1	Cycloheximide-Producing Streptomyces Associated with Xyleborinus saxesenii and Xyleborus
2	affinis Fungus-Farming Ambrosia Beetles
3	
4	Short title: Ambrosia Beetle Actinobacteria Associations
5	
6	Kirk J. Grubbs ^{1,#a} , Frank Surup ^{2,#b} , Peter H. W. Biedermann ³ , Bradon R. McDonald ⁴ , Jonathan
7	Klassen ^{4,#c} , Caitlin M. Carlson ⁴ , Jon Clardy ² * and Cameron R. Currie ⁴ *
8	
9	¹ Department of Cellular and Molecular Pathology, University of Wisconsin-Madison, Madison,
10	WI, USA
11	² Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,
12	Boston, MA, USA
13	³ Research Group Insect-Fungus Symbiosis, Department for Animal Ecology and Tropical
14	Biology, University of Wuerzburg, Germany
15	⁴ Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
16	
17	^{#a} Current address: Computational Life Sciences, Bayer Trait Discovery, Morrisville, NC, USA.
18	^{#b} Current address: Helmholtz Centre for Infection Research GmbH, Department Microbial
19	Drugs, Braunschweig, Germany.
20	^{#c} Current address: Department of Molecular and Cell Biology, University of Connecticut, Storrs,
21	CT, USA
22	
23	* Corresponding authors: E-mail: <u>currie@wisc.edu; jon_clardy@hms.harvard.edu</u> .

24

25 Abstract

26 Symbiotic microbes help a myriad of insects acquire nutrients. Recent work suggests that insects 27 also frequently associate with actinobacterial symbionts that produce molecules to help defend 28 against parasites and predators. Here we explore a potential association between Actinobacteria 29 and two species of fungus-farming ambrosia beetles, Xyleborinus saxesenii and Xyleborus affinis. We isolated and identified actinobacterial and fungal symbionts from laboratory reared 30 31 nests, and characterized small molecules produced by the putative actinobacterial symbionts. One 16S rRNA phylotype of *Streptomyces* (XylebKG-1) was abundantly and consistently 32 33 isolated from the nests and adults of X. saxesenii and X. affinis nests. In addition to Raffaelea 34 sulphurea, the symbiont that X. saxesenii cultivates, we also repeatedly isolated a strain of 35 *Nectria* sp. that is an antagonist of this mutualism. Inhibition bioassays between S. griseus XylebKG-1 and the fungal symbionts from X. saxesenii revealed strong inhibitory activity of the 36 actinobacterium towards the fungal antagonist *Nectria* sp. but not the fungal mutualist *R*. 37 sulphurea. Bioassay guided HPLC fractionation of S. griseus XylebKG-1 culture extracts, 38 39 followed by NMR and mass spectrometry identified cycloheximide as the compound responsible for the observed growth inhibition. A biosynthetic gene cluster putatively encoding 40 cycloheximide was also identified in S. griseus XylebKG-1. The consistent isolation of a single 41 42 16S phylotype of *Streptomyces* from two species of ambrosia beetles, and our finding that a representative isolate of this phylotype produces cycloheximide, which inhibits a parasite of the 43 system but not the cultivated fungus, suggests that these actinobacteria may play defensive roles 44 within these systems. 45

46 Introduction

47 Ambrosia beetles are a diverse group of insects (\sim 3,400 species) that cultivate fungi for food [1, 48 2]. Adult beetles generally bore into dead or dying trees, establishing a nest in the xylem. They 49 actively inoculate the tunnel walls of the nest with spores of their mutualistic fungus, which 50 grows and forms a layer of nutrient rich aleurioconidia ("ambrosial growth" [3]) on the woody 51 tissue of the host plant and serves as the sole source of nutrition for adults and developing beetle 52 larvae. Ambrosia beetles vector their fungal mutualist in specialized structures called mycangia 53 or mycetangia [4, 5]. Nutritional symbioses with fungi evolved at least eleven times independently in bark- and ambrosia beetles (Scolytinae and Platypodinae: Coleoptera) [1, 6]. 54 Specific ambrosia beetle species associate with specific ambrosia fungi [3, 7-9], although some 55 56 beetles appear to rely on a community of cultivars. Fungal cultivars from the scolytine weevil 57 genera Xyleborus and Xyleborinus are mostly in the Ascomycota genera Ambrosiella (Ceratocystidaceae: Microascales) and Raffaelea (Ophiostomataceae: Ophiostomatales), which 58 convergently evolved as beetle cultivars 30-60 million years ago [10]. Whereas many phloem-59 boring bark beetles gain extra nutrition by associations with their cultivar fungi (e.g. 60 61 Dendroctonus sp.), those xylem-boring ambrosia beetles that we studied are true fungus-farmers 62 and obligately rely on their cultivars for food [9, 11]. Nectria, Penicillium and Aspergillus 63 species are common associates of these beetles, but are typically found at low abundances within 64 nests. They are regarded competitors, parasites or pathogens of the ambrosia beetle mutualism [3, 9]. 65

66

In addition to ambrosia beetles, active farming of fungi also occurs in attine ants and
macrotermitine termites [12-14], and nutritional symbioses with fungi are widespread in insects

4

[15-21]. Reliance on fungi by these insects exposes them to potential parasite pressure in the 69 70 form of pathogens or competitors of their symbionts. For example, the fungal mutualist of attine 71 ants is impacted by a specialized and potentially virulent fungal parasite [22, 23]. To help defend 72 the cultivar from this parasite the ants use actinobacterial symbionts that produce antibiotics [23-73 26]. A similar type of defensive symbiosis has been shown in the fungus-associated bark beetle 74 Dendroctonus frontalis [27], and has been further suggested in the Mediterranean Pine Engraver 75 bark beetle, Orthotomicus erosus [28], as well as fungus-growing termites [29]. Beyond 76 defending fungal mutualists in agricultural associations, Actinobacteria are well adapted for insect dispersal (e.g. by desiccation-resistant, hydrophobic spores that stick to the surface of 77 78 insects [30]) and fulfill different defensive capacities in other insect systems. Within antennal 79 glands, Beewolves (Philanthus spp.) cultivate Actinobacteria that they transfer into brood cells and onto developing cocoons in order to prevent infection by a wide range of pathogens [31]. 80 Actinobacteria and the antibiotic secondary metabolites they produce have been identified in 81 82 several species of mud daubers [32, 33]. Furthermore, Actinobacteria have been isolated from 83 several additional ant species [34-36] and the gypsy moth [34].

84

The majority of insect defensive symbioses characterized have involved Actinobacteria, which is not surprising as Actinobacteria, especially *Streptomyces*, are well known producers of bioactive secondary metabolites [37]. Over 10,000 biologically active compounds have been identified from Actinobacteria, accounting for ~45% of known microbial metabolites [38]. The phylum Actinobacteria is composed of Gram-positive bacteria and is one of the largest in the domain Bacteria. They are common soil microbes, and recent studies have also identified them as

- 91 dominant community members in both freshwater [39] and marine [40] habitats. As such,
- 92 Actinobacteria are common microbiome constituents in many environments.
- 93

94 The fruit-tree pinhole borer *Xyleborinus saxesenii* Ratzeburg and the sugarcane shot-hole borer 95 Xyleborus affinis Eichhoff colonize a wide variety of dying or recently dead tree species and are 96 two of the most widespread ambrosia beetles worldwide [41, 42]. Both species are facultatively 97 eusocial depending on the viability of the wood resource and may settle the same nest for 98 multiple generations: Adult offspring of a single, sib-mated foundress typically delay dispersal from their mothers' tunnel system and help her with nest-hygiene, brood-care and fungus-99 100 farming [43-45]. Unique for Holometabola, ambrosia-beetle larvae also help in these cooperative 101 tasks [46]. The beetles' activity and presence is necessary to maintain the fruiting and 102 monocultures of their fungal cultivars [2, 3]. Both species are obligately dependent on *Raffaelea* ambrosia fungi [9, 47]. Experiments in X. saxesenii showed that these cultures are protected 103 104 against pathogenic fungi, such as *Paecilomyces variottii* and *Fusarium merismoides*, by larvae 105 and adults in unknown ways [46] and it is possible that this defence involves "microbial 106 helpers".

