.
267	Direct comparison of levels between these isolates showed that AF13 accumulated significantly
268	greater levels of GSSH and cysteine-glutathione disulfide at 4 DAI compared to NRRL3357 in
269	the absence of oxidative stress, and equivalent and greater levels, respectively, of each when
270	under oxidative stress (Supplemental File 1). When comparing time point measurements, 5-
271	oxoproline, ophtalmate, and GSSG showed significant reductions in accumulation in both
272	isolates and treatments (Supplemental File 1). Significant changes were also found among the
273	gamma-glutamyl amino acids which were significantly reduced in AF13 at 4 DAI in response to
274	stress, but tended to be either unchanged or increased in accumulation in NRRL3357 in response
275	to stress (Figure 3).

In addition to glutathione, other sulfur-containing amino acids and their metabolites were significantly regulated in response to oxidative stress (Figure 4). Significant reductions in methionine levels were observed in both isolates at 4 DAI in response to oxidative stress. Sadenosylmethionine (SAM), an important signaling compound, was also significantly regulated in response to oxidative stress showing increasing accumulation at 7 DAI in both isolates, and a significant decrease at 4 DAI in NRRL3357 (Figure 4). 5-methylthioadenesine (MTA) also exhibited a similar pattern of accumulation to SAM. In addition to methionine derivatives,

283	cysteine also serves as a precursor to the antioxidant compound taurine which was significantly
284	increased in both isolates at 4 DAI and in AF13 at 7 DAI in response to oxidative stress. A
285	taurine precursor, 3-sulfo-L-alanine, was also significantly increased in both isolates and time
286	points in response to oxidative stress (Figure 4).
287	Polyamine metabolites were also significantly regulated in response to oxidative stress in
288	both isolates. Ornithine showed significant reduction in AF13 at 4DAI while putresine showed
289	the same in NRRL3357 in response to oxidative stress while the immediate precursor to
290	ornithine, N-alpha-acetylornithine, was increased in both isolates at 4 DAI (Figure 4;
291	Supplemental File 1). These compounds are precursors to both spermidine and N-acetylputresine
292	which showed significant increases in both isolates in response to oxidative stress. N-
293	acetylputresine is a part of butanoate metabolism and used for the biosynthesis of gamma-
294	aminobutanoate (GABA) which showed marginally significant changes in abundance in response
295	to oxidative stress (Figure 4).
296	
297	Fatty acid metabolic responses to oxidative stress
298	Several fatty acids and their derivatives were also significantly regulated in response to H ₂ O ₂ -

stress over time. Significant regulation of saturated and mono- and poly-unsaturated fatty acid accumulation were primarily observed in NRRL3357 in response to stress (Figure 5). Significant increases in the saturated fatty acids pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were seen at 7 and 4 DAI, respectively, in NRRL3357 in response to stress (Figure 5). Similarly, significant increases in several unsaturated fatty acids were also seen in NRRL3357 (Figure 5).

Other fatty acid derivatives were also found to differentially accumulate in the isolate under oxidative stress. In AF13, betaine, an ethanolamine derivative, was significantly decrea	nd to differentially accumulate in the isolates	305	stress within each time point, significant depletion of these fatty acids was observed in both
under oxidative stress. In AF13, betaine, an ethanolamine derivative, was significantly decrea		306	isolates over time with or without the presence of oxidative stress (Supplemental File 1).
	plamine derivative was significanted to	307	Other fatty acid derivatives were also found to differentially accumulate in the isolates
under oxidative stress at 4 DAI (Figure 5). Several phospholipids such as	activative, was significantly decreased	308	under oxidative stress. In AF13, betaine, an ethanolamine derivative, was significantly decreased
	l phospholipids such as	309	under oxidative stress at 4 DAI (Figure 5). Several phospholipids such as
10 glycerophosphoglycerol were also found to be differentially accumulating in response to	ferentially accumulating in response to	310	glycerophosphoglycerol were also found to be differentially accumulating in response to
oxidative stress in both isolates (Supplemental File 1). Ergosterol levels were found to be		311	oxidative stress in both isolates (Supplemental File 1). Ergosterol levels were found to be
significantly decreased under stress in AF13 at 7 DAI and in NRRL3357 at 4 DAI. There was		312	significantly decreased under stress in AF13 at 7 DAI and in NRRL3357 at 4 DAI. There was no
	le 1). Ergosterol levels were found to be	313	significant change in ergosterol levels over time in either treatment, but AF13 accumulated
significant change in ergosterol levels over time in either treatment, but AF13 accumulated	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no	314	significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was found
	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated	315	to have more only in the non-stressed control (Supplemental File 1).
significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated both treatments, while at 7 DAI AF13 was found	316	
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated both treatments, while at 7 DAI AF13 was found	317	
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated both treatments, while at 7 DAI AF13 was found applemental File 1).	017	Other compounds regulated in response to oxidative stress
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated both treatments, while at 7 DAI AF13 was found applemental File 1).	318	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found upplemental File 1).		
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found applemental File 1). dative stress bids, other classes of compounds were found to ag oxidative stress over time in both isolates.	318	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates.
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found applemental File 1). dative stress bids, other classes of compounds were found to g oxidative stress over time in both isolates. and related metabolites were significantly	318 319	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found upplemental File 1). dative stress bids, other classes of compounds were found to g oxidative stress over time in both isolates. and related metabolites were significantly tress, but showed significant increases over	318 319 320	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found upplemental File 1). dative stress bids, other classes of compounds were found to ug oxidative stress over time in both isolates. and related metabolites were significantly tress, but showed significant increases over entrations in AF13 compared to NRRL3357	318 319 320 321	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 (Supplemental File 1). Several B vitamins with potential antioxidant activity were also regulated 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found applemental File 1). dative stress bids, other classes of compounds were found to ag oxidative stress over time in both isolates. and related metabolites were significantly tress, but showed significant increases over entrations in AF13 compared to NRRL3357 otential antioxidant activity were also regulated	318 319 320 321 322	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 (Supplemental File 1). Several B vitamins with potential antioxidant activity were also regula in response to stress including thiamin (B1), riboflavin (B2), and pyridoxine (B6) (Supplemental 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found upplemental File 1). dative stress bids, other classes of compounds were found to g oxidative stress over time in both isolates. and related metabolites were significantly tress, but showed significant increases over entrations in AF13 compared to NRRL3357 otential antioxidant activity were also regulated flavin (B2), and pyridoxine (B6) (Supplemental	 318 319 320 321 322 323 	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 (Supplemental File 1). Several B vitamins with potential antioxidant activity were also regulated
 significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was fo to have more only in the non-stressed control (Supplemental File 1). Other compounds regulated in response to oxidative stress In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 (Supplemental File 1). Several B vitamins with potential antioxidant activity were also regula in response to stress including thiamin (B1), riboflavin (B2), and pyridoxine (B6) (Supplemental 	le 1). Ergosterol levels were found to be DAI and in NRRL3357 at 4 DAI. There was no in either treatment, but AF13 accumulated ooth treatments, while at 7 DAI AF13 was found applemental File 1). dative stress bids, other classes of compounds were found to g oxidative stress over time in both isolates. and related metabolites were significantly tress, but showed significant increases over entrations in AF13 compared to NRRL3357 otential antioxidant activity were also regulated flavin (B2), and pyridoxine (B6) (Supplemental differentially accumulated in response to stress	 318 319 320 321 322 323 324 	In addition to amino acids, carbohydrates, and lipids, other classes of compounds were found to differentially accumulate in response to increasing oxidative stress over time in both isolates. Among cofactors and electron carriers, carnitine and related metabolites were significantly reduced in both isolates at 4 DAI in response to stress, but showed significant increases over time under stress and was present in higher concentrations in AF13 compared to NRRL3357 (Supplemental File 1). Several B vitamins with potential antioxidant activity were also regulated in response to stress including thiamin (B1), riboflavin (B2), and pyridoxine (B6) (Supplemental File 1). Several nucleotide derivatives were also differentially accumulated in response to stress
significantly decreased under stress in AF13 at 7 DAI and in NRRL3357 at 4 DAI. There was		312 313 314	significantly decreased under stress in AF13 at 7 DAI and in NRRL3357 at 4 DAI. There was significant change in ergosterol levels over time in either treatment, but AF13 accumulated significantly more than NRRL3357 at 4 DAI in both treatments, while at 7 DAI AF13 was for
	plamine derivative was significant 1		
under oxidative stress. In AF13, betaine, an ethanolamine derivative, was significantly decrea	-	305	
 isolates over time with or without the presence of oxidative stress (Supplemental File 1). Other fatty acid derivatives were also found to differentially accumulate in the isolate under oxidative stress. In AF13, betaine, an ethanolamine derivative, was significantly decreated 	f oxidative stress (Supplemental File 1). nd to differentially accumulate in the isolates	305	stress within each time point, significant depletion of these fatty acids was observed in both

