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Abstract 20 

 21 

Background: Primary liver tissue cancers display consistent increase in global disease burden 22 

and mortality. Identification of cell-of-origins for primary liver cancers would be a necessity 23 

to expand options for designing relevant therapeutics and preventive medicine for these cancer 24 

types. Previous reports on cell-of-origin for primary liver cancers was mainly from animal 25 

studies, and integrative research utilizing human specimen data was poorly established.  26 

Methods: We analyzed a whole-genome sequencing data set for a total of 363 tumor and 27 

progenitor tissues along with 423 normal tissue epigenomic marks to predict the cell-of-origin 28 

for primary liver cancer subtypes.  29 

Results: Despite the mixed histological features, the predicted cell-of-origin for mixed 30 

hepatocellular carcinoma / intrahepatic cholangiocarcinoma were uniformly predicted as a 31 

hepatocytic origin. Individual sample-level prediction revealed differential level of cell-of-32 

origin heterogeneity depending on the primary liver cancer types, with more heterogeneity 33 

observed in intrahepatic cholangiocarcinomas. Additional analyses on the whole genome 34 

sequencing data of hepatic progenitor cells suggest these progenitor cells might not a direct 35 

cell-of-origin for liver cancers.  36 

Conclusions: These results provide novel insights on the heterogeneous nature and potential 37 

contributors of cell-of-origin predictions for primary liver cancers.     38 

 39 

Keywords: Cell-of-origin, Primary liver cancer, Whole genome sequencing, Epigenomics, 40 

Cancer genomics 41 
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Background 43 

Primary liver cancers (PLCs) is one of the major cancer types with increasing global disease 44 

burden over the years, reaching incidence rates and mortality over 900,000 per year (1, 2). This 45 

high morbidity and mortality of PLCs is due to the complex nature of the disease and lacking 46 

effective diagnostics and treatment besides multi-kinase inhibitors, thus strongly emphasizing 47 

the importance of relevant researches on early diagnosis and extensive drug development. In 48 

line with this, several endeavored researches were performed on identifying suitable diagnostic 49 

markers and targeted therapy-based treatments for PLCs, including the whole genome and 50 

exome-level profiling (3). So far, recent comprehensive efforts on investigating the genomics 51 

of PLCs revealed novel insights about the major mutation signatures, sub-classifications, and 52 

recurrent somatic mutations in coding regions (TERT, TP53, CTNNB1, KRAS, IDH1/2, etc.) 53 

and noncoding regions (NEAT1 and MALAT1), which some of them are driver mutations and 54 

may associate with the clinical outcomes (4, 5). More investigations are underway to fully 55 

unveil the mechanisms and processes behind the progression of PLCs.  56 

One of the complex, unanswered questions associated with the progression of PLCs is the 57 

possible cell-of-origins (COOs) corresponding to the various subtypes. PLC not only represents 58 

classical hepatocellular carcinoma (HCC) subtype, comprising of ~90% of PLCs, but also 59 

includes mixed hepatocellular and cholangiocarcinoma (Mixed) and intrahepatic 60 

cholangiocarcinoma (ICC), which are the two cancer subtypes displaying biliary phenotype 61 

with a different extent. COOs for these subtypes might depend on the location of a tumor within 62 

the liver and the differential clinical status associated with each tumor, represented by 63 

individual-level variability of cancer progression. So far, in-vitro and in-vivo experiments 64 

strictly at animal models proposed possible COOs for different subtypes of PLCs, including 65 
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hepatocytes for HCCs, Mixed and ICCs, cholangiocytes for Mixed and ICCs, and bipotential 66 

hepatic progenitor cells (HPCs) for HCCs and ICCs (6). None of these are yet confirmatory 67 

due to the potential biases accompanied by cell cultures and genetic manipulation-based 68 

lineage-tracing animal model systems and lack of human level studies, and both evidences 69 

which indicates either differentiated cells or HPCs as a predominant COO for PLCs are present. 70 

For example, COO for HCCs were either reported as solely hepatocytes (7) or hepatocytes plus 71 

differentiated benign lesions derived from HPCs (8). For the COO for ICCs, hepatocytes which 72 

undergo conversion into cholangiocytes (9) or the billiary epithelial cells (10) were pointed out 73 

as possible options depending on the usage of different transgenic models. In addition, recent 74 

reports also suggest the possibility of de-differentiation of hepatocytes (7) and cholangiocytes 75 