107

Here we describe actinobacterial symbionts of *X. saxesenii* and *X. affinis* ambrosia beetles and explore their potential function in helping defend nests against an antagonistic fungus that was isolated from *X. saxesenii*. Using specific media, we isolated both Actinobacteria and fungi from laboratory reared nests. Actinobacterial isolates were characterized using 16S rRNA gene sequencing and tested for their ability to inhibit the growth of both mutualistic and parasitic fungal isolates from the same nests. Active compounds were isolated using bioassay-guided

114	HPLC fractionation, chemically characterized using NMR spectroscopy and mass spectrometry,
115	and further tested using bioassays to confirm growth inhibition activity. We sequenced the
116	genome of one actinobacterial isolate [48] to confirm this strains' phylogenetic identification, and
117	identified a putative biosynthetic gene cluster for one of the characterized active compounds.
118	Based on these results, we propose a mutualism between two species of ambrosia beetle and
119	Actinobacteria, in which the bacterial symbiont produces cycloheximide to inhibit the growth of
120	fungal competitors of the mutualistic cultivar fungus.
121	
122	Materials and Methods
123	Beetle collection and rearing. <i>Xyleborus affinis</i> and <i>Xyleborinus saxesenii</i> females (N > 20
124	each) were collected at the Southern Research Station in Pineville, LA (31°20' N, 92°24' W; 123
125	ft asl) with four ethanol (95%) baited Lindgren funnel traps in October 2007. Live beetles were
126	placed in sterile plastic tubes with wet filter paper, stored at 4 °C for up to three days, surface
127	sterilized by immersing in 70% ethanol and deionized water for a few seconds, and then reared
128	on artificial medium in glass tubes following Biedermann et al [44, 49]. Briefly, beetles were
129	reared in sterile glass tubes (Bellco culture tubes 18×150 mm) filled with the standard medium
130	for rearing xyleborine ambrosia beetles. A single female per glass tube was put onto the medium
131	and usually started boring tunnels as if in wood ($N = 20$ tubes/species). About one third of these
132	beetle colonies successfully established brood and these were maintained in the lab at room
133	temperature with indirect sunlight.
134	

Isolation of Actinobacteria. We conducted targeted isolation of Actinobacteria from each of
three *X. saxesenii* and *X. affinis* colonies in triplicate, aseptically sampling each tube three times

137	in a biosafety cabinet. Briefly, the nest inside the solid rearing substrate was shaken out of the
138	tube and tunnel-wall material containing the layer of the mutualistic fungus (henceforth termed
139	nest material), as well as individuals were collected with sterile metal probes / tweezers from the
140	exposed tunnels. X. saxesenii nest material (0.05 g per sample), adults (2 pooled individuals per
141	sample), and larvae (5 pooled individuals per sample) were sampled; only nest material (0.05 g
142	per sample) and adults (2 pooled individuals per sample) were sampled from X. affinis. All
143	samples were chosen at random and homogenized in 500 μ L of autoclaved, 0.22 μ m filtered,
144	deionized water; 100 μ L of each was evenly spread on dried chitin agar plates (15 g agar, 3 g
145	chitin, 0.575 g K ₂ HPO ₄ , 0.375 g MgSO ₄ x 7H ₂ O, 0.275 g KH ₂ PO ₄ , 0.0075 g FeSO ₄ x 7H ₂ O,
146	0.00075 g MnCl ₂ x 4H ₂ O, and 0.00075 g ZnSO ₄ x 7H ₂ O dissolved in 750 mL deionized water)
147	in duplicate and allowed to dry before wrapping with parafilm. Plates were incubated at 30 $^{\circ}$ C
148	for three weeks, after which colony forming units (CFUs) were counted and eight of each
149	morphotype per plate were transferred to yeast malt extract agar (YMEA: 4 g yeast extract, 10 g
150	malt extract, 4 g dextrose, and 15 g agar dissolved in 1 L). Colonies on YMEA plates were
151	allowed to grow at 30 °C for two weeks, visually inspected for morphological properties
152	characteristic of Actinobacteria, and sub-cultured as necessary to obtain pure cultures. Three
153	0.05 g samples of artificial medium from tubes that were not inoculated with beetles were also
154	plated in duplicate on YMEA without antibiotics to screen for contamination and possible
155	presence of Actinobacteria in the beetle medium. All media used for actinobacterial isolation had
156	filter-sterilized cycloheximide (0.05 g/L) and nystatin (10,000 units/mL) added after autoclaving
157	and cooling to suppress fungal growth.

8

159	Fungal isolations. Fungal symbionts were isolated from three X. saxesenii nests, sampled three
160	times each. X. affinis were not sampled for fungi. Nest material was scraped using a sterile metal
161	probe and inoculated on potato dextrose agar plates (PDA; Difco, Sparks, MD) with penicillin
162	(0.05 g/L) and streptomycin (0.05 g/L) added after autoclaving and cooling to suppress bacterial
163	growth, and incubated at 30 °C for one week. During incubation, fast growing fungi were sub-
164	cultured onto fresh PDA plates and the agar on which they grew was fully removed to prevent
165	overgrowth of the entire original isolation plate. Two different fungi were obtained in pure
166	culture by successive rounds of scraping a small amount of material from the edge of each
167	colony and then plating on individual PDA plates.
168	
169	DNA sequencing. The 16S rRNA gene was sequenced from eight Actinobacteria isolates
170	obtained from both X. saxesenii and X. affinis for a total of 16. In an effort to maximize the
171	possibility of capturing any phylogenetic diversity, and thereby discover if multiple species were
172	present, the strains that were sequenced were chosen based on morphological differences rather
173	than origin. Only two morphologies were observed with the only differences being that the
174	spores of one morphology were slightly darker than the other. The 16S rRNA gene PCR primers
175	used were the Actinobacteria-specific F243 (5'-GGATGAGCCCGCGGCCTA-3') and R1378 (5'-
176	CGGTGTGTACAAGGCCCGGGAACG-3') [53], and in separate reactions the general bacterial
177	primers pA (5'-AGAGTTTGATCCTGGCTCAG-3') and pH (5'-
178	AAGGAGGTGATCCAGCCCGCA-3') to increase coverage length [54]. The cycle parameters
179	used for each primer set was similar to those above except the annealing temperatures were 58
180	°C and 54 °C, respectively, and the elongation time was 95 s for primers pA and pH. Each PCR

181 reaction was composed of 12.5 μ l GoTaq (Promega), 1 μ l of template DNA, and 40 μ M of each

182	primer in a final volume of 25 μ l. The EF- α and 18S rRNA genes were sequenced for two each
183	of the isolated Raffaelea sulphurea and the putative antagonistic fungus Nectria spp. DNA was
184	extracted as previously described [50]. PCR primers NS1 (5'-GTAGTCATATGCTTGTCTC-3')
185	and NS4 (5'-CTTCCGTCAATTCCTTTAAG-3') were used to amplify the 18S rRNA gene [51],
186	using thermocycling parameters: 95 °C for 2 min, 35 cycles of 95 °C for 45 s, 42 °C for 45 s, 72
187	°C for 90 s, 72 °C for 5 min and hold at 4°C. EF-α gene PCR primers 983F (5'-
188	GCYCCYGGHCAYCGTGAYTTYAT) and 2218R (5'-ATGACACCRACRGCRACRGTYTG)
189	[52] were used with similar cycling parameters, except annealing temperature and elongation
190	time were 55 °C and 130 s.
191	
192	PCR amplicons were purified by adding 0.8 μ l ExoSap-IT (USB) to 2 μ l of PCR product diluted
193	in 5.25 μl of autoclaved deionized water and incubating this mixture at 37 $^{\circ}C$ for 15 min and
194	then at 80 °C for 15 min. Sanger sequencing reactions contained: 1 μ l BigDye Terminator v. 3.1
195	(Applied Biosystems), 1.5 μl Big Dye Buffer (Applied Biosystems) and 1 μl of 10 μM primer,
196	and the entire cleaned amplicon solution. Sequencing PCR conditions were 95 °C for 3 min, 35
197	cycles of 95 °C for 20 s, 45 °C for 30, 60 °C for 4min, 72 °C for 7 min and hold at 4°C. Excess
198	dye terminators were removed using CleanSeq beads (Agencourt Biosciences) and samples were
199	resuspended in 40 μ l of sterile ddH ₂ O and sequenced at the University of Wisconsin-Madison
200	Biotechnology Center using an ABI 377 instrument (Applied Biosystems).
201	
202	Actinobacteria antifungal bioassays. Growth inhibition assays were conducted between one <i>S</i> .
203	griseus XylebKG-1 like strain (see results) isolated from each of the three X. saxesenii nests and
204	both isolated fungal species by first inoculating the Actinobacterium in the center of a PDA plate

