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Abstract

Increasing interest in the structural and functional organization of the human brain in health and

disease encourages the acquisition of big datasets consisting of multiple neuroimaging modalities

accompanied by additional information obtained from health records, cognitive tests, biomarkers

and genotypes. Diffusion weighted magnetic resonance imaging data enables a range of promising

imaging phenotypes probing structural connections as well as macroanatomical and microstructural

properties of the brain. The reliability and biological sensitivity and specificity of diffusion data

depend on processing pipeline. A state-of-the-art framework for data processing facilitates cross-

study harmonisation and reduces  pipeline-related variability. Using diffusion data  from the UK

Biobank  we  provide  a  comprehensive  evaluation  of  different  processing  steps  that  have  been

suggested to reduce imaging artefacts and improve reliability of diffusion metrics. We consider a

general pipeline comprising 7 post-processing blocks: noise correction; Gibbs ringing correction;

evaluation  of  field  distortions;  susceptibility,  eddy-current  and  motion-induced  distortion

corrections; bias field correction; spatial smoothing; and final diffusion metric estimations. Based

on this evaluation, we suggest an optimised diffusion pipeline for processing of diffusion weighted

imaging data. 

Keywords: Diffusion weighted imaging; diffusion pipeline; UK Biobank data
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Introduction

Increasing interest in the role of individual differences in human brain architecture in health and

disease has stimulated the neuroscience community to initiate a number of large brain data projects.

Due to the attractive combination of increasing availability, low costs, its non-invasive nature and

high sensitivity  magnetic resonance imaging (MRI) including T1/T2-weighted images, functional

MRI with  tasks  and  resting  state,  perfusion  and  diffusion  weighted  imaging  has  become  the

preferred and standard brain imaging modality in these large efforts, including the UK Biobank

(UKB) (Miller et al., 2016). Brain imaging data are often accompanied by clinical and biological

information  such  as  psychological  tests,  blood  samples,  genetic  data  and  other  parameters

depending on original project targets. Combining all obtained information into a common statistical

framework benefits from universally adapted post-processing pipelines for harmonised data quality

assessment and manipulation.

Diffusion  MRI  is  based  on  the  effect  of  the  Brownian  motion  of  water  molecules  in

biological tissue (Basser et al., 1994) and allows one to probe and visualise brain organisation at the

micrometer scale (Johansen-Berg and Behrens, 2014). Current impetuous growth of theoretical and

experimental diffusion MRI approaches (Novikov et al., 2018) has offered various diffusion models

and sequences in order to effectively describe the signal decay due to water diffusion. Advanced

diffusion measurements are technically challenging and optimal data quality places high demands

on practical  implementation and protocol,  including hardware gradient  system and coil.  Due to

limited time and technical constraints researchers designing imaging studies face various trade-offs,

influencing, e.g. signal-to-noise ratio (SNR) and options related to the specific pulse sequences such

as mono- or bipolar diffusion gradients etc. 

Before  diffusion  metric  estimations  and  statistical  analysis  there  are  many  different

approaches of quality control (QC) and corrections applied to the data in order to verify diffusion
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data integrity (Alfaro-Almagro et  al.,  2018; Farzinfar et  al.,  2013; Esteban et  al.,  2017; Hasan,

2007;  Oguz  et  al.,  2014).  Ideally,  the  QC methods  should  rapidly  identify and correct  typical

artefacts such as head motion, discarded volumes, and low SNR, which may be particularly present

at  high  diffusion  weightings,  also  known as  b-values.  Despite  recent  major  developments  and

improvements (Alfaro-Almagro et al., 2018; Ciu et al., 2013; Miller et al., 2016; Roalf et al., 2016),

automated procedures for QC and artefact reduction largely represent unresolved challenges in the

imaging community. 