(11) after the liver injury as potential sources of progenitor cells and PLCs, which further 76 

enhances the complexity of cellular origin for the liver cancer progression. Efforts on 77 

extrapolating these COO-related complexities by utilizing actual human cancer tissue data 78 

itself were scarce with one article partly visiting at a preliminary level (12), but no studies were 79 

yet performed in a fully comprehensive, inter-cohort manner. Thus, uncovering the major 80 

COOs matching to each subtype of PLCs and examining the potential variance of COOs across 81 

the tumors from different individuals remain highly necessary for the better understanding of 82 

the cancer progression for PLCs along with the early-stage diagnosis and possibly the treatment 83 

selection. 84 

Here, we performed a computational approach to dissect out the possible COOs matching to 85 

each cancer subtype within PLCs and to interrogate possible individual tumor-level 86 

heterogeneity in COOs. For this, we analyzed the whole genome sequencing data from 320 of 87 

PLCs (256 HCCs, 8 Mixed, and 56 ICCs), 12 of extrahepatic biliary tract cholangiocarcinoma 88 

(BTCAs) based on the assumption that these cancer type would display predominant 89 
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cholangiocytic COO, and 31 of HPCs and colon adult stem cells for assessing the possibility 90 

as a common COO for PLCs, along with 423 of chromatin features at the epigenome-level (see 91 

“Methods”). Our study not only confirmed the role of chromatin marks associated with possible 92 

COOs in shaping the mutation landscape of PLCs, but also uncovering the differential 93 

contribution of each COO in different subtypes of PLCs.    94 

 95 

Methods 96 

Data 97 

For most analyses in this study, we used somatic mutation data of whole-genome sequencing 98 

(WGS) from the NCC-Japan liver cancer (LINC-JP), RIKEN-Japan liver cancer (LIRI-JP), and 99 

Singapore biliary tract cancer (BTCA-SG) projects after acquiring permission of ICGC 100 

(http://icgc.org). LINC-JP and LIRI-JP data consisted of a total of 282 samples with the 101 

exception of some cases which displayed multifocal or hypermutations, and these data were 102 

subgrouped according to the histological types (256 HCCs, 8 Mixed, and 18 ICCs). Data from 103 

BTCA-SG were all extrahepatic cholangiocarcinoma samples consisted of 12 samples without 104 

any particular subgroups.  105 

The raw files of these datasets were analyzed along the standard GATK pipeline 106 

(https://www.broadinstitute.org/gatk/) and somatic mutations were called with the MuTect 107 

algorithm (http://archive.broadinstitute.org/cancer/cga/mutect) (13). 108 

In addition to the data sets listed above, WGS-derived somatic mutation profile from additional 109 

31 stem/progenitor samples (10 hepatic progenitor cells and 21 colon adult stem cells) and 38 110 

ICCs from previous studies (5, 14) were utilized for the analysis related to hepatic progenitor 111 

cells (Fig. 3, Additional file 1: Figure S7) or as an independent cohort for predicting the COO 112 

of ICCs (Additional file 1: Figure S3) and assessing viral-infection associated COO predictions 113 
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for ICCs (Additional file 1: Figure S6a). Somatic variants of these samples were called from a 114 

different method that was designed in each study comparing to the datasets we analyzed. 115 

A total of 423 epigenomic data for chromatin feature selections, correlation analyses and COO 116 

prediction analyses was obtained from ENCODE (15) and NIH Roadmap Epigenomics 117 

Mapping Consortium (16). NIH Roadmap epigenomics data can be accessed through the NCBI 118 

GSE18927 in Gene Expression Omnibus site (https://www.ncbi.nlm.nih.gov/geo/). In addition, 119 

chromatin data for liver tissues derived from hepatitis virus infected patients (donor HPC8 and 120 

HPC17) was obtained from IHEC (https://epigenomesportal.ca/ihec/download.html). 121 

To estimate the regional mutation density and average signal of chromatin features, autosomes 122 

were divided into each 1-megabase region except sectors containing low quality unique 123 

mappable base pairs, centromeres, and telomeres.   124 

We calculated the frequency of somatic mutations and ChIP-seq reads in each 1-megabase 125 

region to figure out the regional mutation density and histone modification profiles. The value 126 

of DNase I peaks and replication was also used to calculate DNase I hypersensitivity and Repli-127 

seq profiles in each 1-megabase region. All these calculations were performed using BEDOPS 128 

(17). 129 

 130 

Principal coordinate analysis 131 

PCOA was employed to represent similarity/dissimilarity of mutation frequency landscapes 132 

among the samples. Each sample was represented in a two-dimensional space consisting of 133 

principal coordinates 1 and 2 using a dissimilarity matrix, which reflected Pearson correlation 134 

coefficient among the samples. 135 

 136 
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Feature selection based on random forest algorithm 137 