205	and allowing it to grow for two weeks. A small amount of test fungus was then inoculated at the
206	edge of this Petri plate and grown at 30 °C for two weeks, after which a zone of inhibition (ZOI)
207	was determined by measuring the shortest distance between the bacterium and the fungus.
208	
209	Phylogenetic analyses. All sequences were assembled using Bionumerics v6.5 (Applied Maths),
210	searched against the GenBank Nucleotide Sequence Database [55] using BLAST [56] to
211	determine a preliminary identity, and then aligned in MEGA5 [57] using MUSCLE [58]. 18S
212	rRNA and EF- α sequences were aligned and trimmed individually and subsequently
213	concatenated to increase phylogenetic resolving power. To ensure codons were not split by gaps,
214	alignments were inspected in MEGA5 for consistent reading frames. Substitution models were
215	chosen using the model selection module of MEGA5. Maximum likelihood phylogenies were
216	inferred using 500 bootstrap replicates using MEGA5.
217	
218	Genome Based Phylogeny. The genome of S. griseus XylebKG-1 has previously been
219	sequenced [48] allowing us to generate a genome based phylogeny for this isolate. Proteins from
220	all complete Streptomyces genomes were predicted using prodigal [59] for consistency and
221	annotated using HMMer [60] models generated from KEGG [61] gene families, of which 1,364
222	KEGG gene families were conserved in all genomes. For these gene families, the proteins with
223	the highest HMMer bitscore from each genome were aligned using MAFFT [62] and then
224	converted to a nucleotide alignment. These alignments were concatenated and a phylogeny
225	generated using RAxML [63] with 100 rapid bootstraps.
226	

227 Synteny Map. The genomes of *Streptomyces griseus* subsp. griseus NBRC13350

- [NC_010572.1] and *Streptomyces griseus* XylebKG-1 were aligned using progressive Mauve
- 229 [64] with default parameters.
- 230

231 Analytical Chemistry Methods and Instrumentation. One- and two-dimensional NMR spectra 232 were acquired using a Varian Inova spectrometer with a frequency of 600 MHz for ¹H and 150 MHz for ¹³C nuclei. All compounds were dissolved in CD₃OD. HPLC/MS analysis was 233 234 performed on an Agilent 1200 Series HPLC / 6130 Series mass spectrometer. High resolution 235 spectra were obtained on a Waters Micromass Q-TOF Ultima ESI-TOF mass spectrometer. 236 237 Isolation and Elucidation of Bioactive Compounds. S. griseus XylebKG-1 was cultivated on PDA plates for 5-10 days. Seed biomass for 1 L cultures was produced by adding 1 cm^2 of a 238 single mature PDA culture to three 500 mL Erlenmeyer flasks containing 85 mL modified yeast 239 peptone maltose medium (YPM: 2 g/L yeast extract, 2 g/L bactopeptone, 4 g/L D-mannitol). 240 These were incubated at 28 °C with shaking at 250 rpm for 48 h. Twenty-five ml of each culture 241 242 was added to eight 1 L of YPM in 4 L Erlenmeyer flasks and incubated for 72 h at 28 °C with shaking at 250 rpm. Supernatants and mycelia were processed separately after cultures were 243 244 centrifuged at 7000 rpm for 30 min. Culture supernatants were adjusted to pH 6 and extracted 245 twice with an equal volume of ethyl acetate. After evaporation in vacuo, residues were resuspended in 2 mL MeOH/H₂O (8:2). Mycelia were lyophilized and each extracted with 50 mL 246 247 acetone and 50 mL methanol. After evaporation *in vacuo*, crude extracts were resuspended in 248 2 mL methanol. Crude supernatant and mycelium extracts were tested for inhibition of Nectria 249 sp.; only the extracts of the crude supernatant showed significant assay activity. Crude

250	supernatant extracts were purified using a 2 g pre-packed C_{18} Sep-Pak resin and fractionated by
251	eluting with a gradient of pure water to pure methanol. The pure water flow through and 10%
252	methanol fractions exhibited the highest anti-Nectria activity. These fractions were therefore
253	combined and fractionated by gel chromatography using Sephadex LH-20 with methanol as the
254	mobile phase (column 60 x 2.5 cm). Active fractions were combined and subsequently purified
255	by reversed-phase HPLC (Agilent 1100 Series HPLC system, Supelco Discovery HS C18
256	column, 250 x 10 mm, 2 mL/min). HPLC conditions used: 2 min 80% A, 20% B in 28 min to
257	100% B (A: water, B: methanol). The fraction most active against Nectria sp. was eluted from
258	17.5 and 18 min and contained 2.7 mg of cycloheximide (1).
259	
260	One Strain Many Compounds (OSMAC) Screening. S. griseus XylebKG-1 strain was
261	cultivated on agar plates (300 mL) of YPM, PDA, oat media (20 g/L oat meal, 2.5 mL/L trace
262	element solution, 3 g/L CaCl ₂ ·2 H ₂ O, 1 g/L Fe(III)-citrate, 0.2 g/L MnSO ₄ , 0.1 g/L ZnCl ₂ , 25
263	mg/L CuSO ₄ ·5 H ₂ O, 20 mg/L Na ₂ B ₄ O ₇ ·10 H ₂ O, 4 mg/L CoCl ₂ , 10 mg/L Na ₂ MoO ₄ ·2 H ₂ O), soy
264	mannitol media (20 g/L soy meal, 20 g/L mannitol), starch-glucose-glycerol media (10 g/L
265	glucose, 10 g/L glycerol, 10 g/L starch, 2.5 mL/L cornsteep liquor, 5 g/L casein-peptone, 2 g/L
266	yeast extract, 1 g/L NaCl, 3 g/L CaCO ₃), ISP1 media (5 g/L pancreatic digest of casein, yeast
267	extract 3 g/L), ISP2 media (4 g/L yeast extract, 10 g/L malt extract, 4 g/L dextrose), 1187 media

- 268 (10 g/L starch, 2 g/L (NH₄)₂SO₄, 1 g K₂HPO₄, 1 g/L MgSO₄·7 H₂O, 1 g/L NaCl, 2 g CaCO₃,
- 269 5 mL/L trace element solution) for 7 days at 30 °C. All plates were extracted with ethyl acetate.
- 270 Naramycin B (0.7 mg, 2) was isolated from the crude extract of ISP1 cultivation by
- semipreparative HPLC (gradient 22% to 40% acetonitrile in 25 min, Supelco Discovery HS C18
- column, 250 x 10 mm). Actiphenol (1.6 mg, **3**) was isolated from the crude extract of 1187

273	cultivation by preparative HPLC (gradient 65% to 100% methanol in 25 min, column
274	Phenomenex Luna C18 250x21 mm. Dihydomaltophilin (2.4 mg, 4) was isolated from extracts
275	of PDA and 1187 cultivations by preparative HPLC (gradient 50% to 100% acetonitrile in 25
276	min, column Phenomenex Luna C18 250x21mm), (gradient 80% to 100% acetonitrile in 25 min,
277	column Phenomenex Luna C18 250x21mm) and semi-preparative HPLC (gradient 35% to 50%
278	acetonitrile in 25 min, column Supelco C18 250x8mm).
279	
280	Cycloheximide (1): white amorphous powder; ¹ H, ¹³ C NMR were identical to a commercial
281	sample obtained from Sigma-Aldrich [65], ESI-MS m/z [M+Na] ⁺ 304.1, [M+H] ⁺ 282.1, [M-H] ⁻
282	280.1; HR-ESI-MS m/z 282.1718 [M+H] ⁺ (calculated for C ₁₅ H ₂₄ NO ₄ , 282.1700).
283	Naramycin B (2): white amorphous powder; 1H NMR data were consistent with those previously
284	published for this metabolite [66]; ESI-MS m/z [M+Na] ⁺ 304.1, [M+H] ⁺ 282.1, [M-H] ⁻ 280.1.
285	Actiphenol (3): white amorphous powder; ¹ H NMR data were consistent with those previously
286	reported [67]; ESI-MS m/z [M+Na] ⁺ 298.0, [M+H] ⁺ 276.2, [M-H] ⁻ 274.1.
287	Dihydromaltophilin (4): white amorphous powder; ¹ H NMR and ¹³ C NMR data were consistent
288	with those previously reported [68]; ESI-MS m/z 513.3 [M+H] ⁺ , 511.3 [M-H] ⁻ ; HR-ESI-MS
289	513.2964 $[M+H]^+$ (calculated for C ₂₉ H ₄₁ N ₂ O ₆ 513.2965).
290	
291	Cycloheximide antifungal assays. Minimum inhibitory concentrations were determined using
292	Nectria sp. and R. sulphurea grown in liquid YPM for three days. Cultures were diluted 1:1000
293	with fresh YPM and 200 µL per well transferred into 96-well plates containing various amounts