(Supplemental File 1). Terpenoid and isoterpenoid precursors were also found to differentially
accumulate under stress with mevalonate along with its immediate precursor, 3-hydroxy-3methylglutarate, and its lactone form, mevalonolactone, showing significant increases in
response to stress in AF13 at 7 DAI and in NRRL3357 at 4 and 7 DAI (Supplemental File 1).

333 Discussion

Drought stress is one of the primary factors contributing to the exacerbation of pre-harvest 334 aflatoxin contamination in the field. Drought stress has been shown to significantly alter the 335 336 metabolic composition of maize kernels during earlier stages of development resulting in increased levels of free simple sugars, oxylipins, free fatty acids, and signaling compounds 337 including ROS including H₂O₂, superoxide (O₂⁻⁾, and hydroxyl ions (OH⁻⁾) (Yang et al. 2015, 338 2018). These ROS have also been found to stimulate and be required for aflatoxin production 339 (Jayashree and Subramanyam, 2000). These observations served as the impetus to investigate 340 responses of A. flavus isolates with varying levels of aflatoxin production to drought-related 341 oxidative stress and the metabolite level over time. 342

Aflatoxin production capability has been previously correlated with A. flavus isolate 343 344 oxidative stress tolerance (Fountain et al. 2015; Roze et al. 2015). When examining the growth rates and behavior of A. flavus isolates under oxidative stress AF13, a highly toxigenic isolate, 345 346 was found to exhibit higher levels of oxidative stress tolerance and growth under stress compared 347 to NRRL3357, a moderately high toxigenic isolate (Figure 1). Aflatoxin production and the reactions in the biosynthetic pathway are suspected to result in increased conidial oxidative stress 348 349 tolerance due to stimulating additional antioxidant enzyme production, or through the 350 consumption of ROS during production (Fountain et al. 2016a; Roze et al. 2015). Given this,

conidial antioxidant enzyme activity may have contributed here. To further examine this, growth 351 curve analyses was performed with different inoculum concentrations, and showed that growth 352 for both isolates occurred at elevated H_2O_2 levels when the inoculum was increased from 20.000 353 conidia/mL as described by Meletiadis et al. (2001) to 80,000 conidia/mL used here as inoculum 354 for cultures used for metabolomics analysis. Interestingly, even with the increased conidia 355 356 concentration, observed stress tolerance remained approximately 5 mM less than the maximum observed in the previous study. While this may be an artifact of performing the assay in a sealed 357 microplate with potentially limited oxygen availability, the overall trend was consistent with 358 359 previous observations of each isolate's tolerance to oxidative stress (Clevstrom et al. 1983; Fountain et al. 2015; Jayashree and Subramanyam, 2000). 360 When examining overall metabolite accumulation patterns, NRRL3357 displayed 361 approximately double the number of differentially accumulating metabolites compared to AF13 362 in response to oxidative stress with both isolates exhibiting greater numbers at 4DAI compared 363 to 7 DAI (Table 1). This pattern mirrors observed numbers and functional classifications of 364 differentially expressed transcripts and proteins for these isolates in response to similar levels of 365 oxidative stress in our previous transcriptome and proteome studies (Fountain et al. 2016a, 366 367 2016b, 2018). Here, significant differences in metabolite accumulation were detected within and between time points in both isolates, and sampling time was one of the major grouping factors in 368 the PCA analysis (Table 1; Figures 2 and S1). These time course influences may be due to 369 370 differences in isolate growth patterns and, presumably, timing and vigor of oxidative stress remediation mechanisms. As indicated by the growth curve analysis (Figure 1; Table S1), earlier 371

initiation of growth in AF13 compared to NRRL3357 may be the result of earlier, more vigorous

373 lag phase or conidial oxidative stress remediation processes. Therefore, sampling at 4 DAI for

both isolates would describe actively growing and responding tissues while sampling at 7 DAI 374 would describe stationary state responses in AF13 having already remediated the majority of 375 oxidative stress while NRRL3357 would still be actively growing and responding to stress. 376 Examining the isolate-specific responses to oxidative stress, there were significant 377 differences in carbohydrate accumulation. Both glycolysis and TCA cycle intermediates were 378 379 significantly altered in accumulation in response to oxidative stress in these isolates, but to differing degrees. NRRL3357 displayed increased demand for TCA intermediates showing 380 significant decreases in most quantified metabolites in the cycle while AF13 showed no 381 382 significant differences (Figure 3). These compounds have been shown to provide some antioxidant benefit when supplemented to cultured neuronal cells (Sawa et al. 2017), though a 383 more likely explanation is the use of these compounds in the synthesis of amino acids and/or 384 their derivatives involved in oxidative stress remediation. Increases in glucose and fructose under 385 stress in both isolates may also be reflective of higher levels of metabolic demand for simple 386 sugars, and the beginnings of carbon starvation leading to gluconeogenesis (Dijkema et al. 1985; 387 Lima et al. 2014), particularly at 7 DAI (Figure 3). 388 When examining time course effects, the accumulation of these compounds in stressed 389

when examining time course effects, the accumulation of these compounds in stressed
samples may also be indicative on increased energy demand and the need to maintain redox
homeostasis through the generation of reduced coenzymes for oxidative phosphorylation such as
NADH and NADPH (Kapoor et al. 2015). Significant reductions in their accumulation in
NRRL3357 under stress (Figure 3) could, therefore, partially explain the reduced growth rate,
and observed ongoing stress responses compared to AF13. Also of interest, the pentose
phosphate pathway has been shown to be involved in oxidative stress responses in yeast, and
amino sugars such as ribonate are also involved in the generation of reduced coenzymes used for

redox homeostasis (Campbell et al. 2016; Juhnke et al. 1996). These reduced coenzymes,
particularly NADPH, are also critical for the activity of polyketide synthases which may also
impact aflatoxin production levels under oxidative stress (Huang et al. 2009; Kletzien et al. 1994;
Shih and Marth, 1974).