Our feature selection analysis applied a modified version used in the previous study (18). 138 

Briefly, training set of each tree was organized and the mean squared error and the importance 139 

of each variable were evaluated using out-of-bag data. To determine the ranking of importance 140 

for each variable, the values of each variable were randomly permuted and examined to each 141 

tree. The initial importance value of variable m was estimated by subtracting the mean squared 142 

error between the untouched cases and the variable-m-permuted cases. Eventually, the ranking 143 

of each variable was determined by averaging importance values of variable m in the entire 144 

tree. We constructed a total of 1000 random forest trees to predict regional mutation density 145 

from a total of 423 chromatin features and employed greedy backward elimination to pick out 146 

the top 20 chromatin marks. This method sequentially removed the chromatin marker with the 147 

lowest rank at each step. These random forest models were repeated 1000 times each. Generally, 148 

in our feature selection analysis, the mutation density was calculated by combining the samples 149 

corresponding to each cancer type.  150 

 151 

Prediction of cell-of-origin by grouping of chromatin features 152 

To predict cell-of-origin (COO) for individual samples, chromatin marks were subgrouped 153 

based on the aggregate sample-level feature selection results. As a first step, we selected 154 

significant chromatin cell types above the cutoff score from the feature selection results using 155 

aggregated samples corresponding to each cancer type (Fig. 1a). Subsequently, we added 156 

relevant cell types and grouped the chromatin marks according to each selected cell type to 157 

evaluate the effect of cell-type specific chromatin on explaining variability of mutational 158 

landscapes among samples. For predicting the COO for HCCs, we simply utilized the 159 
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importance ranking among variables from 423 chromatin features due to the fact that liver 160 

chromatin features were the only major type in the aggregated feature selection results for 161 

HCCs. 162 

 163 

Signature analysis of mutational processes 164 

Nonnegative matrix factorization (NMF) algorithm was employed to investigate mutation 165 

signatures as described in previous study (19). This methodology was utilized by factoring out 166 

frequency matrix of 96-trinucleotide mutation contexts from HCC, Mixed, ICC, BTCA-SG 167 

and HPC samples.  168 

 169 

Gene expression analysis 170 

RNA-Seq experiments of HCC samples were performed previously (4), and the data had been 171 

deposited in the European Genome-phenome Archive. The reads were aligned onto the 172 

reference human genome GRCh37 using TopHat v2.1.1. Raw read counts per gene were 173 

computed using HTSeq with the GENCODE v19 annotation. Differential gene expression 174 

between hepatocytic- and non- hepatocytic-origin HCCs was analyzed using limma-voom 175 

v3.26.9 (20). Gene set enrichment analysis (GSEA) was performed using the GSEAPreranked 176 

v5 module on the GenePattern server (https://genepattern.broadinstitute.org). 177 

 178 

 179 

 180 

 181 
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Results 182 

Aggregate Sample-level Correlations Between Chromatin Marks and Somatic Mutations 183 

of PLCs 184 

Based on the previous findings about the close associations between the chromatin feature 185 

levels and regional variations in somatic mutation frequencies of tumor (18) and a number of 186 

precancerous lesions (21), we first hypothesized that the whole-genome mutation landscape of 187 

hepatocytic PLC subtype (HCCs) would exhibit closer relationship with the liver tissue 188 

(surrogate tissue for the hepatocytes) chromatin marks, whereas the mutation landscape of 189 

partial or fully biliary PLC subtypes (Mixed and ICCs) and the BTCAs would likely to display 190 

higher correlations with the chromatin marks from tissues containing either cuboidal or 191 

columnar epithelium (kidney, stomach or intestines as representative surrogate tissues for the 192 

cholangiocytes), depending on the extent of biliary phenotype and anatomical location. To 193 

examine differential associations among the mutation landscape for different subtypes of PLCs 194 

and the chromatin feature levels from normal tissues, we first employed a random-forest based 195 

feature selection method to identify the chromatin features responsible for explaining the 196 

possible variances in regional somatic mutation frequencies. To conduct the analysis, we 197 

utilized the 1-megabase window somatic mutation frequency data for three subtypes of PLCs 198 