- of commercial cycloheximide (100 μ g, 50 μ g, 20 μ g, 10 μ g, 5 μ g, 2 μ g, 1 μ g) and
- dihydromaltophilin (5 μ g, 2 μ g, 0.5 μ g, 0.2 μ g). These 96-well plates were incubated for 72h at

296	30 °C, after which the optical density was measured at 600 nm using a SpectraMax M5® Plate
297	Reader. Naramycin B (2) and actiphenol (3) were inactive against both fungi up to
298	concentrations of $10 \mu\text{g}/200 \mu\text{L}$.
299	
300	To determine the antifungal activity of cycloheximide (1) and dihydromaltophilin (4) in an agar
301	plate dilution assay, Nectria sp. and R. sulphurea were grown in 20 mL liquid potato dextrose
302	media for 7 and 21 days, respectively, at 30 $^\circ$ C while shaking at 250 rpm. One mL of each
303	culture was used to inoculate PDA plates. Paper disks (6 mm diameter) were soaked with
304	solutions of 30 μ L, 2 μ L, 0.2 μ L of 1 and 20 μ L, 2 μ L of 4 , both in methanol (concentration 1
305	mg/mL), dried, and applied to the surface of the agar plates. Plates were grown at 30 $^\circ$ C for 5-7
306	days, when inhibition zones were recorded.
307	
308	Cycloheximide biosynthetic cluster identification. The biosynthetic cluster in the high quality
309	draft S. griseus XylebKG-1 genome sequence [NZ_ADFC00000000.2] was predicted using
310	antiSMASH v2.0 [69] and specific comparison to the previously published cycloheximide
311	biosynthesis gene cluster from Streptomyces sp. YIM56141 [70]. Gene cluster functional
312	annotations were derived from the antiSMASH output, homologous annotations in the
313	Streptomyces sp. cycloheximide biosynthesis gene cluster, and retrobiosynthetic logic.
314	
315	Results and Discussion
316	
317	Isolation and identification of Actinobacteria

318	At least one CFU having a morphology consistent with Actinobacteria was observed from 72%
319	of adults, 33% of larvae, and 61% of nest samples from X. saxesenii (Table 1). On average more
320	Actinobacteria were cultured from nests than adults or larvae, with mean \pm SEM CFUs/sample
321	of 110 ± 56 , 3.4 ± 1.4 , and 1.1 ± 0.6 , respectively (Fig. 1: Single factor ANOVA P = 0.0582). No
322	growth of Actinobacteria was observed from media not inoculated with beetles (Table 1, Fig. 1).
323	Thus, the medium serving as a possible source of bacterial isolates can be eliminated. All isolates
324	had similar morphologies and growth patterns. Isolations from X. affinis nests and adults also
325	resulted in CFUs of a single actinobacterial morphotype similar to that isolated from X.
326	saxesenii.
327	
328	Fig. 1 Number of Actinobacteria cultured from components of X. saxesenii nests. Means +/-
329	standard errors of the mean are displayed. See methods for culture conditions.
330	
331	Eight representative Actinobacteria from various samples of the X. saxesenii and X. affinis
332	systems were identified using 16S rRNA gene sequencing. The 16S rRNA gene sequences
333	(1,123 bp) from all 16 were 100% identical and were most similar to that of Streptomyces
334	griseus subsp. griseus NBRC13350 [NC_010572.1] when BLAST searched against the NCBI nr
335	database, a result confirmed by phylogenetic analysis (Fig. 2, supplemental Fig. 1). A phylogeny
336	constructed using the genome sequence for one of these strains, S. griseus XylebKG-1
337	(XylebKG-1) isolated from X. saxesenii [NZ_ADFC0000000.2] confirmed the close
338	relationship between this strain and Streptomyces griseus subsp. griseus NBRC13350
339	[NC_010572.1], generating a tight clade in all bootstrap replicates produced (Fig. 3). This is
340	consistent with their high genomic similarity suggested previously using average nucleotide

341	identity [48]. Note that although the progressive Mauve algorithm aligns both genomes as one
342	homology block (except for the extreme 5' and 3' ends), this block contains some regions of
343	negligible sequence homology. These regions typically represent secondary metabolite
344	biosynthetic gene clusters of unknown function that are not conserved between these two
345	genomes (data not shown).
346	
347	Fig. 2 Maximum likelihood 16S phylogeny of the XylebKG-1 clade and its relatives,
348	constructed using MEGA5. Molecular phylogeny based on 1,123 bp of 16S rRNA gene
349	sequence. The Tamura 3-parameter substitution model was used with discrete gamma-distributed
350	rate variation having 5 categories and a proportion of invariable sites, selected by MEGA5 as
351	best fitting the data. The percent node conservation >50% in 500 bootstrap replicates is
352	indicated, and the scale bar indicates the number of substitutions per site. MEGA5's initial
353	heuristic tree search was applied using an initial neighbor-joining tree of pairwise distances
354	estimated using the Maximum Composite Likelihood method. ¹ - Indicates X. affinis origin. ² -
355	Indicates X. saxesenii origin.
356	
357	Fig. 3 Multilocus phylogeny constructed from 1,364 gene families conserved in all

358 *Streptomyces* genomes analyzed. Alignments were done using MAFFT and the phylogeny

359 generated using RAxML. Numbers above the branches based on 100 rapid bootstraps.

360

361 Our work supports a symbiosis between the *S. griseus* XylebKG -1clade and *X. saxesenii*

ambrosia beetles. First, strains were consistently isolated having the same culture morphology

363 from nests, larvae, and adults, and a random subset of these had 100 % identical 16S rRNA

364	sequences. Second, Actinobacteria were found to be very abundant within the nest material
365	samples of the investigated X. saxesenii strains (approximately 110 Streptomyces CFUs per
366	sample). Their recovery rate of 3.4 <i>Streptomyces</i> CFUs per adult individual is comparable with
367	other established symbioses, like the Dendroctonus bark beetle system (average of 7.7
368	Streptomyces CFUs per individual [27]) or mud daubers (maximum average of 3.1 Streptomyces
369	CFUs per individual [33]). Third, Streptomyces are vectored by the beetles, likely within their
370	bodies, as artificial medium was sterile and beetles were surface sterilized before being allowed
371	to initiate nests. Fourth, the isolation of the XylebKG-1 Actinobacteria 16S phylotype from X.
372	affinis further supports an association with ambrosia beetles, and suggests its potentially wider
373	phylogenetic distribution within these insects.

374

Fungal symbionts

376 Two fungi were consistently isolated from X. saxesenii nests. One type was identified as 377 Raffaelea sulphurea using a dichotomous key [71] and confirmed by 18S rRNA and EF- α gene sequencing. This fungus has been repeatedly isolated from X. saxesenii and is known as the main 378 cultivar of this beetle [4, 9, 71]. The second fungus we isolated was identified as a close relative 379 380 of the ascomycetous genus *Nectria* based on 18S rRNA and EF-α gene sequences and both 381 BLAST and phylogenetic analyses (Fig. 4). The consistent isolation of this Nectria sp. suggests 382 that it is vectored by the ambrosia beetles. *Nectria* species are frequently isolated in low numbers from Scolytine beetles [72], and unpublished 18S rRNA 454-pyrosequencing data from 383 Biedermann et al. suggest that they are commonly present in the nests of ambrosia beetles. Given 384 385 that only *Raffaelea* and *Ambrosiella* species are producing nutritional fruiting structures for

feeding ambrosia beetles and *Nectria* spp. are known pathogens of both insects [73] and trees
[74], it is likely a parasite of the system.

