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Abstract 

The effector response of immune cells dictated by an array of secreted proteins is a highly 

dynamic process, requiring sequential measurement of all relevant proteins from single 

cells. Herein we show a microchip-based, 10-plexed, sequential secretion assay on the 

same single cells and at the scale of ~5000 single cells measured simultaneously over 4 

time points. It was applied to investigating the time course of single human macrophage 

response to Toll-like receptor 4 (TLR4) ligand lipopolysaccharide and revealed four 

distinct activation modes for different proteins in single cells. In particular, we observed 

that secreted factors regulated by transcription factor NFB (e.g., TNF and CCL2) 

predominantly show on-off mode over off-on mode. The dynamics of all proteins 

combined classified the cells into two major activation states, which were found to be 

dependent on the basal state of each cell. Single-cell RNA-Seq was performed on the same 

samples at the matched time points and further demonstrated at the transcriptional level the 

existence of two major activation states, which are enriched for translation vs inflammatory 

programs, respectively. These results showed a cell-intrinsic heterogeneous response in 

phenotypically homogeneous cell population. This work demonstrated the longitudinal 

tracking of protein secretion signature in thousands of single cells at multiple time points, 

providing dynamic information to better understand how individual immune cells react to 

pathogenic challenges over time and how they together constitute a population response.  
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INSTRODUCTION 

The advent of high throughput single-cell transcriptomic analysis has enabled global 

unbiased analysis of gene expression in thousands of individual cells and has 

revolutionized how we study the biological mechanisms at the whole organism level and 

the complex physiological systems such as the immune system123. However, accessing 

protein information from individual cells has been more difficult due in part to the lack of 

genome-wide amplification method as in nucleic acid analysis for the protein counterpart, 

pointing to the need to develop new technologies to collect protein information from 

individual cells efficiently and accurately. It is also shown in a host of studies that 

transcriptional and protein-level data usually show poor correlation4, highlighting the 

importance of integrating protein-information with the single-cell transcriptomic result for 

more comprehensive understanding of the immune system.  

A group of secreted proteins including cytokines, chemokines, and cytotoxic enzymes 

produced by immune cells play important roles in dictating their effector response and 

mediating collective cellular functions5. Innate immune cells exert the protective defense 

against a variety of pathogens/viruses through not only phagocytosis but also secretion of 

effector proteins upon activation67. Multiplexed detection of effector proteins from single 

immune cells is the direct measurement of functional phenotype, providing new insights to 

the mechanism of innate immune responses as well as potential correlates to clinical 

outcome89. Significant efforts have been made to characterize single-cell secretion pattern 

and its correlation with cell function. For example, the quality of a CD4+ T-cell cytokine 

response was reported to be a crucial determinant in whether a vaccine is protective9, which 

better informs disease mechanism and drug/vaccine development10. Currently, most 

commonly used tools for multiplexed single cell secretion analysis includes ELISpot 

(Fluorospot)11, intracellular cytokine staining (ICS) flow cytometry with either 

fluorescence or mass spectrometry (CyTOF) detection1213. Some other multiplexed 

proteomics profiling methods with lower throughput were also reported14415, for example, 

Herr et al. developed single-cell western blotting with ~11 protein targets detected per cell 

after multiple fluorophore bleaching-restaining cycles 15. However, all these high-plex 

methods could not retain live cells after the assay, which make them impossible to track 
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the same single cells at different time points but also measure a whole panel of protein 

secretions16. And such type of dynamic assay can provide unique information which 

inspires deeper insights resolving how immune cells respond and progress upon 

stimulations171819. With the development of micro-technology, a nano-well-based micro-

engraving assay was reported, in which sequential release of cytokines from poly-

functional human T cells can be captured2021. However, the highest degree of multiplexing 

is four proteins, which is insufficient to dissect the full functional spectrum of 

heterogeneous immune cells1022. Although an integrative microfluidic-based device was 

developed to probe single-cell multiplexed input-output dynamic, the cell number to be 

probed is low (only dozens) and device manipulation is highly complex.23 To characterize 

the dynamic, full-spectrum secretion information from large quantities of individual cells 

to understand immune function diversity, it is desirable to develop a method to measure 

the same single cells over multiple time points (e.g., ~4 or more) for a panel ~10 or more 

protein secretions and such data can be obtained from a large number (e.g. ~5000) of single 

cells while minimize the complexity of device handling.  