(HCCs, Mixed and ICCs) and BTCAs at an aggregated sample level along with the 1-megabase 199 

window chromatin feature counts. As hypothesized, liver tissue chromatin marks served as 200 

major features with significance for HCCs, and stomach tissue chromatin mark served as the 201 

first-rank feature for ICCs and BTCAs (P < 2.2e-16, Mann-Whitney U-test between the first- 202 

and second-rank features of each PLC subtype; Fig. 1a). Surprisingly, liver tissue chromatin 203 

marks were major features explaining the regional mutation variation of Mixed albeit 204 

containing the biliary phenotype, implicating the unexpected skewness of possible COO 205 
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towards to the hepatocytes for the particular subtype. The lower variance explained score for 206 

Mixed and ICCs comparing to the HCCs were at least in part likely due to the lower number 207 

of the samples and the total mutation load (Additional file 1: Figure S1a, b), indicating that the 208 

correlation between the liver tissue chromatin feature levels and the somatic mutation 209 

landscape of Mixed is similar to that of HCCs. In line with these result, spearman correlations 210 

between the regional mutation frequency of HCCs or Mixed and liver H3K4me1 chromatin 211 

mark level was the highest among different possible surrogate tissues, whereas stomach 212 

H3K4me1 chromatin mark level showed the highest correlation with the regional mutation 213 

frequency of BTCAs. (Additional file 1: Figure S2a, b). Spearman correlation values among 214 

the regional mutation frequency of ICCs and H3K4me1 of different tissues were overall low 215 

without any particular tissue type dependent differences, possibly due to both the lower 216 

mutation load and the possible variability in COOs which have been previously reported (12). 217 

Similar to the spearman correlation results, regional quintile-based mean mutation density data 218 

of HCCs and Mixed were relatively highly associated with the liver tissue H3K4me1 level 219 

comparing to the H3K4me1 level of stomach tissues, while mean mutation data of ICCs and 220 

and BTCAs display higher association towards the stomach tissue H3K4me1, with ICCs as a 221 

lesser extent (Fig. 1b). Collectively, these results demonstrate that the COO-associated 222 

chromatin features could delineate the relationships with the mutation landscape of PLCs and 223 

BTCAs. 224 

 225 

Individual Sample-level Cell-of-origin Predictions 226 

To further assess the differential mutation landscapes and possible COOs of PLCs and BTCAs 227 

at the individual sample level, we conducted random forest algorithm-based COO analysis for 228 

each sample. This individual sample-based COO analysis exhibited the dominance of 229 
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hepatocytic predicted COO for HCCs and Mixed, in contrast to the BTCAs which showed 230 

stomach tissues (a proxy tissue for extrahepatic cholangiocytes) possibly as a major COO (Fig.  231 

2a). For ICCs, however, more heterogeneity of COO prediction was observed, and both 232 

hepatocytes and proxy tissues for cholangiocytes (kidney and stomach) were shown to be 233 

possible major COOs. This COO prediction pattern displayed consistency between different 234 

ICC cohorts (Additional file 1: Figure S3), thus emphasizing the heterogeneous nature of COO 235 

for ICCs. Our results not only replicated earlier findings on the COO of HCCs, ICCs and 236 

extrahepatic distal cholangiocarcinoma (DCCs) (12), but also additionally providing novel 237 

aspects about the complete predominance of hepatocytic predicted COO for Mixed tumors (8/8) 238 

and the implication of cuboidal cholangiocytes near the canal of hering (kidney tissue 239 

chromatin mark as a surrogate) could be another major COOs for ICCs besides the hepatocytes. 240 

In addition, 6 HCC samples showed non-hepatocytic predicted COO, thus inferring the 241 

possible distinctiveness for the COO of HCCs which might be linked to the differential tumor 242 

pathology. Overall, our results suggest the predominant COO for the HCCs and Mixed would 243 

most likely to be hepatocytes. Also, our evidences point to the possibility of cholangiocytes as 244 

a predominant COO for BTCAs, whereas the COOs of ICCs would vary by individual samples. 245 

These results implicate the importance of anatomical locations on the possible COOs of PLCs 246 

and BTCAs. 247 

Alongside with these result, principle coordinate analysis (PCOA) result revealed that the PLCs 248 

with hepatocytic predicted COO tend to aggregate as a cluster with all of the samples displaying 249 

principle coordinate 1 value over 0 (Additional file 1: Figure S4). In terms of the PLC subtypes, 250 