388

```
389
       Fig. 4 Maximum likelihood phylogeny of the fungal antagonist, highlighted in gray,
390
       constructed using concatenated 18S rRNA and EF-a genes in MEGA5. The Tamura-Nei
391
       substitution model was used with discrete gamma-distributed rate variation having 5 categories
392
       and a proportion of invariable sites, selected by MEGA5 as best fitting the data. The percent
393
       node conservation >50% in 500 bootstrap replicates is indicated, and the scale bar indicates the
       number of substitutions per site. MEGA5's initial heuristic tree search was applied using an
394
395
       initial neighbor-joining tree of pairwise distances estimated using the Maximum Composite
396
       Likelihood method.
397
398
       The potential of S. griseus XylebKG-1 as a defensive mutualist
399
       To explore the potential that S. griseus XylebKG-1 function as defensive symbionts of X.
400
       saxesenii, S. griseus XylebKG-1's ability to inhibit the growth of R. sulphurea and Nectria sp.
401
       isolated from this host was examined. Whereas S. griseus XylebKG-1 only marginally inhibited
       the growth of R. sulphurea (average zone of inhibition = 0.52 mm; Fig. 5), it significantly
402
403
       inhibited the growth of Nectria sp. (average zone of inhibition = 26.2 mm; Fig. 5). The strength
```

404 of inhibition significantly differed between these fungi (t-test, P = 1.03E-27, n=29 and n=30 for

405 *Nectria* sp. and *R. sulphurea* bioassays, respectively).

406

```
Fig. 5 Plate bioassays of S. griseus XylebKG-1 versus Nectria sp. and R. sulphurea. See
methods for assay conditions and media used. Average values are shown from 29 and 30 trials
```

409 (*Nectria* sp. and *R. sulphurea*, respectively), with error bars representing standard error. T-test 410 confirmed significance with P < 0.01.

411

412

413 Secondary metabolites produced by *S. griseus* XylebKG-1

414 Cultivation in liquid yeast peptone media led to bioactivity guided isolation of cycloheximide (1)

415 using *Nectria* sp. as the indicator organism. HR-ESI-MS provided the molecular formula

416 $C_{15}H_{23}NO_4$; ¹H and ¹³C NMR data solely matched to the known compound cycloheximide (1). In

addition, the isolated metabolite showed the same retention time, UV spectrum and ESI-MS

418 pattern as a commercially acquired cycloheximide standard. Furthermore, cycloheximide was

419 produced by S. griseus XylebKG-1 cultivated on agar plates of 8 different media (yeast peptone

420 maltose, potato dextrose, oat, soy mannitol, starch glycerol glucose, ISP1, ISP2, and 1187

421 media), consistent with a robust synthesis of compound cycloheximide under diverse growth

422 conditions. In addition to cycloheximide, two byproducts were isolated by preparative HPLC

from a culture of *S. griseus* XylebKG-1 in ISP1 media and identified as naramycin B (2) and

424 actiphenol (**3**) [65-67].

425

Fig. 6 Metabolites isolated from *S. griseus* XylebKG-1. Cycloheximide (1); naramycin B (2);
actiphenol (3); dihydromaltophilin (4).

428

Because the alteration of growth media frequently results in a substantially changed metabolite
pattern, a switch in growth media can be utilized to explore the metabolic potential of bacterial
strains. In the case of *S. griseus* XylebKG-1, cultivation in PD and ISP4 resulted in the

biosynthesis of an additional antifungal metabolite. After isolation by preparative HPLC, the 432 433 molecular formula C₂₉H₄₀N₂O₆ (determined by HR-ESI-MS) and NMR data identified the 434 compound as dihydromaltophilin (4) [68]. 435 436 In plate bioassays, cycloheximide inhibited the isolated Nectria sp. (zones of inhibition: 30 µl, 44 437 mm; 2 µl, 18 mm; 0.2 µg, 9 mm) but not R. sulphurea (no inhibition observed). Liquid culture 438 assays confirmed this result, indicating a minimum inhibitory concentration of cycloheximide 439 towards Nectria sp. of 0.02 mM. R. sulphurea grew in all test conditions (cycloheximide concentration up to 2.7 mM), although it did exhibit slower growth at higher concentrations of 440 441 cycloheximide (data not shown). Dihydromaltophilin similarly inhibited both Nectria sp. and R. sulphurea (zones of inhibition: 20 µl, 20 / 22 mm; 2 µl, 12 / 13 mm). Naramycin-B and 442 443 actiphenol were non-inhibitory under all conditions tested. 444 A putative cycloheximide biosynthetic gene cluster was identified in the S. griseus XylebKG-1 445 446 genome using antiSMASH v2.0 [69] based on its homology to the cycloheximide biosynthetic 447 cluster from *Streptomyces* sp. YIM56141 (GenBank accession [JX014302.1]) [70], and its being consistent with retrobiosynthetic logic (data not shown). All proteins predicted in the gene 448 449 cluster from *Streptomyces* sp. YIM56141 were present in the *S. griseus* XylebKG-1 genome, 450 except that the polyketide synthase *cheE* homolog was annotated as two separate genes in S. griseus XylebKG-1 (labeled *cheE1* and *cheE2* in Fig. 7). This entire genomic region is conserved 451

452 in the genome of *Streptomyces griseus* subsp. *griseus* NBRC13350 [NC_010572.1]. BLAST

453 searches using dihydromaltophilin biosynthetic cluster genes previously identified by Yu *et al.*

[75] [EF028635], revealed highly similar protein sequences with the top blast hits of the first six

genes (expect values: 0.0, 0.0, 0.0, 0.0, 0.0, and 2e-105) in the cluster being in the same relative 455 456 positions. Similar to the pine beetle symbiont Streptomyces sp. SPB78 in which no homologs 457 were found for ferredoxin-like and arginase proteins [76], BLAST indicated top hits for these 458 genes in separate areas of the genome with much higher expect values (expect values: 8e-009 & 459 2e-010 respectively). The same pattern of results appeared in a BLAST search of the same 460 cluster fragment genes against S. griseus subsp. griseus NRBC13350 [NC_010572.1]. Namely, 461 the top BLAST hits for the first six genes had a conserved genomic order and extremely small 462 expect values (0.0, 0.0, 0.0, 0.0, 0.0, and 2e-105) while the last two genes (ferredoxin-like and arginase) had much higher expect values (2e-010 & 8e-009) and were found in other parts of the 463 464 genome. Evolutionary conservation of these clusters from before the adaptation of S. griseus XylebKG-1 as a symbiont of ambrosia beetles suggests the potential for similar and/or 465 466 complementary regulation and activity of the metabolites that they produce. 467 Fig. 7 Putative cycloheximide biosynthetic gene cluster in S. griseus XylebKG-1, predicted 468 469 using antiSMASH v2.0, homology to a cycloheximide biosynthetic gene cluster from

470 *Streptomyces* sp. YIM56141, and retrobiosynthetic logic. Letters above the cluster indicate gene

471 names, with corresponding locus names and annotations indicated below. An upstream

472 biosynthetic gene cluster predicted to be unrelated to cycloheximide biosynthesis is also shown,

473 with its polyketide synthase (PKS) genes indicated.

474

Our findings are consistent with *S. griseus* XylebKG-1 being a potential defensive symbiont of
ambrosia beetles. Cycloheximide's specific inhibition of the antagonist *Nectria* sp., but not the
mutualist *R. sulphurea*, supports a defensive role for its production by XylebKG. This parallels

22

478	similar results obtained for fungus-growing ants and Dendroctonus frontalis, where their
479	associated Actinobacteria inhibited the growth of a fungal parasite and not the fungal mutualist
480	[26, 27]. Cycloheximide inhibits protein synthesis in eukaryotic cells and as such is toxic to most
481	eurkaryotes [77], including fungi. Interestingly, species in the fungal order Ophiostomatotales
482	(including Raffaelea spp.), are known to largely be resistant to cycloheximide [28, 78]. Although
483	not determined here, X. affinis also cultivates a cycloheximide-insensitive Raffaelea sp. as food
484	[47]. Two different ambrosia beetle species associating with two different cycloheximide-
485	insensitive Raffaelea spp. mutualists as well as the cycloheximide-producing S. griseus
486	XylebKG-1 further supports the role of these bacteria as defensive symbionts, as evolutionarily
487	stable relationships are expected to promote such complementarity. In contrast,
488	dihydromaltophilin production inhibits the growth of both Nectria sp. and R. sulphurea. The
489	production of dihydromaltophilin under only a few growth conditions could suggest that it does
490	not have an active role in the ambrosia beetle system, but rather is a remnant from before S.
491	griseus XylebKG-1 became associated with these beetles. In this regard it is worth noting that
492	dihydromaltophilin analogs were found at low expression levels in the Dendroctonus frontalis
493	system [76]. Alternatively, dihydromaltophilin production may be regulated to avoid inhibition
494	of R. sulphurea, or selected for activity versus other organisms not considered in this study.
495	