Here, we described a single-cell microchip which allows for high throughput (~5000 single 

cells), multiplexed (~10 proteins), sequential (4-5 time points) secretion analysis of the 

SAME single cells. It was used to profile homogeneous human macrophages and revealed 

inherently heterogeneous responses over time upon activation with TLR4 ligand 

lipopolysaccharide. Importantly, we found the stimulated response exhibited two intrinsic 

states that appear to be associated with the basal function. Single-cell transcriptomic 

profiles collected at different time points from the samples stimulated in the same way also 

confirmed the presence of two cellular states with distinct gene expression profiles. 

Comparing single-cell protein secretion dynamics and transcriptome sequencing data 

allows for tracking the states of the same cells that confirmed the two states are dependent 

on initial cell states and differentially regulated by translational and proinflammatory 

programs.  
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RESULTS 

Single-cell secretomic analysis microchip with higher throughput 

The configuration of microchip platform used for dynamic multiplexed single cell assay 

was modified from previously reported devices24252627, which was comprised of two 

components: a high-density antibody barcode patterned glass substrate for surface 

immunoassay and a nanoliter microtrough array for single cell capture. Notably, we 

redesigned flow patterning microchip to combine spatial multiplexing (multi antibodies 

co-flow patterning) and spectral multiplexing (multi-color detection) (Figure 1A) in a 

much shorter microtroughs (~0.48 mm) to achieve significantly higher number of single 

cells to be assayed simultaneously (more than 5000 single cells data can be obtained in one 

microchip which is around ~5 fold increase compared to previous work). The flow 

patterning microchip for antibody immobilization consists of 120 repetitive barcodes, each 

of which contains 5 stripes in duplicate. The antibody stripes are 30 μm in width and the 

pitch size of a full barcode is 250 μm. Due to increased flow resistance with much longer 

channel length, the antibodies were flow patterned with two separated paths to solve this 

problem. We validated this new flow patterning strategy with both fluorescent-BSA and 

recombinant protein sandwich immunoassay to make sure the reproducibility of antibody 

barcode is adequate for single-cell experiments (Supplementary Figures 1-3). PDMS cell 

capture chip (Figure 1B) was designed according to the dimension of flow patterned 

antibody microarray such that it is long enough to contain at least a full set of barcodes, 

thereby eliminating the need for precise alignment of the antibody barcode slide and the 

microtrough array PDMS slab. With this design, more than 5000 single cells data (around 

30% of total number of microtroughs (n=18000), Figure 1C) can be detected in one 

microchip with minimal sacrifice of parameters to be plexed. For example, up to 15 

different proteins can be profiled at the same time if three color detection strategy were 

employed.  

Multiplexed, sequential secretion analysis from the same single macrophages reveals 

heterogeneous cytokine secretion dynamics 
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One unique feature of our single-cell assay platform is that cells assayed are alive and still 

isolated in defined locations (specifically for adherent cells). High reproducibility in 

protein secretion frequency is also validated (Supplementary Figure 4). All these make it 

possible to accurately and dynamically track the secreted proteins from the same single 

cells at different time points. Briefly, after measuring protein secretion from single cells 

over a period of time, we removed the antibody barcode slide that captured the basal 

secretion profile, and then replaced with a new antibody barcode slide to measure protein 

secretion from the same single cells for another period of time, during which stimulation 

reagents can be added, withdrawn, or combined, permitting flexible design of the 

experiment to perturb cell signaling but keep track of the same single cells over time. 

Repeating this process will lead to the measurement of single-cell protein secretion 

dynamics (Figure 2A). The PDMS microchip for cell capture is oxygen plasma treated for 

1 min just before single cell experiment to make its surface hydrophilic to enhance cell 

adhesion and minimize nonspecific protein adsorption28. When changing a new antibody 

array slide, the PDMS microtrough chip was rinsed three times (including washing and 

incubation for 2 minutes in each step) with fresh medium to wash out residual secreted 

proteins. This also removes detached cells that may dislodge to neighboring microtroughs. 