HCCs and Mixed samples were all contained within a cluster except for the ones with non-251 

hepatocytic predicted COOs, whereas the ICCs and BTCAs were more spread out (Fig. 2b), 252 

reflecting the distinct mutation landscape patterns.  253 
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To demonstrate whether HCCs with non-hepatocytic predicted COO have a unique phenotype 254 

compared to the hepatocyte-origin HCCs, we analyzed the gene expression profiles. Among 255 

the non-hepatocytic- and hepatocyte-origin predicted HCC samples, tumor RNA-Seq data were 256 

available for 6 and 189 samples, respectively (4). A comparison of gene expression levels 257 

between them showed that 124 genes were up-regulated and 21 genes were down-regulated in 258 

non-liver-origin HCCs (FDR < 0.05, absolute logFC > 0.647; Additional file 1: Table S1). 259 

Interestingly, the upregulated genes included an epithelial cell marker EPCAM and a 260 

cholangiocyte-specific marker KRT19 (Fig. 2c). Clustering analysis confirmed that HCCs with 261 

non-hepatocytic predicted COO were enriched in a cluster that expressed more EPCAM and 262 

KRT19 (Fig. 2d). Gene set enrichment analysis showed that molecular pathways associated 263 

with bile acid synthesis, xenobiotic degradation, and hepatocyte nuclear factor were down-264 

regulated in HCCs with non-hepatocytic predicted COO (Additional file 1: Figure S5). This 265 

result indicates that the functional similarity to hepatocyte was lower in HCCs with non-266 

hepatocytic predicted COO compared to hepatocyte-origin HCCs. Collectively, mRNA 267 

expression in non-hepatocyte-origin predicted HCCs partly resembled that of biliary epithelial 268 

cells. We also compared hepatocyte- and non-hepatocyte-origin predicted HCCs in terms of 269 

clinical features (including tumor stage and survival), but we did not see statistically significant 270 

difference in these features, implying that the COO assignments for HCCs might be 271 

independent from the clinical prognosis.    272 

Previous publication described the association between hepatitis virus infection status and the 273 

liver COO assignments without any subgrouping of the virus types (12). As of further 274 

investigation, we tested whether there are any hepatitis virus-type dependent tendencies to 275 

particular COOs and the associated variance explained scores for the somatic mutation 276 

landscape of PLCs. Upon grouping the PLCs with the hepatitis B virus (HBV) and hepatitis C 277 
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virus (HCV) infection status, our analysis revealed that HCCs and Mixed samples were mostly 278 

assigned to hepatocytic predicted COO regardless of the either hepatitis virus infection status. 279 

In contrast, COO predictions on HCV-infected ICCs displayed predominance towards 280 

hepatocytic predicted COO (n=5, binomial probability of 0.08, two tailed) and HBV infected 281 

ICCs mostly displayed non-hepatocytic predicted COO assignments (n=9, binomial probability 282 

of 0.04, two tailed) (Additional file 1: Figure S6a, c). Furthermore, spearman correlation values 283 

between the regional mutation frequency of aggregated samples grouped by HBV or HCV 284 

infection status and the normal liver tissue H3K4me1 chromatin mark level was higher for the 285 

HCV-infected ICCs comparing to any other ICCs with different virus infection status, and this 286 

result was fully replicated when using the H3K4me1 chromatin marks derived from HBV or 287 

HCV-infected liver tissues, thus ensuring more relevancy (Additional file 1: Table S2). In line 288 

with these results, variance explained scores for the ICCs calculated by using a total of 9 cell 289 

or tissue types, we discovered that the chromatin features with the highest level of variance 290 

explained scores were derived from different tissues depending on the hepatitis infection status 291 

of ICCs (HBV = kidney tissue, HCV = liver tissue, NBNC = stomach tissue) (Additional file 292 

1: Figure S6b). Albeit limited number of virus infected ICC samples, our results implicate a 293 

potential skewness of COO depending on the virus infection status, and a separate cohort level 294 

study with larger number of samples is strongly warranted. In addition, these results also 295 

reflects the previous findings in differential infectivity of HBVs and HCVs for cholangiocytes 296 

(22, 23). 297 

 298 

Hepatic Progenitor Cells as a Possible Cell-of-origin for PLCs 299 

HPCs, so called as oval cells, are a progenitor cell type located inside the Canal of Hering with 300 

both hepatocytic and cholangiocytic differentiation capacity and suspected as a possible COO 301 
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for PLCs. To examine the possibility of HPCs as a possible COO for different subtypes of 302 