Changes in amino acid metabolite levels appeared to form the basis of a majority of the 401 402 oxidative stress remediation processes employed by these isolates constituting the bulk of directly antioxidant compounds and mechanisms. Amino acids such as proline have been 403 previously shown to be involved in osmotic, drought, and oxidative stress tolerance in fungi and 404 405 plants and were increased in abundance in NRRL3357 (Chen and Dickman, 2005; Szabados and Savoure, 2009). Also in NRRL3357, the tryptophan derivative kynurenine was increased and 406 may also contribute to stress remediation. Disruption of kynurenine 3-monooxygenase, a central 407 enzyme in kynurenine metabolism, in *Botrytis cinerea* has been shown to increase tolerance to 408 H₂O₂-derived oxidative stress and host pathogenicity while negatively affecting growth and 409 410 development (Zhang et al. 2018).

Glutathione pathway components were among the most significantly altered in response 411 to oxidative stress in both isolates, though to a greater extent in NRRL3357 which can be seen in 412 413 the higher accumulation of oxidized glutathione, 5-oxoproline, and ophthalmate in NRRL3357 under stress which were not seen in AF13 (Figure 3). This pathway in conjunction with enzymes 414 415 such as catalases and thioredoxin reductases and peroxidases serve as the primary means of 416 redox homeostasis and oxidative stress alleviation for eukaryotes (Breitenbach et al. 2015). Glutathione metabolism has been previously linked to both development and aflatoxin 417 418 production in Aspergillus spp. Huang et al. (2009) showed that treatment of A. flavus with an 419 ethylene-producing compound resulted in increases in GSH/GSSH ratios, oxidative stress

remediation, and significant reductions in aflatoxin biosynthetic gene expression and aflatoxin 420 production. Reduced glutathione accumulation has also been associated with asexual and sexual 421 development in A. nidulans thioredoxin A (AnTrxA) mutants with applied GSH resulting in 422 restored conidiation and early induction of cleistothecia formation following long-term, low 423 concentration application (Thon et al. 2007). Given this relationship between glutathione, 424 425 development, and mycotoxin production, this mechanism may be lending to distinctive growth patterns and aflatoxin production levels in these isolates which represent diverse VCGs and 426 mating types and warrants further investigation (Horn, 2007; Mehl and Cotty, 2010, 2013). 427 428 Sulfur-containing amino acids such as cysteine and methionine, and their derivatives were also differentially accumulated in response to oxidative stress (Figure 4). These compounds 429 have antioxidant benefits, and also function in important signaling capacities. Taurine, an 430 antioxidant compound (Jong et al. 2012), was shown to accumulate in both isolates under stress 431 along with its immediate precursor 3-sulfo-L-alanine which may supplement other antioxidant 432 pathways (Figure 4). The detected signaling compounds, SAM and MTA, are closely tied to 433 polyamine biosynthesis which was also significantly regulated by oxidative stress. Polyamines 434 such as putresine and spermidine differentially accumulated in this experiment (Figure 4), and 435 436 have been found to function in oxidative stress responses either by scavenging ROS, inhibiting ROS-generating enzymes, or functioning in signal transduction to promote antioxidant 437 438 mechanisms (Valdes-Santiago and Ruiz-Herrera, 2014). S-adenosylmethionine is required for 439 the production of polyamines and MTA is produced from decarboxylated SAM by spermidine synthase and spermine synthase with accumulating MTA being able to inhibit these enzymes to 440 441 prevent the generation of H₂O₂-derived oxidative stress due to polyamine back-conversion 442 (Avila et al. 2004). Therefore, polyamine metabolism along with glutathione metabolism form a

443 coordinated basis for regulating cellular redox potential in *A. flavus* in response to oxidative
444 stress and may assist in coordination of both reproductive development and mycotoxin
445 production.

Fatty acids were also significantly altered in accumulation in response to oxidative stress. 446 This is particularly true for mono- and poly-unsaturated fatty acids which tended to be increased 447 448 in abundance in NRRL3357 in response to stress, but not in AF13 (Figure 5). Unsaturated fatty acids have been found to be suitable substrates for aflatoxin production by A. flavus and A. 449 parasiticus, and their byproducts have been shown to regulate aflatoxin production and 450 451 development (Fanelli and Fabbri, 1989; Tsitsigiannis and Keller, 2007). For example, linoleic acid derivatives known as Psi factors have been shown to regulate both asexual and sexual 452 sporulation in A. flavus and A. nidulans (Calvo et al. 1999), and oxylipins function in signaling 453 for development, mycotoxin production, and host interactions (Affeldt et al. 2012; Fischer and 454 Keller, 2016; Gao et al. 2009). In addition to signaling, free fatty acids also serve as important 455 456 sources of energy, and can be catabolized to produce other macromolecules. Here, a majority of unsaturated lipids were depleted over time in control and stressed conditions in both isolates 457 likely to provide energy and components for repairing and responding to oxidative stress 458 459 (Supplemental File 1). These fatty acids are also important for maintaining membrane integrity and fluidity under environmental stress conditions. For example, dienoic fatty acids have been 460 461 shown to function in preserving membrane fluidity in yeast under freezing and salt stresses 462 (Rodriguez-Vargas et al. 2007).

Along with these major classes of metabolites, several cofactors and secondary
 metabolites were also differentially accumulated in response to stress (Supplemental File 1). Of
 particular interest were mevalonate and related terpenoid compounds which were increased in

both isolates in response to oxidative stress. These compounds are precursors to some isoprenoid 466 mycotoxins such as aflatrem whose biosynthetic genes have been found to be upregulated in 467 response to oxidative stress in these isolates (Fountain et al. 2016a, 2016b). In addition, 468 mevalonate and its derivatives have been shown to link the biosynthetic pathways for ergosterol 469 and ornithine-derived siderophores, and interruption of this link results in reduced tolerance to 470 471 oxidative stress, siderophore production, and virulence in A. fumigatus (Yasmin et al. 2011). These compounds differentially accumulating in these isolates of A. flavus mirror 472 those observed in other Aspergillus spp. such as A. oryzae (Singh et al. 2018) and provide 473 474 potential insights into putative approaches to enhance host resistance under drought stress. We hypothesized that excessive ROS generated in drought sensitive host plants during drought stress 475 may contribute to enhancing susceptibility to aflatoxin contamination (Fountain et al. 2014; 476 2015). In addition, the metabolic pathways employed by A. flavus in remediating oxidative stress 477 seen in this study parallel those employed by host plants such as maize in countering drought 478 479 stress in developing kernel tissues (Yang et al. 2018). Given this relationship, the manipulation of host tissue composition may be a viable approach to improve aflatoxin contamination 480 resistance through two possible methodologies. The first method is biomarker selection 481 482 employed in breeding programs (Fernandez et al. 2016). For aflatoxin mitigation, enhanced accumulation of antioxidant compounds in host plant tissues corresponding to those observed in 483 484 A. flavus such as glutathione pathway components, polyamines, or simple sugar content could be 485 selected for in conventional and molecular breeding programs. The second method is genetic engineering including both genome editing and transgenic approaches to manipulate the 486 487 expression of host plant enzymes to modify kernel composition to reduce stress on infecting A. 488 flavus under drought. These technologies could also be used to enhance host plant antioxidant