Figure 2B shows that 56% of macrophage cells could be retained after the removal and 

replacing with a new antibody slide. Figure 2C shows a representative single cell that was 

retained in the same microchannel throughout the entire secretion dynamics experiment 

and the corresponding secretion patterns.  

We applied this platform to investigate the dynamics of U937 derived macrophages in 

response to Toll-like receptor 4 (TLR4) ligand lipopolysaccharide, which simulates the 

innate immune response to Gram-negative bacteria2930. The U937 monocyte was 

differentiated into macrophages by 50 ng/mL PMA for 48 hours and confirmed by CD14 

surface marker staining (Supplementary Figure 5)3132. The antibody pairs used in this 

study (Supplementary Table 1) were validated with corresponding recombinant proteins 

for crosstalk reactivity to ensure technical validity. We also obtained the titration curves, 

which demonstrated the feasibility of comparing the amount (or concentration) of secreted 

proteins semi-quantitatively (Supplementary Figure 6&7). After assaying for 4 time 

points, a set of data comprising 1752 single cells, each of which has data for a full time 
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course and simultaneous detection of 10 secreted proteins was successfully obtained. It 

allowed to compare the dynamic change of different secreted proteins of each cell at basal 

state and with LPS stimulation at different time points (Figure 2D). For example, TNF was 

firstly secreted upon LPS stimulation and the intensity decreased after a 2hr period. Other 

effector proteins like IL-6 and IL-10 were secreted afterwards, which is in agreement with 

previous reports3334. 

The dynamic change of each protein in every single cell during the time course can thus be 

visualized in Figure 2D by connecting their respective detection results at each time point. 

All single cells (n=1752) were classified into four subgroups according to their secretion 

dynamics: on-off, off-on, all on and others. The secretion dynamics designated as “on-off” 

means the protein secretion is active at early time window (s) but stopped in a later period; 

“off-on” means the secretion was not detectable initially but became active later on; “all-

on” means this specific protein was secreted continuously throughout the time course of 

observation; “other cases” include no secretion or oscillatory secretion patterns. It is noted 

that the grouping result differs with respect to specific proteins of interest. We noticed that 

CXCL8 and CCL2 secretions in most cells is “on” during (at least partially) the period of 

observation, but their dynamics are quite different: the majority of the cells are not 

secreting CXCL8 during basal state and start turning on CXCL8 secretion after being 

stimulated. However, the timing for them to turn on CXCL8 secretion is heterogeneous, 

with comparative numbers of cells turn on CXCL8 secretion between 0-2hrs, 2-4hrs, and 

after 4hrs after being stimulated. Quite differently, CCL2 secretion in the vast majority of 

cells (71.1%) are kept in the “on” mode independent of being stimulated or not, with a small 

fraction (7.9%) of cells turn CCL2 secretions off throughout the period of observation. We 

then specifically looked at two factors (IL6 and TNF) regulated by the transcription factor 

NFB, which is one of the most critical and widely recognized transcription factors 

regulating inflammatory responses in immune cells. According to our data, a majority of 

the cells are classified as “others”, meaning not secreting or secreting in oscillatory manner. 

This is consistent with the previous reports of NFB oscillation during transcriptional 

regulation. However, we also observe a small portion of cells with stable “on-off” or “off-

on” secretion patterns, breaking the rule of oscillation. Interestingly, within the population 

with stable secretion patterns, there are far more cells showing “off-on” pattern versus “on-
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off” pattern in IL6 secretion (7.1% vs. 0.6%) while the trend is reversed in the case of TNF 

secretion (4.7% vs 13.4%), suggesting cellular basis of a more transient nature of TNF 

response. We selected 7 proteins being secreted by noticeable number of cells and with 

apparent secretion alterations during the course of measurement for this analysis. Figure 

2D shows the single-cell secretion patterns of 4 proteins and 3 others are shown in 

Supplementary Figure 8. Previous study has revealed the stochastic and variable cell 

switching dynamics of NFB in response to TNF activation at single cell level19. Herein 

we show that the transcriptional & functional output of NFB activation such as cytokine 

secretion could exhibit oscillation patterns but the cytokine function outputs are more 

diverse, which has never been observed previously.  