PLCs, we performed the random forest feature selection analysis using somatic mutation 303 

frequency data of HPCs (14) at an aggregate sample level along with the epigenome feature 304 

counts. Results from this analysis demonstrated that the mutation landscape of HPCs cannot 305 

be explained adequately by the chromatin landscape, with variance explained scores for the top 306 

rank chromatin feature and the total 423 features were either below 0 or 25% (Fig. 3a). In 307 

contrast, mutation frequency data of colon stem cells (14) (counterpart stem cell type) at an 308 

aggregate sample level were explained by pre-existing set of chromatin features with variance 309 

explained score over 40% for the H3K9me3 rectal mucosa mark and over 60% for the total 423 310 

features. Post-adjustment of mutation load for colon stem cells at the level of HPCs still showed 311 

chromatin marks derived from the rectal mucosa tissue as a top rank feature with over 28% 312 

variance explained score, implicating that the differential mutation load might not be a 313 

contributing factor for the distinct feature selection analysis results. These results infer distinct 314 

mutation landscape between the HPCs and other PLCs, and thus points out the possibility that 315 

HPCs might not be a direct COO of PLCs. 316 

Mutation signature analysis on the somatic mutation landscape of HPCs were previously 317 

performed, and identified a specific age-associated mutation signature displaying correlation 318 

with the replication timing and the average chromatin level of cell lines registered in the 319 

ENCODE project (14). Based on these findings, we conducted the mutation signature analysis 320 

on the HPCs along with the PLCs and BTCAs. As predicted, we successfully extracted a 321 

resembling signature (signature D) to the age-associated signature previously identified in the 322 

HPCs with similar relative proportion level, along with the other three mutation signatures 323 

(Additional file 1: Figure S7a, b). Next, we assessed whether the proportion of signature D is 324 

correlating with the COO assignment for PLCs. As demonstrated in Fig. 3b, relative 325 
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contribution level of signature D was significantly lower for non-hepatocytic predicted COO 326 

assigned HCCs and ICCs comparing to the hepatocytic predicted COO assigned HCCs / ICCs 327 

and all of the HPCs. In line with this, several evidences point out that the correlation between 328 

relative proportion of the mutation signature and the COO assignment was specific and 329 

consistent for signature D. One is that the proportion of other three signatures (A, B and C) 330 

were not significantly associated with the COO assignments for ICCs (P > 0.57) and two 331 

signatures (A, B) weren't showing any any signification associations with the COO 332 

assignments for HCCs, too (P > 0.24). Also, mutation type pattern of HPCs were more 333 

comparable to the ICCs and BTCAs rather than the HCCs and Mixed, in contrast to the findings 334 

on the skewness of COO assignment depending on the signature D status. Furthermore, major 335 

proportion of the non-hepatocytic predicted COO samples were located in the lower quartile 336 

for the signature D proportions (Additional file 1: Figure S7d). Collectively, these results 337 

provide a novel perspective in terms of the possible importance of age-associated mutation 338 

signature level on the COO assignment, and thus reflecting again the distinct mutation 339 

landscape between the hepatocytic and non-hepatocytic predicted COO samples. 340 

 341 

Discussion 342 

In this paper, we applied random-forest machine learning algorithm and other computational 343 

analyses to whole genome sequencing data of PLCs and epigenomics data derived from normal 344 

tissues to elucidate unique association patterns between the two features and identify possible 345 

cell-of-origin distribution for PLCs at the subtype and individual tumor tissue level. Results 346 

from these analyses would help to understand the complex and heterogeneous nature of cancer 347 

cell-of-origin and the contribution of chromatin marks on differential regional somatic 348 

mutation landscape during the progression for various subtypes of PLCs.      349 
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Several recent studies support the idea of chromatin marks serving as a crucial factor in shaping 350 

the mutation landscape for several types of tumors (18, 21, 24). Consistent with this idea, our 351 

results show that the chromatin marks can explain the mutation landscape of PLCs at the 352 

subtype level, displaying variance explained scores in the range of 56% (ICCs) to 87% (HCCs). 353 

Moreover, the top chromatin marks associated with the mutational landscape of 256 HCCs 354 

were mostly derived from the liver tissue and the top correlative chromatin marks for 12 of 355 

BTCAs were from the stomach tissue, which also directly matches to the previous results from 356 

the HCCs and DCCs (12). One thing to note is the lower level of variance explained scores for 357 

ICCs comparing to any other PLC subtypes. We speculate that the potential contributor to these 358 

differences in variance explained scores might be the lower mutation load and the higher level 359 

of heterogeneity in COOs at the individual tumor tissue-level since the COOs for individual 360 

ICC tissues were the most heterogeneous among all subtypes of PLCs, although following the 361 

cell and epithelial types with respect to the anatomical locations of ICCs.   362 