496 Conclusion

In this study we consistently isolated a single *Streptomyces* morphotype and phylotype from both *X. saxesenii* and *X. affinis* that inhibited the growth of the parasitic fungus *Nectria* sp., but not
the mutualistic *R. sulphurea*, likely via the production of cycloheximide. Its ubiquity suggests
that XylebKG-1 may be a defensive mutualist of these ambrosia beetles that inhibits the growth

23

501	of all but a few fungi, including its mutualistic fungal food source. Future studies should include
502	natural nests collected from a wider range of species and geographies to establish the breadth and
503	prevalence of XylebKG-1 in bark and ambrosia beetle nests [28]. These studies should also
504	include greater phylogenetic power as 16S r RNA gene analyses is not sufficient to resolve
505	species within the S. griseus clade [79]. Cycloheximide should be assayed in vivo to confirm the
506	relevance of its in vitro activity, and any other compounds also produced determined in vivo
507	(e.g., those produced by the biosynthetic gene cluster adjacent to the cycloheximide cluster), if
508	they exist. Furthermore, the presence and activity of XylebKG-1 may also vary during beetle
509	development, e.g., cycloheximide may be used to clear new nests of contaminating fungus in
510	preparation for the agricultural symbiont. The antibiosis of cycloheximide includes a large non-
511	specific range of fungi and as such other fungal symbionts, aside from Nectria sp., may also be
512	inhibited. We have identified a putative defensive Actinobaterium and an antagonistic fungal
513	symbiont in two ambrosia beetles, potentially expanding the interactions from bipartite to
514	quadripartite.

516 References

517 518	1.	Farrell, B.D., et al., <i>The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae)</i> . Evolution, 2001. 55 (10): p. 2011-2027.
519	2.	Kirkendall, L.R., D.S. Kent, and K.F. Raffa, <i>Interactions among males, females and offspring in</i>
520		bark and ambrosia beetles: the significance of living in tunnels for the evolution of social
521		behavior, in The evolution of social behavior in insects and arachnids, J.C. Choe and B.J. Crespi,
522		Editors. 1997, Cambridge University Press: Cambridge, United Kingdom. p. 181-215.
523	3.	Beaver, R.A., Insect-fungus relationships in the bark and ambrosia beetles, in Insect-fungus
524	•	<i>interactions</i> , N. Wilding, et al., Editors. 1989, Academic: London. p. 121-143.
525	4.	Francke-Grosmann, H., Zur epizoischen und endozoischen Übertragung der symbiotischen Pilze
526		des Ambrosiakäfers Xyleborus saxeseni (Coleoptera: Scolitidae). Entomologica Germanica, 1975.
527		1 : p. 279-292.
528	5.	Francke-Grosmann, H., Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern. Zeitschrift
529	5.	für Morphologie und Ökologie der Tiere, 1956. 45 (3): p. 275-308.
530	6.	Kirkendall, L.R., P.H.W. Biedermann, and B.H. Jordal, Evolution and diversity of bark and
531		ambrosia beetles., in Bark Beetles: Biology and Ecology of Native and Invasive Species, F.E. Vega
532		and R.W. Hofstetter, Editors. 2015, Academic Press. p. 85-156.
533	7.	Batra, L.R., Ambrosia beetles and their associated fungi: research trends and techniques.
534		Proceedings: Plant Sciences, 1985. 94 (2-3): p. 137-148.
535	8.	Mayers, Chase G., et al. "Three genera in the Ceratocystidaceae are the respective symbionts of
536		three independent lineages of ambrosia beetles with large, complex mycangia." Fungal
537		Biology 119.11 (2015): 1075-1092.
538	9.	Biedermann, P.H.W., et al., Abundance and dynamics of filamentous fungi in the complex
539		ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera:
540		<i>Curculionidae, Scolytinae).</i> Fems Microbiology Ecology, 2013. 83 (3): p. 711-723.
541	10.	Cassar, S. and M. Blackwell, <i>Convergent origins of ambrosia fungi</i> . Mycologia, 1996. 88(4): p.
542		596-601.
543	11.	Six, D.L., Ecological and Evolutionary Determinants of Bark Beetle -Fungus Symbioses. Insects,
544		2012. 3 (1): p. 339-366.
545	12.	Aanen, D.K., et al., The evolution of fungus-growing termites and their mutualistic fungal
546		symbionts. Proceedings of the National Academy of Sciences, 2002. 99(23): p. 14887-14892.
547	13.	Mueller, U.G., et al., The Evolution of Agriculture in Insects. Annual Review of Ecology, Evolution,
548		and Systematics, 2005. 36 (1): p. 563-595.
549	14.	Mueller, U.G., et al., The Origin of the Attine Ant-Fungus Mutualism. The Quarterly Review of
550		Biology, 2001. 76 (2): p. 169-197.
551	15.	Dejean, A., et al., Arboreal ants build traps to capture prey. Nature, 2005. 434: p. 973.
552	16.	Hajek, A.E., et al., Fidelity Among Sirex Woodwasps and Their Fungal Symbionts. Microb Ecol,
553		2013. 65 (3): p. 753-762.
554	17.	Lauth, J., M.X. Ruiz-Gonzalez, and J. Orivel, New findings in insect fungiculture: Have ants
555		developed non-food, agricultural products? Commun Integr Biol, 2011. 4 (6): p. 728-30.
556	18.	Leroy, C., et al., Trophic mediation by a fungus in an ant-plant mutualism. Journal of Ecology,
557		2011. 99 (2): p. 583-590.
558	19.	Li, X., W. Guo, and J. Ding, Mycangial fungus benefits the development of a leaf-rolling weevil,
559		Euops chinesis. J Insect Physiol, 2012. 58(6): p. 867-73.