Various post-processing steps have been suggested in order to correct common sources of

noise  and  distortions,  including  thermal  noise  evaluation  (Veraart  et  al.,  2016a;  Veraart  et  al.,

2016b),  Gibbs  ringing  correction  (Kellner  et  al.,  2016;  Veraart  et  al.,  2016c),  susceptibility

distortion  correction  (Andersson  and  Sotiropoulos,  2016a),  motion  correction  (Andersson  and

Sotiropoulos,  2016a;  Andersson  et  al.,  2016b),  correction  of  physiological  noise  and  outliers

(Maximov et al., 2011; Maximov et al., 2015; Sairanen et al., 2018; Walker et al., 2011), and eddy

current induced geometrical distortions (Taylor et al., 2016). However, although the application of

even part of the post-processing steps such as noise correction has been demonstrated to improve

sensitivity and provide additional information about absolute diffusion metrics (Kochunov et al.,

2018), systematic evaluations of the effects of the different steps on the diffusion metrics are scarce.

Several  minimal  post-processing  pipelines  have  been  recommended  in  order  to  prepare

structural, functional and diffusion MRI data (Alfaro-Almagro et al., 2018; Ciu et al., 2013; Glasser

et al.,  2013; Sotiropoulos et  al.,  2013).  Albeit  fairly comprehensive,  none of the recommended

protocols include all steps listed above. For example, the UKB diffusion pipeline first employs

fieldmap generation using the anterior-posterior (AP) and posterior-anterior (PA) images of original

diffusion data. In turn, the selection of most reliable AP-PA images is performed by an estimation of

relative correlations over all  AP-PA images in order to find the most accurate reference image.
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Thus, the UKB data exhibit only one diffusion-specific pipeline step based on eddy (Andersson et

al., 2016a; Andersson et al., 2016b; Andersson et al., 2017), correcting the eddy currents and head

motion, susceptibility artefacts and identification and replacement of outlier slices. 

With the aim to identify the most efficient and adequate pipeline for diffusion data analysis

we tested the effects of various diffusion post-processing steps on different diffusion scalar metrics,

based on diffusion tensor imaging (Basser et al., 1994), diffusion kurtosis imaging (Jensen et al.,

2005), and white matter tract integrity (Fieremans et al., 2011) using UKB data. In order to assess to

which degree the chosen pipeline influences across-subject analysis and corresponding biological

interpretations  we compared  estimated  age-curves  (Grinberg et  al.,  2017;  Tamnes  et  al.,  2017;

Westlye et al., 2010; Westlye et al., 2012) of the diffusion metrics between pipelines using tract-

based spatial statistic (Smith et al., 2006, 2007).

Methods and Materials

Subjects and data

Table 1 summarises the demographics of the 218 UKB subjects included in the present work. We

computed diffusion scalar metrics using four different pipelines, i.e. the total number of datasets

included  in  the  analysis  is  872.  An  accurate  overview  of  the  UKB data  acquisition,  protocol

parameters, and image validation can be found elsewhere (Alfaro-Almagro et al., 2018; Miller et

al.,  2016).  The  original  UKB  post-processing  pipeline  is  described  in  details  online

(http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf  ). 

The pipeline used in the present work is shown in Figure 1. We divided the post-processing

flow into 7 general blocks. Additional block  i (marked by blue frame in Fig.1) consists of extra

steps allowing one to substitute or extend used algorithms. An advantage of the discussed pipeline
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is freely accessible open source code for all processing steps. Below we shortly describe each step

in the suggested order.

1. Noise correction

The noise in diffusion data is spatially dependent in the case of multi-channel receive coils (Aja-

Fernandez et al., 2014; Andre et al., 2014; Maximov et al., 2012). Principle component analysis of

Marchenko-Pastur noise-only distribution provides an accurate and fast method of noise evaluation

(Veraart et al., 2016a; Veraart et al., 2016b), thereby enabling signal-to-noise ratio enhancements by

the Rician noise correction. In the presented work we used the original Veraart’s Matlab code (The

Mathworks, Natick, Massachussets, USA): https://github.com/NYU-DiffusionMRI/mppca_denoise.