489	potential through increased antioxidant enzyme expression, antioxidant compound production, or
490	aflatoxin inhibitor production. This would also have the added potential benefit of reduced
491	drought-related kernel abortion and filling reduction due to oxidative damage.
492	
493	Materials and Methods
494	Isolate collection
495	The isolates used in this study were obtained as follows. AF13 was requested from Dr. Kenneth
496	Damann, Department of Plant Pathology and Crop Physiology, Louisiana State University,
497	Baton Rouge, LA. NRRL3357 was requested from the USDA National Culture Repository,
498	Peoria, IL. All isolates were shipped on PDA and transferred to V8 agar as previously described
499	(Fountain et al. 2018). Agar plugs containing fresh conidia were taken along the growing edge of
500	the colonies and stored in sterile water and 20% (v/v) glycerol at 4 and -20°C, respectively, until
501	used.
502	
503	Culture conditions and tissue collection
504	Isolate conidia suspensions were used to inoculate V8 agar plates, and were incubated at 37°C
505	for 5 days. Conidia were then harvested using sterile 0.1% (v/v) Tween 20 and a sterile loop to
506	make a fresh conidia suspension ($\sim 2.0 \times 10^7$ conidia/mL) for use as inoculum. For each isolate,

 $100 \,\mu\text{L}$ of conidial suspension was then used to inoculate stationary liquid cultures of 50 mL

yeast extract-sucrose medium (YES; 2% yeast extract, 1% sucrose) in 125mL Erlenmeyer flasks

amended with H_2O_2 (3% stabilized solution) to a final concentration of either 0 or 15mM and a

final conidia concentration of $\sim 8.0 \times 10^4$ conidia/mL. The flasks were plugged with sterile cotton

and incubated at 30°C in the dark. Mycelial mats were then harvested for each isolate and H_2O_2

512	treatment at 4 and 7 days after inoculation (DAI). Five repeat cultures representing five
513	biological replicates were harvested for each isolate, treatment, and time point. A detailed
514	description of the experiment design can be found in Figure S1. Harvested mycelia mats were
515	immediately flash frozen in liquid nitrogen and ground into a fine powder using sterile, chilled
516	mortar and pestles. The ground tissue (~1g) was then transferred to a sterile 2.0mL
517	microcentrifuge tube and stored at -80°C until use in metabolomics analysis.
518	

519 Metabolomic profiling

520 Collected and ground mycelia tissues were used for global, unbiased metabolomics by

521 Metabolon (Morrisville, NC, USA) as described by Yang et al. (2018) and Lin et al. (2017).

522 Briefly, 50 mg of tissue from each sample were prepared using an automated MicroLab STAR

523 system (Hamilton, Reno, NV, USA) during which QC standards were added for downstream

normalization. Metabolites and proteins were extracted in methanol in a GenoGrinder 2000

525 (Glen Mills, Clifton, NJ, USA) followed by centrifugation for metabolite isolation and protein

separation. Each extract was then divided into 5 fractions and used for reverse phase (RP)/ultra-

527 performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) with positive

528 ion mode electrospray ionization (ESI), RP/UPLC-MS/MS with negative ion mode ESI, and

529 HILIC/UPLC-MS/MS with negative ion mode ESI. One fraction from each extract was reserved

as a backup. All methods employed either an ACQUITY UPLC (Waters, Milford, MA, USA) or

a Q-Exactive High Resolution/Accuracy Mass Spectrometer with a heated electrospray

532 ionization (HESI-II) source and an Orbitrap Mass Analyzer (ThermoFisher, Waltham, MA,

533 USA). A detailed description of methods and procedure for data acquisition, metabolite

acquisition, quantitation, and data analysis can be found in Supplemental File 2.

535

536 Growth curve assay

A growth curve assay was performed for the isolates used for metabolomics analysis under 537 H₂O₂-derived stress using a microtiter plate method as described by Meletiadis et al. (2001). 538 Both isolates were cultured on V8 agar for 7 days at 30°C in the dark. Agar plugs were collected 539 540 along the growing edge of the colonies and placed into amber bottles containing $\sim 5.0 \text{ mL } 0.1\%$ (v/v) Tween 20 and gently shaken to suspend conidia. The concentration of each conidial 541 suspension was measured using a hemocytometer, and used to prepare inoculum for each isolate 542 with at two concentrations of 2.0×10^4 conidia/mL as described by Meletiadis et al. (2001) and 543 8.0×10^4 conidia/mL as used for the present metabolomics assay. A 96-well flat bottom 544 microtiter plate was then prepared by filling each well with 100 µL of double strength YES 545 medium (4% yeast extract, 2% sucrose) amended with 0, 20, 30, 40, 50, or 60 mM H₂O₂. For 546 each inoculum, 100 µL was added to each the prepared wells resulting in a standard YES 547 concentration and a final concentration of 0, 10, 15, 20, 25, or 30 mM H₂O₂. Three replicate 548 wells were inoculated for each isolate and treatment combination. For non-inoculated wells, 100 549 μ L of 0.1% Tween 20 was added in place of inoculum. The plate was sealed with optically-clear 550 551 tape and incubated at 30°C in the dark without shaking in a Synergy HT plate reader (Biotek, Winooski, VT, USA). Optical density at 405 nm (OD₄₀₅) was recorded every 15 min for 100 hr. 552 553 The average of the OD_{405} for the non-inoculated wells was then subtracted from each 554 measurement to remove background absorbance. 555

556 Data analysis

557	Raw data obtained from UPLC-MS/MS analyses were peak-identified and QC corrected based
558	on the Metabolon Laboratory Information Management System (LIMS) which contains
559	identifying information for >4500 standard compounds. Quantitation and differential
560	accumulation analyses were performed as described by Lawton et al. (2008), Lin et al. (2017),
561	and Rao et al. (2014) using ArrayStudio and R (v3.4.0). Heatmaps and principal components
562	analyses were performed using MultiExperiment Viewer (MeV, v4.9.0). Functional enrichment
563	analyses were performed with Blast2GO (Conesa et al. 2005), and metabolic pathways were
564	identified based on the KEGG database (Kanehisa and Goto, 2000). Pearson correlation analyses
565	of the detected metabolites was performed using R (v3.4.0) and RStudio (v1.1.423). For the
566	growth curve analysis, Gen3 software (Biotek) was then used to calculate the highest OD
567	(OD _{max}), and average time of initial detection at a defined threshold of $OD_{405} = 0.2$ (T _i).
568	
569	Acknowledgements
570	We would like to thank Billy Wilson and Hui Wang for technical assistance in the laboratory.

571 This work is partially supported by the U.S. Department of Agriculture Agricultural Research 572 Service (USDA-ARS), USDA National Institute for Food and Agriculture (USDA-NIFA), the 573 Georgia Agricultural Commodity Commission for Corn, the National Corn Growers Association 574 Aflatoxin Mitigation Center of Excellence (AMCOE), the Georgia Peanut Commission, and The 575 Peanut Foundation. Mention of trade names or commercial products in this publication is solely 576 for the purpose of providing specific information and does not imply recommendation or 577 endorsement by the USDA. The USDA is an equal opportunity employer and provider.