 

Responses of macrophages are intrinsically heterogeneous and dependent on the 

basal functional state  

By combining all the single cell data at four different time points (40 proteins parameters) 

into a unique dynamic, multiplexed single cell data metric, which cannot be obtained using 

other methods, we performed unsupervised hierarchical clustering and resolved two 

distinct major clusters with 1133 and 619 cells, respectively (Figure 3A), indicating the 

presence of a dynamic heterogeneity within a phenotypically homogeneous macrophage 

population in response to LPS. Cluster 1 (red label) cells are more active in secretion than 

cluster 2 (black label) cells not only after stimulation but also in the basal state. We applied 

a high-dimensional data analysis tool viSNE to visualize multiplexed single-cell data35, 

from which two similar clusters can be obtained too with 943 and 809 cells, respectively 

(Figure 3B). Further analysis identified a ~70% overlap in both clusters using those two 

clustering methods, indicating the robustness of resultss regardless of clustering algorithms. 

The expression of specific proteins in single cells within each cluster (e.g., CCL4, TNF in 

Figure 3C，and Supplementary Figure 9) at different time points can be shown in viSNE 

plots, from which we confirmed the cells more active at basal state are more prone to 

secreting more proteins upon pathogen stimulation. This phenomenon was not observed 
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previously, highlighting the value of high throughput dynamic detection platform with 

single cell resolution in resolving how biological systems respond and evolve.  

Quantitative analysis of single-cell polyfunctionality (the ability of a cell to co-secrete 

multiple cytokines and chemokines simultaneously36) was performed and compared 

between the basal state and the stimulated states, which showed an increase of highly 

polyfunctional cells upon stimulation (Figure 4A). It is previously reported that 

polyfunctionality index (PI) serve as an effective parameter to numerically evaluate the 

degree of polyfunctionality from multi-dimensional single cell data, permitting more 

sophisticated statistical analysis37. We applied a previously described approach (detailed 

in supplementary methods) to calculate PI of single cells37. Consistent with previous result, 

we see an increase of PI immediately after stimulation comparing with cells in resting state 

(Figure 4B). Interestingly, PI remains constant in the early stage of activation but increased 

after 4 hours being stimulated. This suggests that macrophages increase polyfunctionality 

immediately (<2hr) after being stimulated but it takes several hours (>4hr) for them to 

further increase polyfunctionality an enter a more advanced activation state. We then 

compared polyfunctionality of the SAME individual cells between different time points 

and looked for correlative patterns (Figures 4C, 4D &4E). Interestingly, the resulting 

averaged polyfunctionality of stimulated single cells showed a linear correlation with the 

basal state polyfunctionality (R2=0.99, 0.96, 0.98 at 0-2 hrs, 2-4 hrs, 4-6 hrs respectively 

after LPS stimulation). This result means that the higher the numbers (types) of proteins 

that a cell is secreting in its basal state, the higher numbers (types) of proteins it will likely 

secrete after being stimulated, and the basal state secretion activity can be taken as an 

indication of its later activity, suggesting the activation potential of macrophages likely 

pre-determined even before the arrival of external stimulation and is encoded in the basal 

state intrinsically (Figures 4D & 4E).  

 

Single-cell RNA-Seq confirms two major clusters with distinct gene expression 

profiles 
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We also performed single-cell RNA sequencing analysis on the same samples (both basal 

and stimulated for different times) in order to compare to single-cell protein secretion data 

and further investigate the mechanisms underlying the observed heterogeneous states. A 

massively parallel 3’ mRNA capture and barcoding in droplets was used and the library 

construction was similar as previously described38. The raw sequencing data were 

processed and analyzed for quality assessment (Supplementary Figure 10) and the 

generation of single-cell gene expression matrix. Single-cell transcriptome data of all 

samples including both basal and activated macrophages of each time point was combined 

and analyzed with the R package Seurat. Graph-based clustering (resolution=0.15) 

identified 3 clusters when all the samples combined, named clusters 0, 1 and 2 (Figures 