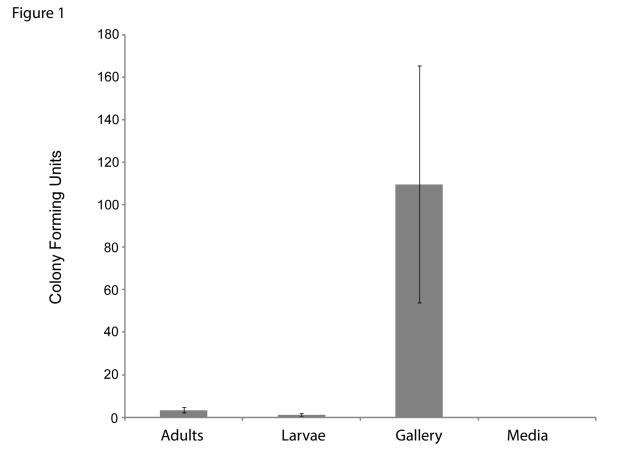
າ	C
/	
_	-

560	20.	Rohfritsch, O., Plants, gall midges, and fungi: a three-component system. Entomologia
561		Experimentalis et Applicata, 2008. 128 (1): p. 208-216.
562	21.	Toki, W., et al., <i>Fungal Farming in a Non-Social Beetle</i> . Plos One, 2012. 7 (7): p. e41893.
563	22.	Currie, C.R., Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia,
564		2001. 128 (1): p. 99-106.
565	23.	Currie, C.R., U.G. Mueller, and D. Malloch, The agricultural pathology of ant fungus gardens.
566		Proc Natl Acad Sci U S A, 1999. 96 (14): p. 7998-8002.
567	24.	Cafaro, M.J., et al., Specificity in the symbiotic association between fungus-growing ants and
568	25	protective Pseudonocardia bacteria. Proc Biol Sci, 2011. 278 (1713): p. 1814-22.
569	25.	Currie, C.R., et al., <i>Coevolved Crypts and Exocrine Glands Support Mutualistic Bacteria in Fungus</i> -
570	20	Growing Ants. Science, 2006. 311 (5757): p. 81-83.
571 572	26.	Currie, C.R., et al., <i>Fungus-growing ants use antibiotic-producing bacteria to control garden</i>
572	27.	parasites. Nature, 1999. 398 (6729): p. 701-704. Scott, J.J., et al., <i>Bacterial protection of beetle-fungus mutualism.</i> Science, 2008. 322 (5898): p.
574	27.	63.
575	28.	Human, Z.R., et al., Antifungal actinomycetes associated with the pine bark beetle, Orthotomicus
576	20.	erosus, in South Africa. South African Journal of Science, 2017. 113 (1-2): p. 34-40.
577	29.	Visser, A., et al., Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-
578		Growing Termites. Microbial Ecology, 2012. 63 (4): p. 975-985.
579	30.	Ruddick, S.M. and S.T. Williams, Studies on the ecology of actinomycetes in soil V. Some factors
580		influencing the dispersal and adsorption of spores in soil. Soil Biology and Biochemistry, 1972.
581		4 (1): p. 93-103.
582	31.	Kaltenpoth, M., et al., Symbiotic Bacteria Protect Wasp Larvae from Fungal Infestation. Current
583		Biology, 2004. 15 (5): p. 475-479.
584	32.	Oh, D.C., et al., Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated
585		Streptomyces sp. Org Lett, 2011. 13(4): p. 752-5.
586	33.	Poulsen, M., et al., Chemical Analyses of Wasp-Associated Streptomyces Bacteria Reveal a
587		Prolific Potential for Natural Products Discovery. PLoS One, 2011. 6(2): p. e16763.
588	34.	Hanshew, A.S., et al., Minimization of chloroplast contamination in 16S rRNA gene
589		pyrosequencing of insect herbivore bacterial communities. Journal of Microbiological Methods,
590	25	2013. 95 (2): p. 149-155.
591	35.	Seipke, R.F., et al., Fungus-growing Allomerus ants are associated with antibiotic-producing
592	20	actinobacteria. Antonie van Leeuwenhoek, 2012. 101 (2): p. 443-447.
593 594	36.	Seipke, R.F., et al., Analysis of the bacterial communities associated with two ant-plant symbioses. MicrobiologyOpen, 2013.
594 595	37.	Florez, L.V., et al., Defensive symbioses of animals with prokaryotic and eukaryotic
595 596	57.	microorganisms. Nat Prod Rep, 2015. 32 (7): p. 904-36.
590 597	38.	Berdy, J., <i>Bioactive microbial metabolites.</i> J Antibiot (Tokyo), 2005. 58 (1): p. 1-26.
598	39.	Sekar, R., et al., An Improved Protocol for Quantification of Freshwater Actinobacteria by
599	55.	Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2003. 69(5): p.
600		2928-2935.
601	40.	Stach, E. and A.T. Bull, Estimating and comparing the diversity of marine actinobacteria. Antonie
602	-	van Leeuwenhoek, 2005. 87 (1): p. 3-9.
603	41.	Wood, S.L., The bark and ambrosia beetles of North and Central America (Coleoptera:
604		Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 1982. 6: p. 1-1359.

^	~
,	
_	U.

		20
605	42.	Schedl, K.E., Scolytidae und Platypodidae Afrikas, II. Revista de Entomologia de Mocamique,
606		1962. 5 (1): p. 1-594.
607	43.	Biedermann, P., K. Peer, and M. Taborsky, Female dispersal and reproduction in the ambrosia
608		beetle Xyleborinus saxesenii Ratzeburg (Coleoptera; Scolytinae). Vol. 18. 2012. 231-235.
609	44.	Biedermann, P.H.W., K.D. Klepzig, and M. Taborsky, Fungus cultivation by ambrosia beetles:
610		Behavior and laboratory breeding success in three xyleborine species. Environmental
611		entomology, 2009. 38 (4): p. 1096-1105.
612	45.	Biedermann, P.H.W., K.D. Klepzig, and M. Taborsky, Costs of delayed dispersal and alloparental
613		care in the fungus-cultivating ambrosia beetle Xyleborus affinis Eichhoff (Scolytinae:
614		Curculionidae) Behavioral Ecology and Sociobiology 65:1753-1761 11 p. Behavioral Ecology and
615		Sociobiology, 2011(65): p. 1753-1761.
616	46.	Biedermann, P.H.W. and M. Taborsky, Larval helpers and age polyethism in ambrosia beetles.
617		Proc.Natl Acad.Sci.USA, 2011. 108 (41): p. 17064-17069.
618	47.	Roeper, R.A. and J.R.J. French, Ambrosia fungi of the Western United States and Canada - beetle
619		assocaitions (Coleoptera: Scolytidae), Tree Hosts, and Distribution. Northwest Science, 1981.
620		55 (4): p. 305-309.
621	48.	Grubbs, K.J., et al., Genome sequence of Streptomyces griseus strain XylebKG-1, an ambrosia
622		beetle-associated actinomycete. Journal of bacteriology, 2011. 193(11): p. 2890-2891.
623	49.	Peer, K. and M. Taborsky, Female ambrosia beetles adjust their offspring sex ratio according to
624		outbreeding opportunities for their sons. Journal of evolutionary biology, 2004. 17(2): p. 257-
625		264.
626	50.	Cafaro, M.J. and C.R. Currie, Phylogenetic analysis of mutualistic filamentous bacteria associated
627		with fungus-growing ants. Canadian Journal of Microbiology, 2005. 51 (6): p. 441-446.
628	51.	White, T., et al., Amplification and direct sequencing of fungal ribosomal RNA genes for
629		phylogenetics, in PCR Protocols: A Guide to Methods and Applications, M. Innis, et al., Editors.
630		1990, Academic Press. p. 315-322.
631	52.	Rehner, S.A. and E. Buckley, A Beauveria phylogeny inferred from nuclear ITS and EF1- $lpha$
632		sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia,
633		2005. 97 (1): p. 84-98.
634	53.	Heuer, H., et al., Analysis of actinomycete communities by specific amplification of genes
635		encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and
636		Environmental Microbiology, 1997. 63(8): p. 3233-3241.
637	54.	Edwards, U., et al., Isolation and direct complete nucleotide determination of entire genes.
638		Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 1989. 17(19):
639		p. 7843-7853.
640	55.	Benson, D.A., et al., <i>GenBank</i> . Nucleic Acids Research, 2013. 41 (D1): p. D36-D42.
641	56.	Altschul, S.F., et al., <i>Basic local alignment search tool</i> . Journal of molecular biology, 1990. 215 (3):
642		p. 403-410.
643	57.	Tamura, K., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood,
644		evolutionary distance, and maximum parsimony methods. Molecular biology and evolution,
645	50	2011. 28 (10): p. 2731-2739.
646	58.	Edgar, R.C., <i>MUSCLE: multiple sequence alignment with high accuracy and high throughput.</i>
647	50	Nucleic Acids Research, 2004. 32 (5): p. 1792-1797.
648	59.	Hyatt, D., et al., <i>Prodigal: prokaryotic gene recognition and translation initiation site</i>
649		identification. BMC Bioinformatics, 2010. 11: p. 119.