578

579 Author Contributions

- 580 JCF performed the culture experiments and data analyses, and wrote the manuscript. LY, MKP,
- and PB assisted in data analysis and in project discussions. DA performed the metabolomics
- experiment and assisted in data analysis. SC, RCK, and RKV contributed to project discussions
- and assisted with revision of the manuscript. BG conceived the project, planned, secured
- extramural funds, and revised and submitted manuscript.
- 585

586 **Conflict of Interest**

- 587 The authors declare no conflict of interests.
- 588

589 **References**

- Achuo EA, Prinsen E, Höfte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to *Botrytis cinerea* and *Oidium neolycopersici*. Plant Pathol.
 2006;55: 178-186.
- Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 2015;176: 47-54.
- Lecompte F, Nicot PC, Ripoll J, Abro MA, Raimbault AK, Lopez-Lauri F, Bertin N.
 Reduced susceptibility of tomato stem to the necrotrophic fungus *Botrytis cinerea* is
 associated with a specific adjustment of fructose content in the host sugar pool. Ann. Bot.
 2017;119: 931-943.
- Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88: 1386-1394.
- Albright JC, Henke MT, Soukup AA, McClure RA, Thomson RJ, Keller NP, Kelleher
 NL. Large-scale metabolomics reveals a complex response of *Aspergillus nidulans* to
 epigenetic perturbation. ACS Chem. Biol. 2015; 10: 1535-1541.
- 605
 6. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite
 606
 607
 607
 607
 607
 608
 609
 609
 609
 609
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 600
 <l
- Brakhage, AA. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol.
 2013;11: 21-32.
- 8. Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 2009;7: 1753-1760.
- Amare MG, Keller NP. Molecular mechanisms of *Aspergillus flavus* secondary
 metabolism and development. Fungal Genet. Biol. 2014;66: 11-18.
- 614 10. Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism
 615 and fungal development. Microbiol. Mol. Biol. Rev. 2002;66: 447-459.

616	11.	López JC, Pérez JS, Sevilla JF, Fernández FA, Grima EM, Chisti Y. Production of
617		lovastatin by Aspergillus terreus: effects of the C: N ratio and the principal nutrients on
618		growth and metabolite production. Enzyme Microb. Techol. 2003;33: 270-277.
619	12.	Mitchell NJ, Bowers E, Hurburgh C, Wu F. Potential economic losses to the US corn
620		industry from aflatoxin contamination. Food Addit. Contam. Part A. 2016;33: 540-550.
621	13.	Hill RA, Blankenship PD, Cole RJ, Sanders TH. Effects of soil moisture and temperature
622		on preharvest invasion of peanuts by the Aspergillus flavus group and subsequent
623		aflatoxin development. Appl. Environ. Microbiol. 1983;45: 628-633.
624	14	Scully BT, Krakowsky MD, Ni X, Wilson JP, Lee RD, Guo B. Preharvest aflatoxin
625	1 1.	contamination of corn and other grain crops grown on the US Southeastern Coastal Plain.
626		Toxin Rev. 2009;28: 169-179.
627	15	Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, Lee RD, Kemerait
628	15.	RC, Guo B. Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates
629		of Aspergillus flavus. Toxins. 2015;7: 2985-2999.
	16	Yan S, Liang Y, Zhang J, Liu CM. <i>Aspergillus flavus</i> grown in peptone as the carbon
630	10.	
631		source exhibits spore density-and peptone concentration-dependent aflatoxin
632	17	biosynthesis. BMC Microbiol. 2012;12: 106. DOI: doi.org/10.1186/1471-2180-12-106
633	17.	Xue HQ, Isleib TG, Payne GA, Wilson RF, Novitzky WP, O'Brian G. Comparison of
634		aflatoxin production in normal-and high-oleic backcross-derived peanut lines. Plant Dis.
635		2003;87: 1360-1365.
636	18.	Zeringue HJ, Brown RL, Neucere JN, Cleveland TE. Relationships between C6– C12
637		alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus
638		flavus and aflatoxin production. J. Ag. Food Chem. 1996;44: 403-407.
639	19.	Burow GB, Nesbitt TC, Dunlap J, Keller NP. Seed lipoxygenase products modulate
640		Aspergillus mycotoxin biosynthesis. Mol. Plant Microbe Interact. 1997;10: 380-387.
641	20.	Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP,
642		Kolomiets MV. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of
643		maize to Aspergillus spp. Mol. Plant Microbe Interact. 2009;22: 222-231.
644	21.	Yang L, Fountain JC, Ji P, Ni X, Chen S, Lee RD, Kemerait RC, Guo B. Deciphering
645		drought-induced metabolic responses and regulation in developing maize kernels. Plant
646		biotechnology journal. 2018. DOI: doi: 10.1111/pbi.12899.
647	22.	Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host–fungal communication
648		signals. Trends Microbiol. 2007;15: 109-118.
649	23.	Grintzalis K, Vernardis SI, Klapa MI, Georgiou CD. The role of oxidative stress in
650		sclerotial differentiation and aflatoxin B1 biosynthesis in <i>Aspergillus flavus</i> . Appl.
651		Environ. Microbiol. 2014; 80: 5561-5571.
652	24	Jayashree T, Subramanyam C. Oxidative stress as a prerequisite for aflatoxin production
653	21.	by Aspergillus parasiticus. Free Radic. Biol. Med. 2000;29: 981-985.
654	25	Narasaiah KV, Sashidhar RB, Subramanyam C. Biochemical analysis of oxidative stress
655	23.	in the production of aflatoxin and its precursor intermediates. Mycopathologia. 2006;162:
		179-189.
656	26	
657	20.	Yin WB, Reinke AW, Szilagyi M, Emri T, Chiang YM, Keating AE, Pocsi I, Wang CC, Kaller ND, hZID transportation factors officiating accordery matchediam accurate
658		Keller NP. bZIP transcription factors affecting secondary metabolism, sexual
659		development and stress responses in Aspergillus nidulans. Microbiol. 2013;159: 77-88.

660 661 662 663 664	 Roze LV, Laivenieks M, Hong SY, Wee J, Wong SS, Vanos B, Awad D, Ehrlich KC, Linz JE. Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential redox signal to initiate resistance to oxidative stress? Toxins. 2015;7: 1411-1430. Roze LV, Chanda A, Wee J, Awad D, Linz JE. Stress-related transcription factor atfB integrates secondary metabolism with the oxidative stress response in <i>Aspergilli</i>. J. Biol.
665	Chem. 2011;286: 35137-35148.
666	29. Soboń A, Szewczyk R, Różalska S, Długoński J. Metabolomics of the recovery of the
667	filamentous fungus <i>Cunninghamella echinulata</i> exposed to tributyltin. Int. Biodeterior.
668	Biodegradation. 2018;127: 130-138.
669	30. Xu Q, Fu Y, Li S, Jiang L, Rongfeng G, Huang H. Integrated transcriptomic and
670	metabolomic analysis of <i>Rhizopus oryzae</i> with different morphologies. Process Biochem.
671	2018;64: 74-82.
672	31. Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang
673	Y. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative
674	stress cascade in <i>Aspergillus</i> . Curr. Biol. 2015;25: 29-37.
675	32. Fountain JC, Bajaj P, Nayak SN, Yang L, Pandey MK, Kumar V, Jayale AS, Chitikineni
676	A, Lee RD, Kemerait RC, Varshney RK. Responses of <i>Aspergillus flavus</i> to oxidative
677	stress are related to fungal development regulator, antioxidant enzyme, and secondary
678	metabolite biosynthetic gene expression. Front. Microbiol. 2016a;7: 2048. DOI:
679	10.3389/fmicb.2016.02048
680	33. Fountain JC, Bajaj P, Pandey M, Nayak SN, Yang L, Kumar V, Jayale AS, Chitikineni
681	A, Zhuang W, Scully BT, Lee RD. Oxidative stress and carbon metabolism influence
682	Aspergillus flavus transcriptome composition and secondary metabolite production. Sci.
683	Rep. 2016b;6: 38747. DOI: 10.1038/srep38747
684	34. Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang WJ, Chen ZY,
685	Kemerait RC, Lee RD, Chen S. Proteome analysis of <i>Aspergillus flavus</i> isolate-specific
686	responses to oxidative stress in relationship to aflatoxin production capability. Sci. Rep.
687	2018;8: 3430. DOI: 10.1038/s41598-018-21653-x
688	35. Mehl HL, Cotty PJ. Variation in competitive ability among isolates of Aspergillus flavus
689	from different vegetative compatibility groups during maize infection. Phytopathology.
690	2010;100: 150-159.
691	36. Mehl HL, Cotty PJ. Influence of plant host species on intraspecific competition during
692	infection by Aspergillus flavus. Plant Pathol. 2013;62: 1310-1318.
693	37. Cotty PJ. Virulence and cultural characteristics of two Aspergillus flavus strains
694	pathogenic on cotton. Phytopathology. 1989;79: 808-814.
695	38. Ehrlich KC, Montalbano BG, Cotty PJ. Analysis of single nucleotide polymorphisms in
696	three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative
697	compatibility groups. FEMS Microbiol. Lett. 2007;268: 231-236.
698	39. Chang PK, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ.
699	Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49
700	reveals the presence of a competitive recombinant group in field populations. Int. J. Food
701	Microbiol. 2012;154: 192-196.
702	40. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
703	Res. 2000;28: 27-30.