5A & 5B). Cluster2 largely overlaps with the basal or resting macrophages before 

activation, while clusters 0 and 1 largely correspond to activated macrophages, indicating 

the existence of two major distinct activation states in agreement with single-cell protein 

secretion data. Those two activation states consistently exist in samples of all time points 

post activation, marking a highly consistent and possibly stable dichotomy in activation 

states of human macrophages in response to LPS and the top ranked signature genes 

defining each cluster were identified (Figure 5C & Supplementary Figure 11). Although 

mRNA data of activated macrophages supports protein data well, partially confirms our 

argument that cellular states are possibly pre-determined and stable, we noticed that the 

separation of resting macrophages clearly into two clusters is not seen in the transcriptomic 

profile. In figures 5A, the observation of three clusters supports the two-state activation 

model derived from single-cell protein sequential secretion. As expected for whole 

transcriptome analysis, tSNE separates basal from stimulated cells. The latter however 

exhibits two clusters, suggesting two major activation states as revealed by single-cell 

protein data. Figure 5B further confirmed the gradual change of cell states over time and 

two major states are always present at any given time points. Interestingly, the basal state 

cells (cluster 2) already showed “bifurcation” toward two different activation states as 

defined by Clusters 0 and 1. All these are in agreement with single-cell protein secretion 

data and support the conclusion that the activation shows two distinct states.  
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We then asked what gene pathways and biological processes underlie the previously 

identified two activation states. Gene Ontology (GO) analysis was performed with the R 

package GAGE using the gene lists and P values generated from the Seurat program as 

described above, and the marker genes of each of the 3 clusters were used. Surprisingly, 

the GO terms highly enriched in cluster2 involves mRNA processing, which indicates that 

mRNA processing related genes are highly expressed in the macrophages to prepare them 

for activation. Furthermore, we found that the GO terms enriched in the two clusters of 

activated macrophages (clusters 0 and 1) involve protein translation (ribosomal genes) and 

inflammatory response (NFB pathway, etc.), respectively (Figure 5D). The anti-

correlation relationship between the activity of protein translation and the ability to mount 

inflammation appears to be mutually exclusive in a single macrophage cell such that each 

cell has to opt for only one specific state. However, it is unclear if this is a stochastic process 

or pre-determined by the initial state according to single-cell transcriptome data. The 

protein secretion dynamics measured on the same single cells suggests the activation states 

are dependent on the basal state of each macrophage.      

We further conducted integrative analysis of single-cell transcriptome and protein secretion 

data side-by-side, and observed gene-dependent correlations between single-cell RNA and 

protein profiles. Figure 5E shows 6 immune function genes measured at both 

transcriptional and protein levels and other genes of interest are shown in Supplementary 

Figure 12. The integrated single-cell transcript/protein data can be generally classified into 

three groups. First, highly correlated genes, including IL6, CCL2 and TNF. Second, genes 

with consistent dynamics but distinct expression levels, including CXCL8 and CCL4. 

Third, genes with consistent expression levels but distinct dynamics. IL10 is an example 

in this category (Figure 5E). IL10 mRNA peaks at 2 hours, however, IL10 protein 

secretion reaches maximum between 4-6 hours. This can be explained by the time lag 

between transcription and translation. Although the mechanism requires further 

investigation, our results shows consistency and discrepancy in a gene-specific manner 

between single-cell mRNA and protein data, which is in agreement with previous reports4, 

highlighting the value to integrate information from multiple omic levels to yield a 

comprehensive biological picture.  
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DISCUSSION 