The noise correction methods are regularly improved and in the future it might be substituted by a

more efficient approach (see an evaluation of methods, for example, in reviews of Aja-Fernandez et

al., 2014; Manjon et al., 2015).

2. Gibbs-ringing correction

Various artefacts appearing in the raw data due to table vibration (Gallichan et al., 2010), radio-

frequency based distortions, incorrect magnetic field gradient calibration (McRobbie et al., 2006)

can significantly degrade the diffusion data. One of the most frequent artefact is known as the Gibbs

ringing artifact. This appears due to a  k-space truncation along finite image sampling and can be

suppressed by post hoc methods (Kellner et al., 2016; Perrone et al., 2015; Veraart et al., 2016c).

Here we used the approach developed by Kellner and colleagues (Kellner et al.,  2016) and the

original Matlab code: https://bitbucket.org/reisert/unring. 

3. EPI distortions
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Diffusion data acquisition is based on echo-planar imaging (EPI), which is susceptible to multiple

distortions  originating  from  a  magnetic  field  inhomogeneity.  A  few  approaches  have  been

developed to correct field inhomogeneities: a simple and robust method based on field mapping; a

method based on evaluation of point spread function; and reversed gradient approach (Wu et al.,

2008). FSL (Smith et al., 2004) offers an excellent utility for the EPI geometric distortion correction

(topup, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup  , Andersson et al., 2003). Topup requires data with

opposite phase-encoding directions for the non-diffusion weighted images (so called b0 images), for

example, anterior-posterior and posterior-anterior pair or left-right and right-left pair. 

4. Motion, eddy current and susceptibility distortion correction

Topup  and eddy works  together  for  correcting  distortions  appeared  due  to  eddy currents,  head

motion and susceptibility originated artefacts. The GPU accelerated version of  eddy (eddy_cuda)

allows one to significantly speed up the computations as well as providing additional options such

as  in  slice  alignments,  improved  outlier  detection  and  multi-band  dataset  estimations

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy/UsersGuide) (Andersson et al., 2016a; Andersson et al.,

2016b; Andersson et al., 2017). 

5. Field non-uniformity.

MR images possess a low frequency intensity shift appearing as intensity inhomogeneity over the

image. Several studies have evaluated its influence on the intra- and inter-subject reproducibility of

T1-weighted structural MRI data (Banerjee and Maji, 2015; Ganzetti et al., 2016). However, less has

been published regarding effects of non-uniformity correction on diffusion data. In order to avoid

bias based on the field non-uniformity we applied a bias field correction for  b0 image. Then, the

estimated  field  map  was  applied  to  all  diffusion  images  in  order  to  decrease  the  field
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inhomogeneity. We used the N4BiasFieldCorrection utility from ANTs (Tustison et al., 2010). An

applied order of the bias field correction step is discussed below.

6. Spatial smoothing

After  all  previous  steps,  the  diffusion  data,  in  theory,  are  ready  for  diffusion  scalar  metric

evaluation.  In  order  to  increase  SNR,  which  may be  particularly  beneficial  for  the  numerical

stability of advanced diffusion models (Maximov et al.,  2017; Vellmer et al., 2018), we applied

spatial smoothing of the raw diffusion data. For simplicity, we used isotropic smoothing with a

Gaussian kernel 1 mm3 implemented in the FSL function fslmaths.

7. Metric estimation

UKB diffusion data acquisition was done using a multi-shell  protocol with  b = 1000 and 2000

s/mm2  in  addition  to  b=0.  The  dataset  allows  one  to  obtain  typical  diffusion  metrics  such  as

conventional diffusion tensor imaging (cDTI) (Basser et al., 1994), namely, fractional anisotropy

(FA),  mean,  axial,  and  radial  diffusivity  (MD,  AD,  and  RD,  respectively);  diffusion  kurtosis

imaging (DKI) (Jensen et al., 2005) with FA, MD, AD, RD, mean, axial, and radial kurtosis (MK,