704	41	. Roze LV, Laivenieks M, Hong SY, Wee J, Wong SS, Vanos B, Awad D, Ehrlich KC,
705		Linz JE. Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential
706		redox signal to initiate resistance to oxidative stress? Toxins. 2015;7: 1411-1430.
707	42	. Meletiadis J, Meis JF, Mouton JW, Verweij PE. Analysis of growth characteristics of
708		filamentous fungi in different nutrient media. J. Clin. Microbiol. 2001;39: 478-484.
709	43	. Clevström G, Ljunggren H, Tegelström S, Tideman K. Production of aflatoxin by an
710		Aspergillus flavus isolate cultured under a limited oxygen supply. Appl. Environ.
711		Microbiol. 1983;46: 400-405.
712	44	. Sawa K, Uematsu T, Korenaga Y, Hirasawa R, Kikuchi M, Murata K, Zhang J, Gai X,
713		Sakamoto K, Koyama T, Satoh T. Krebs cycle intermediates protective against oxidative
714		stress by modulating the level of reactive oxygen species in neuronal ht22 cells.
715		Antioxidants. 2017;6: 21. DOI: 10.3390/antiox6010021.
716	45	. Dijkema C, Kester, HCM, Visser J. 13C NMR studies of carbon metabolism in the
717		hyphal fungus Aspergillus nidulans. Proc. Natl. Acad. Sci. USA. 1985:82: 14-18.
718	46	. Lima PS, Casaletti L, Bailao AM, Vasconcelos ATR, Fernandes GR, Soares CMA.
719		Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS
720		Negl. Trop. Dis. 2014:8: e2855. DOI: 10.1371/journal.pntd.0002855
721	47	. Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R,
722		Bhardwaj R. Redox homeostasis in plants under abiotic stress: role of electron carriers,
723		energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 2015;3: 13.
724		DOI: 10.3389/fenvs.2015.00013
725	48	. Campbell K, Vowinckel J, Keller MA, Ralser M. Methionine metabolism alters oxidative
726		stress resistance via the pentose phosphate pathway. Antioxid. Redox Signal. 2016;24:
727		543-547.
728	49	. Juhnke H, Krems B, Kötter P, Entian KD. Mutants that show increased sensitivity to
729		hydrogen peroxide reveal an important role for the pentose phosphate pathway in
730		protection of yeast against oxidative stress. Mol. Gen. Genet. 1996;252: 456-464.
731	50	Huang JQ, Jiang HF, Zhou YQ, Lei Y, Wang SY, Liao BS. Ethylene inhibited aflatoxin
732		biosynthesis is due to oxidative stress alleviation and related to glutathione redox state
733		changes in Aspergillus flavus. Int. J. Food Microbiol. 2009;130:17-21.
734	51	. Kletzien RF, Harris PK, Foellmi LA. Glucose-6-phosphate dehydrogenase: a
735		"housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and
736		oxidant stress. FASEB J. 1994;8: 174-181.
737	52	. Shih CN, Marth EH. Aflatoxin formation, lipid synthesis, and glucose metabolism by
738		Aspergillus parasiticus during incubation with and without agitation. Biochim. Biophys.
739		Acta Gen. Subj. 1974;338: 286-296.
740	53	. Chen C, Dickman MB. Proline suppresses apoptosis in the fungal pathogen
741		Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA. 2005;102: 3459-3464.
742	54	. Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15:
743		89-97.
744	55.	. Zhang K, Yuan X, Zang J, Wang M, Zhao F, Li P, Cao J, Han J, Xing J, Dong J. The
745		kynurenine 3-monooxygenase encoding gene, BcKMO, is involved in the growth,
746		development, and pathogenicity of <i>Botrytis cinerea</i> . Front. Microbiol. 2018;9: 1039.
747		DOI: 10.3389/fmicb.2018.01039.

748	56. Breitenbach M, Weber M, Rinnerthaler M, Karl T, Breitenbach-Koller L. Oxidative
749	stress in fungi: its function in signal transduction, interaction with plant hosts, and
750	lignocellulose degradation. Biomolecules. 2015;5: 318-342.
751	57. Thön M, Al-Abdallah Q, Hortschansky P, Brakhage AA. The thioredoxin system of the
752	filamentous fungus Aspergillus nidulans impact on development and oxidative stress
753	response. J. Biol. Chem. 2007;282: 27259-27269.
754	58. Horn BW. Biodiversity of Aspergillus section Flavi in the United States: a review. Food
755	Addit. Contam. 2007;24: 1088-1101.
756	59. Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine:
757	prevention of mitochondrial oxidant production. Amino Acids. 2012;42: 2223-2232.
758	60. Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front.
759	Chem. 2014;1: 42. DOI: 10.3389/fchem.2013.00042.
760	61. Avila MA, Garcia-Trevijano ER, Lu SC, Corrales FJ, Mato JM. Methylthioadenosine.
761	Int. J. Biochem. Cell Biol. 2004;36: 2125-2130.
762	62. Fanelli C, Fabbri AA. Relationship between lipids and aflatoxin biosynthesis.
763	Mycopathologia. 1989;107: 115-120.
764	63. Calvo AM, Hinze LL, Gardner HW, Keller NP. Sporogenic effect of polyunsaturated
765	fatty acids on development of Aspergillus spp. Appl. Environ. Microbiol. 1999;65: 3668-
766	3673.
767	64. Affeldt KJ, Brodhagen M, Keller NP. Aspergillus oxylipin signaling and quorum sensing
768	pathways depend on G protein-coupled receptors. Toxins. 2012;4: 695-717.
769	65. Fischer GJ, Keller NP. Production of cross-kingdom oxylipins by pathogenic fungi: An
770	update on their role in development and pathogenicity. J. Microbiol. 2016;54: 254-264.
771	66. Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F.
772	Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to
773	freezing and salt stress. Appl. Environ. Microbiol. 2007;73: 110-116.
774	67. Yasmin S, Alcazar-Fuoli L, Gründlinger M, Puempel T, Cairns T, Blatzer M, Lopez JF,
775	Grimalt JO, Bignell E, Haas H. Mevalonate governs interdependency of ergosterol and
776	siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc. Natl Acad.
777	Sci. USA. 2012;109: 497-504.
778	68. Singh D, Lee S, Lee CH. Fathoming Aspergillus oryzae metabolomes in formulated
779	growth matrices. Crit. Rev. Biotechnol. 2018. DOI: 10.1080/07388551.2018.1490246.
780	69. Fountain J, Scully B, Ni X, Kemerait R, Lee D, Chen ZY, Guo B. Environmental
781	influences on maize-Aspergillus flavus interactions and aflatoxin production. Front.
782	Microbiol. 2014;5: 40. DOI: 10.3389/fmicb.2014.00040.
783	70. Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N,
784	Charcosset A, Moing A, Gibon Y. Fortune telling: metabolic markers of plant
785	performance. Metabolomics. 2016;12: 158. DOI: 10.1007/s11306-016-1099-1.
786	71. Lin Z, Zhang X, Wang Z, Jiang Y, Liu Z, Alexander D, Li G, Wang S, Ding Y.
787	Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly
788	mutant with high occurrence of white-belly grains. BMC Plant Biol. 2017;17: 39. DOI:
789	10.1186/s12870-017-0985-7
790	72. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW,
791	Kalhan SC, Ryals JA, Milburn MV. Analysis of the adult human plasma metabolome.
792	Pharmacogenomics. 2008;9: 383-397.