We reported a highly multiplexed ( ≥ 10) single-cell sequential secretomic profiling 

platform to evaluate the dynamic immune response from the same single cells at different 

time points. With this platform, we found human macrophages in response to TLR4 

stimulation exhibit two intrinsically distinct states, which were correlated with the basal 

functional state in each single cell. We also applied single-cell RNA-Seq analysis to 

confirm the existence of two major states at the transcriptional level and further revealed 

that the two activation states are differentially dictated by the expression of protein 

translation genes and inflammation-related genes, respectively. It has not been possible to 

obtain this type of comprehensive protein secretion dynamics information of individual 

cells using any other methods. An even higher degree of multiplexing can be obtained if 

additional fluorescence channels were used. While this work focused on human 

macrophages, this approach can be readily applied to other adherent cell types such as 

epithelial cells, dendritic cells, fibroblasts, etc, making it a versatile platform well suited 

for much broader applications394041. This platform will provide an accessible tool for more 

in-depth and comprehensive monitoring of cell function and the cognate proteins. It may 

have the potential to further evolve and be adopted in clinical and pharmaceutical studies 

to evaluate cellular function heterogeneity or drug responses39424344, for example, in the 

immune system or tumor microenvironment.  

 

MATERIALS AND METHODS 

Fabrication of antibody barcode array chips and microtrough array chips. The mold 

for both the flow patterning PDMS replica and the subnanoliter microarray are silicon 

master etched with deep reactive-ion etching (DRIE). Detailed protocol has been described 

elsewhere25. The PDMS used was RTV615 from Momentive. A and B were in 10:1 ratio.  

Cell culture and stimulation. Human U937 cell line was purchased from American Type 

Culture Collection (ATCC) and cultured in RPMI medium 1640 (Gibco; Invitrogen) 
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supplemented with 10% FBS (ATCC). The U937 cells were differentiated with 50ng/mL 

phorbol 12-myristate 13-acetate (PMA) (Fisher) for 48h, followed by culture in fresh 

standard medium for 24h. The cells were harvested with trypsin for single-cell experiments. 

Cell were challenged with 100ng/mL LPS (Sigma).  

Single-cell longitudinal multiplexed secretion assay. PDMS microtrough array was first 

blocked with 3% BSA solution (Sigma) for 2h and then rinsed with fresh cell medium. 

Cells were suspended in fresh medium at concentration of 0.2 million cells per mL, 

followed by the addition of LPS as described previously. The PDMS microtrough array 

was placed facing upward, and cell culture media was removed until only a thin layer 

remained on surface. Cell suspension was pipetted (200μL) onto the microtrough array. 5 

minutes later, the glass slide with antibody barcode was put on top of the PDMS 

microtrough array with the antibody-patterned side facing the cell-capturing chambers. 

Then the two parts were clamped tightly with screws using a custom polycarbonate 

clamping system. Number and locations of cells were confirmed by optical imaging using 

Nikon Eclipse Ti Microscope with an automatic microscope stage. Bright field images 

were obtained. The assembled microchip was placed in a standard 5% CO2 incubator at 37。

C during the period of cell secretion. After every 2h, the microchip assembly was 

dissembled in fresh media and the antibody barcode slide was removed and rinsed with 

excessive fresh media followed by 2 minutes of incubation. After repeating this step for 3 

times, the cell capture microarray chip was rinsed with fresh media with stimulants added 

and a new glass slide with antibody microarray is applied on the cell capture microarray to 

generate a new microchip assemble, followed by imaging and incubation, as described. On 

the other hand, the glass slide dissembled previously was developed for 1h at room 

temperature by introducing a mixture of biotinylated detection antibodies. The detection 

antibody mixture consists of the detection antibodies (SI Appendix, Table S1) at 0.25 

mg/mL each in 1:200 suspension in 3% BSA. Following this step, the slide was rinsed with 

3% BSA solution. The 200μL of 1:100 suspension APC dye-labeled streptavidin 

(Biolegend, 5μg/mL) were added onto glass slide to detect the 635-nm detection antibody 

group, followed by incubation of 30 min. Following the BSA blocking, the antibody 

barcode array slide was rinsed with 1xPBS, 0.5xPBS, and DI water sequentially, dried with 
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forced N2 gas, and then scanned with a four-laser microarray scanner (Molecular Devices; 

Genepix 4200A) for protein signal detection. Microtrough array images with cell counts 

were subsequently matched to their protein signals for further data analysis.  