AK, RK, respectively); white matter tract integrity (WMTI) (Fieremans et al., 2011) metrics with

axonal water fraction (AWF), extra-axonal axial and radial diffusivities (AE and RE), and tortuosity

(Tort). These metrics are based on a cumulant expansion of the diffusion propagation function, i.e.

strictly speaking they do not represent a comprehensive diffusion biophysical model (Novikov et

al., 2018). Nevertheless, these maps are very popular and easy to obtain in clinical studies. For

simplicity, we consider here only DTI, DKI and WMTI metrics. For DKI, we used an approach

proposed  by  Veraart  et  al.,  (2013)  and  the  original  Matlab  code  (https://github.com/NYU-

DiffusionMRI/Diffusion-Kurtosis-Imaging). DTI was estimated using DTIFIT in FSL, by means of
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a linear weighted least squares option in command line for the shell  b = 1000 s/mm2. We assume

that  the  original  UKB DTI  metrics  were  estimated  with  the  same option,  although  it  was  not

mentioned in the description (Miller et al., 2016).

i. Additional options

Some of the steps can be substituted by other approaches or implementations. For example, non-

uniformity field corrections used in functional MRI and brain tissue segmentation may increase the

accuracy of the motion correction (Ganzetti et al., 2016). The applied isotropic spatial filtering even

with  a  quite  small  Gaussian  kernel  introduces  blurring  of  tissue  borders  and  increase  partial

voluming. A classical anisotropic diffusion filter based on the Perona-Malik algorithm (Perona and

Malik, 1987) may provide an alternative with less blurring (Vellmer et al., 2018; Van Hecke et al.,

2010). Therefore, we suggest to carefully consider the influence of different degradation factors on

the diffusion image quality and to choose a reliable and robust tool for the correction step tailored to

the study (see, for example, considerations related to neonatal neuroimaging: Bastiani et al., 2019).

Temporal SNR

In order to quantify the difference between the pipelines on a conventional data quality metric we

estimated temporal signal-to-noise ratios (tSNR, Roalf et al., 2016) for each pipeline, which allows

one to present a single numeric metric characterising the whole brain diffusion weighted dataset and

to  perform  comparative  estimations  of  data  quality  (Tønnesen  et  al.,  2018).  In  order  to

accommodate the estimation to multi-shell data we separated the datasets into two independent b-

shells with b = 1000 and 2000 s/mm2, respectively. In each case, tSNR was evaluated for S4, S5, S7

and UKB pipelines (see below).
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Statistical analysis

In order to perform a statistical comparison between pipelines we used TBSS (Smith et al., 2006).

Initially, all volumes were aligned to the FMRI58_FA template, supplied by FSL, using non-linear

transformation realised by FNIRT (Andersson et al., 2007). Next, a mean FA image of all subjects

was obtained and thinned in order to create mean FA skeleton. Afterwards, all FA images were

thresholded at  FA > 0.2.  The maximal  FA values  were projected onto the skeleton in order  to

minimise confounding effects due to partial voluming. 

Voxel-wise associations between age and the diffusion metrics were tested using general

linear models (GLMs), including sex as covariate.  The statistical  analysis  was performed using

permutation-based  inference  implemented  in  randomise (Winkler  et  al.,  2014)  with  5000

permutations.  Threshold-free  cluster  enhancement  (TFCE,  Smith  and Nichols,  2009)  was  used.

Statistical  p value maps were thresholded at  p < 0.05 corrected for multiple comparisons across

space. In addition to voxel-wise statistics, we used diffusion metrics averaged over the skeletons for

visualisation and plotting of differences between pipelines. The pipeline difference was visualised

by correlation plots with estimated Pearson correlation coefficients (corrplot function of Matlab,

The Mathworks, Natick, MA USA). 

In order to assess to which degree the chosen pipeline can influence the interpretation of the

results we compared the estimated age-related slopes for the diffusion metrics between S7 and UKB

pipelines. Averaged diffusion metrics were used for plotting the age-curves. Linear regressions were

performed  using  ordinary  least  squares  fitting  extracting  regression  slopes  and  intercepts.  The

Pearson correlation coefficient r and the coefficient of determination r2 between age and diffusion

metrics were estimated using the corr function of Matlab.