- 73. Rao J, Cheng F, Hu C, Quan S, Lin H, Wang J, Chen G, Zhao X, Alexander D, Guo L,
 Wang G. Metabolic map of mature maize kernels. Metabolomics. 2014;10: 775-787.
- 795 74. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a
 796 universal tool for annotation, visualization and analysis in functional genomics research.
 797 Bioinformatics. 2005;21: 3674-3676.

802 Figure Legends

803	Figure 1. Growth curve analysis of Aspergillus flavus isolates AF13 and NRRL3357 under
804	increasing oxidative stress and conidial concentration. The growth of AF13 (A, C) and
805	NRRL3357 (B, D) were examined under increasing H_2O_2 concentrations in YES medium
806	inoculated with either 2.0 x 10 ⁴ (A, B) or 8.0 x 10 ⁴ conidia/mL (C, D) by monitoring absorbance
807	at 405 nm over 100 hours. A threshold of 0.2 was selected for growth initiation timing which
808	corresponded with linear phase initiation for both isolates in most conditions and is indicated by
809	the dashed red line. Error bars represent standard deviation. No growth was detected at H_2O_2
810	concentrations >15mM in NRRL3357 with earlier growth initiation detected at higher conidia
811	concentrations.
812	
813	Figure 2. Principal components analysis (PCA) of metabolite accumulation. A4N, A4Y, A7N,
814	and A7Y refer to AF13 at 4 and 7 DAI with and without 15mM H ₂ O ₂ treatment. N4N, N4Y,
815	N7N, and N7Y refer to the same for NRRL3357. Dark blue points correspond with AF13 with
816	no stress and light blue points refer to AF13 with stress. Orange points correspond with
817	NRRL3357 with no stress and light orange points refer to NRRL3357 with stress. Circles
818	represent samples at 4 DAI and triangles represent samples at 7 DAI.
819	
820	Figure 3. Differential accumulation of compounds involved in carbohydrate metabolism,
821	glutathione metabolism, and amino acid biosynthesis. Heatmaps located at each metabolite
822	represent the changes in metabolite accumulation in response to oxidative stress in AF13 and
823	NRRL3357 at 4 and 7 DAI. Red and green indicate significant increases and decreases in
824	metabolite levels, respectively ($p < 0.05$). Light red and light green indicate marginally

significant increases and decreases in metabolite levels, respectively (0.05 . Greyrepresents no significant changes.

827

828	Figure 4. Differentia	l accumulation of	compounds invo	lved in pol	vamine and sulfur

829 metabolism. Heatmaps located at each metabolite represent the changes in metabolite

accumulation in response to oxidative stress in AF13 and NRRL3357 at 4 and 7 DAI. Red and

green indicate significant increases and decreases in metabolite levels, respectively (p < 0.05).

Light red and light green indicate marginally significant increases and decreases in metabolite

levels, respectively (0.05 . Grey represents no significant changes.

834

Figure 5. Differential accumulation of compounds involved in lipid metabolism. Heatmaps

located at each metabolite represent the changes in metabolite accumulation in response to

oxidative stress in AF13 and NRRL3357 at 4 and 7 DAI. Red and green indicate significant

increases and decreases in metabolite levels, respectively (p < 0.05). Light red and light green

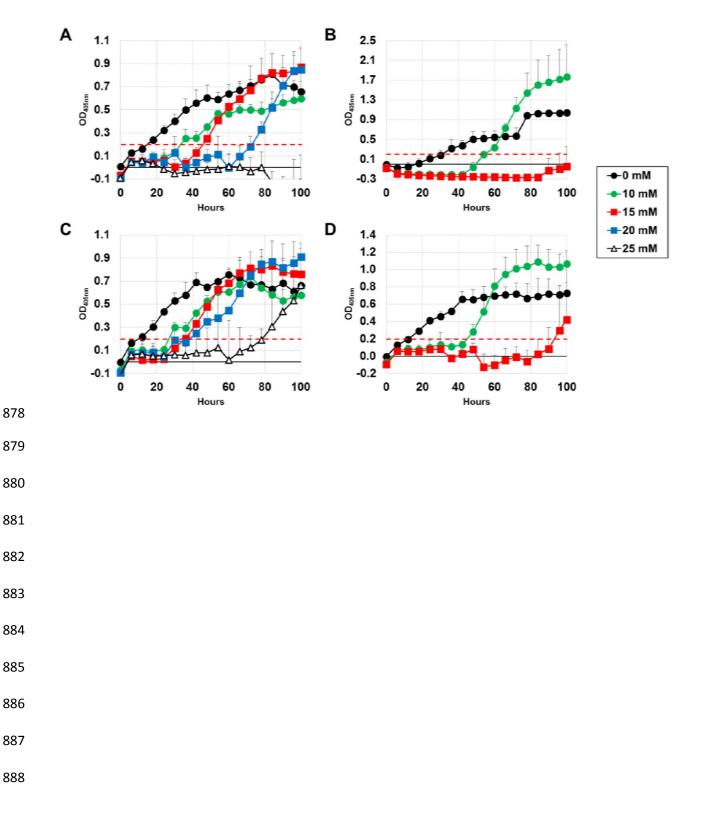
indicate marginally significant increases and decreases in metabolite levels, respectively (0.05 <

840 p < 0.10). Grey represents no significant changes.