Titration experiment using recombinant proteins in microfluidic chips. The titration 

curves were obtained using recombinant proteins and measured on antibody barcode chips, 

similar as the ones used for single-cell protein secretion assay (see above). The antibody 

barcode glass slide was thermally bonded to a PDMS microchannel array slab and then 

blocked with 3% BSA/PBS solution for 1 hr. Recombinant proteins with different 

concentrations were introduced into different microchannels followed by incubation at 

37oC for 1hr. After that, a cocktail of detection antibodies was added to complete the 

immune-sandwich assay using the procedure provided by antibody vendors.  

Fluorescence imaging and analysis. Genepix 4200A scanners (Molecular Devices) were 

used to obtain scanned fluorescent images. Two channels, 488 (blue) and 635 (red), were 

used to collect fluorescence signals. The image was analyzed with Genepix Pro software 

(Molecular Devices) by loading and aligning the microtrough array template followed by 

extraction of fluorescence intensity values per antibody per microtrough. Fluorescence 

results were extracted with the image analysis tools in Genepix Pro, and then matched to 

each of the microtrough array for cell counts as previously extracted from the optical 

images.  

 

Analysis of single-cell protein secretion data. Cell counting was automatically performed 

by a C++/QT QML software (Isospeak; Isoplexis). Protein signal data were extracted from 

the multicolor fluorescent images using GenePix Pro 6.1 (Molecular Devices) by aligning 

a microtrough array template with feature blocks per antibody per microtrough to the 

protein signal features. Data were extracted using the image analysis tool to gain the mean 

photon counts per protein signal bar per microtrough and match to the cell counts from the 

microtrough array. The cell counting and protein signal data were then matched based on 

their spatial locations. Only the 1-cell wells and their protein signals were used for 

downstream data analysis. 0-cell wells and their protein signals were used as on-chip 
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controls to provide a measure of local antibody-specific background and were averaged 

across region on chip. We define secretion threshold of a specific factor as mean of the 

zero-cell wells of its corresponding antibody plus 3 times standard deviation. Values higher 

than the threshold are taken as “secretion” while values below it are taken as “no secretion” 

and are changed to 0. The thresholded data were log2 transformed using log2(x+1) before 

data visualization. Graphpad Prism 7 was used to generate scatter plots and line graphs. 

Hierarchical clustering and heamaps were performed in R. Polyfunctionality index is 

calculated using the following equation: 

PI = ∑ 𝐹௜(
௜

௡
)௤௡

௜ୀ଴  

where n=6 is the cutoff in the number of functions studied, Fi is the frequency (%) of cells 

performing i functions, and q is a positive number used to modulate the differential weight 

assignment of each Fi. Here q is set to 1 assuming equal weight of each Fi.  

 

Single-cell RNA Sequencing. Single-cell RNA Sequencing was performed following the 

standard DropSeq protocol as described before in detail45. Microfluidic device was built 

following the exact original design file. Beads used in the experiment with oligo synthesize 

on surface was purchased from ChemGenes. Reagents used were listed in SI Appendix, 

Table S2. All oligonucleotides used were identical with which described in previously45. 

Sequencing was carried out using Hiseq2000 with 4 samples pooled into one sequencing 

lane.  

Analysis of single-cell transcriptomic data. Original fastq data was trimmed and 

transformed into digital expression matrix following the DropSeq data analysis pipeline 

described in detail elsewhere. Then a filter was applied to get rid of cells expressing fewer 

than 500 genes, which are likely low-quality cells. Then we applied R package “Seurat” in 

performing downstream statistical analysis and data visualization using default settings46. 

Marker gene lists and p values output from “Seurat” was taken as input for gene ontology 

and pathway analysis, using packages “Gage” and “Pathview” with default settings47,48.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/511238doi: bioRxiv preprint 

https://doi.org/10.1101/511238
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACKNOWLEDGMENT 

This work was supported in part by U54CA193461 (to R.F.), U54CA209992 (Sub-Project 

ID: 7297 to R.F.), R21CA177393 (to R.F.), National Science Foundation CAREER Award 

CBET-1351443 (to R.F.), NIH grants R01CA149109 (to J.L.), R01GM116855 (to Y.D. 

and J.L.), Connecticut RMRF grant 15-RMB-YALE-06 (to J.L.), and Sackler Institute 

Research Grant. Y. L. acknowledges the funding support from National Natural Science 