The COOs for PLCs were highly debated for a number of years not only due to the discovery 363 

of several types of HPCs (25, 26), but also the facultative regeneration of hepatocytes and 364 

cholangiocytes which mainly occurs during the inflammation (7, 11). Our results suggest 365 

towards the differentiated cells rather than progenitor or stem cells as origins for PLCs based 366 

on the findings that the normal liver (representing hepatocytes), kidney and stomach (surrogate 367 

for the cholangiocytes) tissues can mostly explain the COO of PLCs, and the somatic mutation 368 

profile from the HPCs is not adequately explained (variance explained score < 24.04) by the 369 

normal tissue chromatin marks, albeit the significance of non-hepatocytic predicted COO 370 

assignments in regards to the age-associated mutation signature-specific manner. Although our 371 

chromatin feature selection analysis did not contain any liver progenitor/stem cell chromatin 372 

marks, poor correlation between the mutational landscape of HPCs and the liver or stomach 373 
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chromatin marks may infer the distinctiveness of chromatin landscape between the 374 

differentiated cells/tissues and the progenitor/stem cells. Although we cannot fully reject the 375 

possibility that the HPCs are still the very first COO of PLCs, our results at least suggest that 376 

the major somatic mutation accumulation would most likely to happen on differentiated cells, 377 

not at the progenitor/stem cell level. Future assessment on the relationship between the 378 

chromatin marks derived from the HPCs and the mutational landscape of PLCs and HPCs 379 

might be a separate confirmatory study, although the limitation on the number of 380 

progenitor/stem cells directly from human liver and its purity are major hurdles for ChIP-seq 381 

or any other epigenomics assays to be performed. 382 

 383 

Conclusions 384 

In summary, our results on the COO of PLCs discovered several novel and heterogenous nature 385 

of COO distributions in different subtypes. We believe that these results address the novel 386 

aspects of individual-level differences in tumor biology and clinical pathology of PLCs, and 387 

providing a robust and relevant way of studying cancer COO in human system without utilizing 388 

a human organoid system, which might be solely suitable for mechanism studies in a practical 389 

manner due to the labor intensiveness caused by making each organoid per each patient and 390 

potential selection bias during cell culture. Ultimately, our results might add significant 391 

arguments for the necessity of personalized medicine for cancer treatments, combined with the 392 

genomics and the other molecular signatures. 393 

 394 

 395 

  396 
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Fig. 1 Cell-of-origin chromatin features delineating relations with the regional mutation 

frequency of HCCs, Mixed, ICCs and BTCAs. a Random forest regression-based 

chromatin feature selection using aggregated somatic mutation frequency data from HCC, 

Mixed, ICC and BTCA-SG samples. The rank of each chromatin feature is determined by 

importance values. The bar length represents the variance explained scores, and error bar 

shows minimum and maximum scores derived from 1,000 repeated simulations. Red lines 

represent the cutoff scores determined by the prediction accuracy of 423 features-1 s.e.m. 

Liver chromatin features are green-colored and stomach chromatin features are blue-colored. 

b Normalized mean mutation density per each PLC subtype and BTCAs plotted with respect 

to the density quintile groups of liver and stomach H3K4me1 marks.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2019. ; https://doi.org/10.1101/511790doi: bioRxiv preprint 

https://doi.org/10.1101/511790
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 

 

Fig. 2 Analysis of COOs at the individual cancer samples. a Prediction of COO via 

grouping of chromatin features for each normal tissue type. Bar graph represents the 

percentage of samples with respect to the assigned COO by liver tissue chromatin features 

(pink), kidney tissue chromatin features (green), stomach tissue chromatin features (navy) or 

the rest (gray). b Principal coordinate analysis (PCOA) of mutation frequency distributions 

for individual cancer samples. c, d Differential gene expression by non-hepatocytic COO 

HCCs (n = 6) comparing to the hepatocytic COO HCCs (n = 189). c Volcano plot. The 

horizontal axis is the log-ratio of the non-hepatocytic COO to the hepatocytic origins. Dashed 

line represents FDR = 0.05. d Expression profile of EPCAM and KRT19 mRNA.  
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Fig. 3 Hepatic progenitor cells have distinct mutation landscape and mutational 

signature processes compared to primary liver cancer genomes. a Chromatin feature 

selection in relation to the regional mutation frequency of colon adult stem cells and hepatic 

progenitor cells. Chromatin features related to each tissue type are green-colored. b Box plot 

represents the distribution of relative contribution of signature D in HCC, Mixed, ICC, BTCA 

and HPC samples. Samples of each tumor type are separated based on whether they are 

predicted as hepatocytic COO (gray) or not (yellow). Statistical significance is calculated by 

using Mann-Whitney U-test (∗∗∗, P < 0.05). BTCAs were excluded from the statistical 

analysis because only two samples were predicted as hepatocytic COO. 
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Additional file 

 

Supplementary tables and figures for Ha et al. “Somatic mutation landscape reveals differential 

variability of cell-of-origin for primary liver cancer”. 