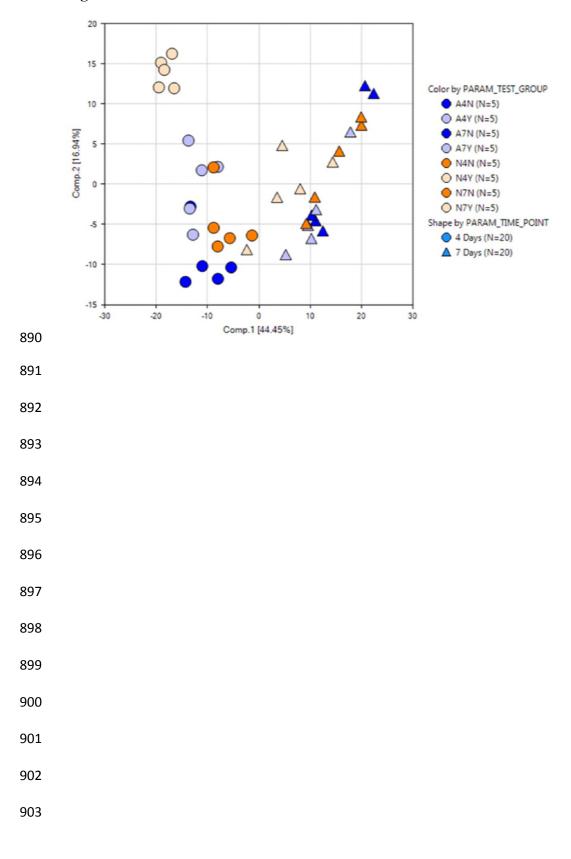
841

843 Supplemental Figure Legends

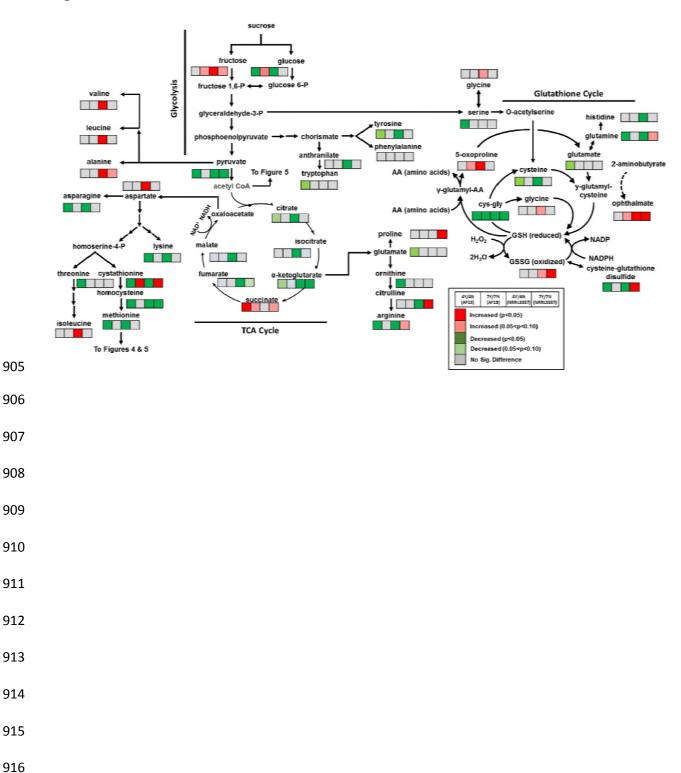
845	Figure S1. Metabolomics experiment design. Two isolates of Aspergillus flavus, AF13 (highly
846	aflatoxigenic and oxidative stress tolerant) and NRRL3357 (moderate to highly aflatoxigenic and
847	moderately oxidative stress tolerant), were grown in yeast extract sucrose (YES) medium
848	supplemented with either 0 or 15 mM H_2O_2 . Samples were collected at 4 and 7 days after
849	inoculation (DAI). Five biological replicates ($n = 5$, $N = 40$) were performed for each isolate,
850	treatment, and time point combination. Statistical comparisons are indicated by the colored
851	arrows with blue indicating oxidative stress effect comparisons, red indicating time effects, and
852	green indicating isolate/genotype effects.
853	
854	
855	
856	
857	
858	
859	
860	

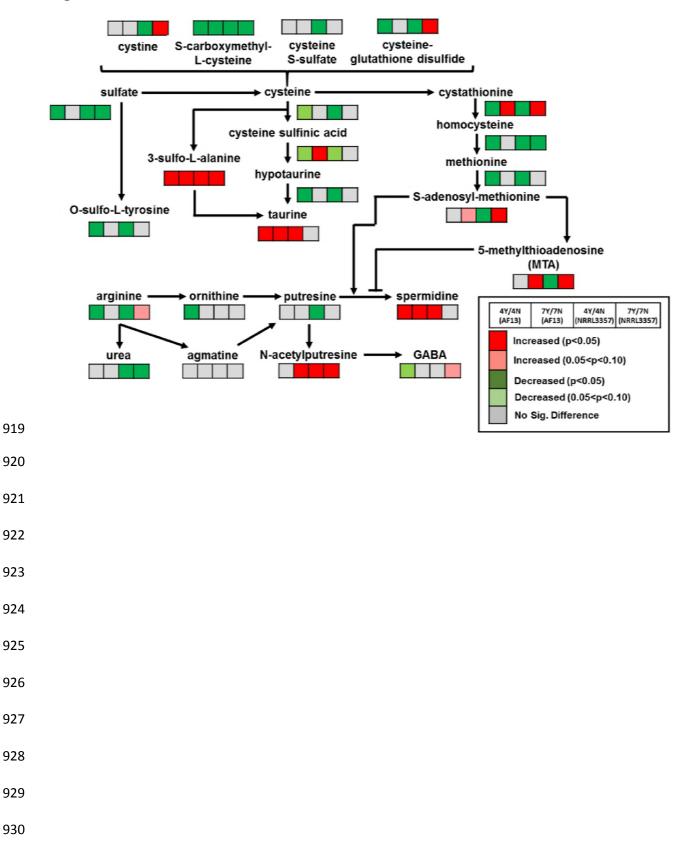

861 Tables

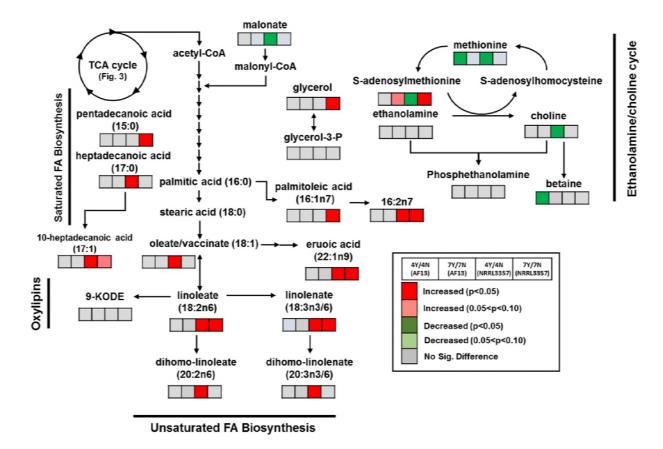
Effects	Comparison	Total Sig. Met.	Sig. Increased	Sig. Decrease
Time	A7N / A4N	257	58	199
	A7Y / A4Y	268	108	160
	N7N / N4N	243	51	192
	N7Y / N4Y	261	118	143
Stress	A4Y / A4N	111	27	84
	A7Y / A7N	47	34	13
	N4Y / N4N	223	90	133
	N7Y / N7N	90	65	25
Isolate	A4N / N4N	143	95	48
	A7N / N7N	97	50	47
	A4Y / N4Y	220	128	92
	A7Y / N7Y	96	42	54


Table 1. Numbers of significantly, differentially accumulating metabolites.

876 Figures




889 Figure 2


904 Figure 3

918 Figure 4

931 Figure 5

932

933

934

935