h	7
2	1


650	60.	Finn, R.D., J. Clements, and S.R. Eddy, HMMER web server: interactive sequence similarity
651		searching. Nucleic Acids Research, 2011. 39 (suppl 2): p. W29-W37.
652	61.	Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
653		Research, 2000. 28 (1): p. 27-30.
654	62.	Katoh, K. and D.M. Standley, MAFFT multiple sequence alignment software version 7:
655		<i>improvements in performance and usability</i> . Mol Biol Evol, 2013. 30 (4): p. 772-780.
656	63.	Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands
657		of taxa and mixed models. Bioinformatics, 2006. 22 (21): p. 2688-2690.
658	64.	Darling, A.E., B. Mau, and N.T. Perna, progressiveMauve: Multiple Genome Alignment with Gene
659		Gain, Loss and Rearrangement. Plos One, 2010. 5(6): p. e11147.
660	65.	Jeffs, P.W. and D. McWilliams, Carbon-13 nuclear magnetic resonance study of the biosynthesis
661		of cycloheximide. Stereospecific incorporation of malonate into the glutarimide ring. Journal of
662		the American Chemical Society, 1981. 103 (20): p. 6185-6192.
663	66.	Lakhvich, F., T. Buravskaya, and A. Akhrem, Synthesis of actiphenol and its normethyl analogues
664		and 6-hydroxy derivatives. Chemistry of Natural Compounds, 1993. 29 (4): p. 526-529.
665	67.	Berg, D., et al., Naramycin B, an antibiotic from Streptomyces griseus strain 587 with herbicidal
666		properties-fermentation, isolation, and identification. Z. Naturforsch., 1982. 37(11/12): p. 1100-
667		1106.
668	68.	Graupner, P.R., et al., Dihydromaltophilin; a novel fungicidal tetramic acid containing metabolite
669		from Streptomyces sp. J Antibiot (Tokyo), 1997. 50(12): p. 1014-1019.
670	69.	Blin, K., et al., antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite
671		producers. Nucleic Acids Research, 2013.
672	70.	Yin, M., et al., Cycloheximide and Actiphenol Production in Streptomyces sp. YIM56141 Governed
673		by Single Biosynthetic Machinery Featuring an Acyltransferase-less Type I Polyketide Synthase.
674		Organic Letters, 2014. 16(11): p. 3072-3075.
675	71.	Batra, L.R., Ambrosia fungi: a taxonomic revision, and nutritional studies of some species.
676		Mycologia, 1967. 59 (6): p. 976-1017.
677	72.	Persson, Y., et al., Fungi vectored by the bark beetle Ips typographus following hibernation under
678		the bark of standing trees and in the forest litter. Microbial Ecology, 2009. 58 (3): p. 651-659.
679	73.	Mauchline, N., et al., Process of infection of armored scale insects (Diaspididae) by an
680		entomopathogenic Cosmospora sp. Journal of Invertebrate Pathology, 2011. 108(1): p. 46-51.
681	74.	Ehrlich, J., The beech bark disease: a Nectria disease of Fagus, following Cryptococcus fagi
682		<i>(Baer.).</i> Canadian Journal of Research, 1934. 10 (6): p. 593-692.
683	75.	Yu , F., et al., Structure and Biosynthesis of Heat-Stable Antifungal Factor (HSAF), a Broad-
684		Spectrum Antimycotic with a Novel Mode of Action. Antimicrobial Agents and Chemotherapy,
685		2007. 51 (1): p. 64-72.
686	76.	Blodgett, J.A.V., et al., Common biosynthetic origins for polycyclic tetramate macrolactams from
687		phylogenetically diverse bacteria. Proceedings of the National Academy of Sciences, 2010.
688		107 (26): p. 11692-11697.
689	77.	Obrig, T.G., et al., The Mechanism by which Cycloheximide and Related Glutarimide Antibiotics
690		Inhibit Peptide Synthesis on Reticulocyte Ribosomes. Journal of Biological Chemistry, 1971.
691		246 (1): p. 174-181.
692	78.	Harrington, T.C., Cycloheximide Sensitivity as a Taxonomic Character in Ceratocystis. Mycologia,
693		1981. 73 (6): p. 1123-1129.

- 69479.Rong, X. and Y. Huang, Taxonomic evaluation of the Streptomyces griseus clade using multilocus695sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three696subspecies as 11 genomic species. Int J Syst Evol Microbiol, 2010. **60**(3): p. 696-703.
- 697
- 698


Two samples were colle	cted from	each nes	st and pla	ated in
duplicate.				
Xyleborinus saxesenii	Adults	Larvae	Nest	Substrate
Nest 1	6/6	2/6	6/6	
Nest 2	3/6	3/6	2/6	
Nest 3	4/6	1/6	3/6	
Control				0/6
Total	13/18	6/18	11/18	0/6

Table 1. Number of plates yielding actinobacterial growth.

- **S1** Methods. Additional details concerning analytical chemistry methods.
- 701 S2 Fig1. Updated Maximum likelihood 16S phylogeny of the XylebKG-1 clade and its
- 702 relatives
- 703 S3 Fig2. ¹H spectrum of cycloheximide (CD₃OD).
- 704 S4 Fig3. ¹H spectrum of naramycin B (CD₃OD)
- 705 **S5 Fig4.** ¹H spectrum of dihydromaltophilin (CD₃OD)

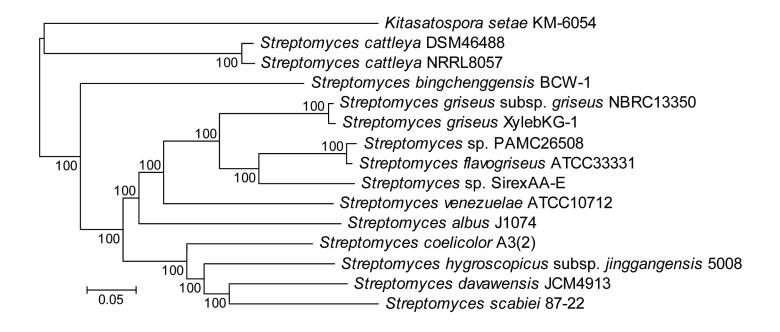
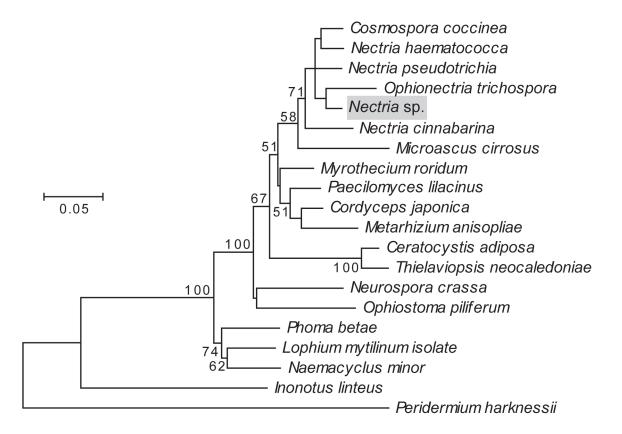


Figure 2



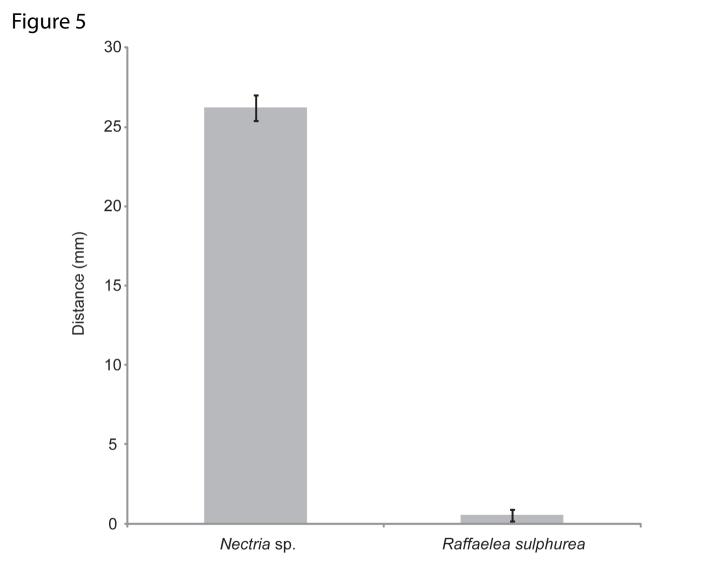

0.02

Figure 3

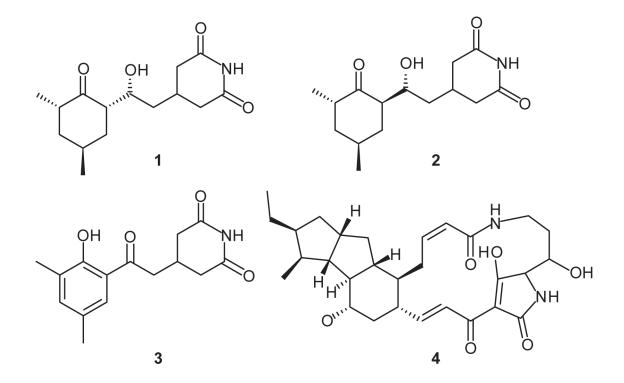


Figure 4

Figure 6

Figure 7

chxA: SACT1_7137 - SARP-type transcriptional regulator cl chxB: SACT1_7138 - Acyl transferase cl chxC: SACT1_7139 - Acyl carier protein cl chxD: SACT1_7140 - Asparagine transferase cl

chxE1: SACT1_7141 - trans-AT polyketide synthase chxE2: SACT1_7142 - trans-AT polyketide synthase

chxF: SACT1_7143 - LysR-type transcriptional regulator chxG: SACT1_7144 - NADH:flavin oxidoreductase chxH: SACT1_7145 - Short chain dehydrogenase chxI: SACT1_7146 - Cytochrome P450 chxJ: SACT1_7147 - AMP-dependent synthetase and ligase