 

Contents: Tables S1-S2 and Figures S1-S7   
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Table S1. Differentially expressed Genes between non-hepatocytic- and hepatocytic-

origin HCCs. 
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Table S2. Spearman correlations between the regional mutation frequency of 

aggregated sample per infection status of PLCs and level of liver H3K4me1 chromatin 

mark. 
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Figure S1. Difference in variance explained scores between the HCC and MIXED type is 

related to the total number of samples and the aggregated mutation load. (a) Distribution 

of variance explained scores using either all samples or 8 randomly selected samples in 1,000 

repeated simulations. Distributions of HCC total (yellow, n = 256) and Mixed total (navy, n = 

8) are the result of using all samples for each cancer type. However, pink-colored distribution 

represents the result of using 8 randomly selected samples in only HCC type. Average variance 

explained score for each distribution is shown on the top left. (b) Distribution of aggregated 

mutation load at the 1 megabase-level from 8 randomly selected HCC samples in 1,000 

repeated simulations. Orange-colored bar represents the aggregated mutation load at the 1 

megabase-level from all samples of Mixed type. 
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Figure S2. Correlations between cancer genome mutation density and the H3K4me1 

chromatin features in different tissue types. (a) Heat map with different color depths 

corresponding to the absolute values of Spearman's ρ statistics. (b) Regional mutation density 

of HCCs, Mixeds, ICCs and BTCAs parallel to the ChIP-seq index (reverse scale) of liver or 

stomach H3K4me1. Dotted and solid lines represent mutation density and ChIP-seq index, 

respectively. A total of 106 genomic regions that show top 5% difference from the predicted 

ChIP-seq count in the regression model between liver and stomach H3K4me1 were selected. 

Spearman's rank correlations between the mutation density and ChIP-seq index are shown on 

the top right. Zoomed images are representative regions for cancer type groupings with respect 

to liver and stomach H3K4me1 level (HCC/Mixed and ICC/BTCA). 
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Figure S3. Cell-of-origin prediction distributions for distinct ICC cohorts. Pie graphs 

represent the percentage of samples getting COO assignments as liver tissue chromatin 

features (pink), kidney tissue chromatin features (green), stomach tissue chromatin features 

(navy) or the rest (gray).  
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Figure S4. PCOA of individual cancer samples. Hepatocytic COO samples are gray-colored 

and non-hepatocytic COO samples are orange-colored. 
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Figure S5. Gene sets that were down-regulated in non-hepatocytic COO HCCs. 
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Figure S6. Viral infection status-associated differences in hepatocytic cell-of-origin 

assignment and variance explained scores. (a) Pie graphs represent the percentage of 

samples assigned as hepatocytic COO (green). The number of samples for analysis is shown at 

the center of each graph. (b) Average variance explained scores for aggregated mutation data 

depending on the virus type of ICCs are estimated by grouping chromatin features based on 

each normal cell/tissue type. error bars indicate minimum and maximum scores derived from 

1,000 repeated simulations. Red line displays average variance explained score from all 423 

epigenomic features. Statistical significance is calculated from tissue with the highest value by 

using Mann-Whitney U-test (∗∗∗, P < 0.001). (c) Bar graphs show the percentage of samples 

assigned as hepatocytic COO for RIKEN samples. Dots with lines represent average variance 

explained scores derived by the liver chromatin features. 
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Figure S7. Mutation signature analysis for the genomes of HCC, Mixed, ICC, BTCA-SG 

and HPC samples. (a) Contribution of mutation types to the four mutational signatures derived 

from the somatic mutations of HCC, Mixed, ICC, BTCA-SG and HPC samples. (b) Relative 

contribution of mutational signatures in each HPC sample. (c) Relative contribution of somatic 

mutation types in each cancer/tissue type. Bar length is calculated as the average relative 

contribution in each type and error bars show standard deviation. (d) Cell-of-origin assignment 

status based on mutational signatures for HCC, ICC and BTCA. The bar represents the number 

of non-hepatocytic COO assigned samples with respect to the quartile of signature D 

contribution. Quartile values are determined by sorting samples of HCCs, Mixed, ICCs, 

BTCAs and HPCs according to the relative contribution of signature D. The number of samples 

used in the analysis is shown on each plot. 
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