Foundation of China (Grant No. 21874133, 21605143), Youth Innovation Promotion 

Association CAS (Grant No. 2018217), and Dalian Institute of Chemical Physics (Grant 

No. SZ201601). Services provided by the NIDDK-supported Yale Cooperative Center of 

Excellence in Hematology assisted this study. We acknowledge the Becton 

Nanofabrication Center for supporting microchip fabrication and Yale Center for Genomic 

Analysis (YCGA) for next generation sequencing service.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/511238doi: bioRxiv preprint 

https://doi.org/10.1101/511238
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
FIGURES 

 

Figure 1. Single-cell secretomic analysis microchip with higher throughput. a) Images 

showing the captured single cells, corresponding three-color fluorescence detection results 

(Red: 635 nm, green: 532 nm and blue: 488 nm) and their overlay. b) Cross-sectional view 

of microtroughs. Inset: enlarged view of the microtrough cross-sections. The width of each 

microtrough is 30 μm. c) Distribution of the number of cells per microtrough under 

optimized cell loading conditions (cell density: 0.2 million/mL, loading volume: 200 µL, 

loading time: 5 min), which reveals around 30% of microtroughs would be occupied by 

single cells.  
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Figure 2. High-throughput, multiplexed, sequential secretion analysis from the same single 

cells. A) Schematic illustration of the procedure for tracking the secretion from the same 

single cells at different time points. Single-cell secretions were firstly profiled at the basal 

state, then LPS was added to induce macrophage responses to TLR-4 activation. The time 

course of LPS-induced activation is measured sequentially within different time windows; 
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B) Characterization of single cell retention efficiency with human macrophage cells after 

a new antibody glass slide was changed to PDMS microchamer array (n=5); C) 

Representative single cell and its secretion pattern of 10 proteins from the same single cell 

at 4 time points, before and after LPS treatment; D) Line graphs showing the dynamic 

change of different secreted proteins (CXCL8, IL-6, CCL2, TNF) from1752 single cells, 

which were classified into four patterns based on their protein secretion dynamics: on-off, 

off-on, all on or others. 
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Figure 3. Dynamic heterogeneity of U937 derived macrophages in response to TLR 4 

ligand LPS. A) Heatmap resolving two clusters exhibiting different activation dynamics in 

response to LPS stimulation. Each row represents a complete protein profile from a single 

cell and each column is a protein of interest; B) viSNE analysis reveals two clusters based 

on their dynamic functional proteins profiles. C) Distribution of individual proteins (CCL4, 

TNF as examples) in viSNE maps colored by signal intensities in two clusters at different 

time points. (viSNE plots for distribution of all proteins can be found in Supplementary 

Figure 7).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/511238doi: bioRxiv preprint 

https://doi.org/10.1101/511238
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Polyfunctionality analysis of human macrophages. A) Distribution of 

polyfunctionality among macrophages of each time window (basal state included). B) 

Gradual increase of polyfunctionality index (PI) along the immune activation process. (C) 

Tracking polyfunctionality of each individual macrophage over time. D) Distribution of 

polyfunctionality of activated macrophages of each condition compared with basal 

polyfunctionality. The numbers of single cells with different poly-functionality (0, 1, 2, 3, 

4, >5) are 94, 360, 548, 427, 228 and 95 respectively. The p value by t test between 

neighbors were <0.05 if not stated otherwise (ns: no significant). E) Linear correlation 

between later averaged polyfunctionality and the basal polyfunctionality.  
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Figure 5. Single-cell RNA Seq of U937-derived macrophages during dynamic TLR4 

immune activation. A) and B) tSNE plots showing dynamic formation of two cellular 

sub-states in activated macrophages. Cluster2 overlaps with resting macrophages while 

clusters 0 and 1 are distinct sub-states of activated macrophages. C) tSNE feature plots 

showing expression of marker genes of each cellular sub-state. D) Gene Ontology (GO) 

term enrichment analysis reveals differential expression of immune activation and 
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ribosomal genes in two sub-states among activated human macrophages. E) Comparative 

analysis of single-cell mRNA and protein secretion data. 
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