Results
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Voxel-wise comparisons

Figure 2 shows the scatter plots for the DTI metrics (FA, MD, AD, and RD) obtained from the DKI

signal fitting and four pipelines. Left column of correlation plots corresponds to the mean values of

diffusion metrics evaluated over the skeleton, the right column represents the standard deviations.

Briefly,  the  results  revealed  high  correlations  of  the  diffusion  metrics  between  all  pipelines,

however, the S7 pipeline exhibited significantly (Levene’s test with p < 0.001) reduced standard

deviation (histogram peak values are at MD – 0.18; AD – 0.29; RD – 0.15) compared to the original

UKB pipeline (histogram peak values are at MD – 0.21; AD – 0.35; RD – 0.23). Figure 3 shows the

correlation plots for the DKI scalar metrics (MK, AK, and RK). The kurtosis scalar metrics were

highly correlated between pipelines. The standard deviations are also lower in the S4, S5, and S7

pipelines compared to UKB. Figure 4 shows the correlation plots for the WMTI scalar metrics

(AWF, AE, RE, and Tort). Since the estimation of WMTI metrics were based on the DKI values, the

WMTI diffusion metrics exhibited quite high correlations for all pipelines similar to Fig. 3. The

standard deviation of S7 pipeline was lower compared to all other pipelines (histogram peak values

are at AWF – 0.07; AE – 0.40; RE – 0.18; Tort – 0.65). Figure 5 shows the scatter plots for the

conventional single-shell (b = 1000 s/mm2) DTI metrics, suggesting similar relationships between

the pipelines as for DKI, with lower standard deviation in the S7 pipeline compared to the original

UKB pipeline.

Figure  6  shows the  results  from the  voxel-wise  comparison between  the  original  UKB

pipeline and S7. Both DKI/WMTI (Fig. 5a) and cDTI (Fig. 5b) revealed significant differences (p <

0.05)  between pipelines,  where  the  S7 pipeline  metrics  revealed  both  higher  and lower  values

compared  to  UKB pipeline.  The results  of  the  analysis  based  on S5 vs  S4 and S5 vs  S7 are

presented in Figure 7. 
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tSNR

For  b = 1000 s/mm2 mean estimated tSNR (std) = 3.83 (0.25), 3.83 (0.25), 3.94 (0.29) and 1.81

(0.10) for S4, S5, S7, and UKB, respectively. For  b = 2000 s/mm2 mean estimated tSNR (std) =

1.92 (0.12), 1.92 (0.12), 1.93 (0.14), and 1.73 (0.10). These results indicate 2.2 times (for b = 1000

s/mm2) and 1.1 time (for  b = 2000 s/mm2) higher tSNR in the S7 pipeline compared to the UKB

pipeline.

Age-related differences across pipelines 

Figure 8 shows the estimated age-curves for the various diffusion metrics and Table 2 shows the

summary  stats  from  the  regression  models.  The  cDTI  metrics  exhibited  expected  age-related

differences with lower FA and higher MD, AD, and RD with higher age. MK, AK, and RK showed

age-related  reductions,  i.e.  reduced  non-Gaussianity  of  the  water  diffusion  with  increased  age.

Metrics based on WMTI (AWF, AE, and RE) demonstrated reduction of the axonal water fraction

and extension of the extra-axonal water diffusivity with increased age. Though the main tendency in

all age-curves was similar for both pipelines, we found that the Pearson correlations and slopes

were different for FA, MK, RK, and AWF, and significantly for AE indicating stronger associations

with age in S7 pipeline. 

Figure 9 shows the results from general linear model (GLM) testing linear age associations

with the different diffusion metrics across the skeleton. The column “Diff” for the same diffusion

metrics in Figure 9 visualizes the voxel-wise difference in the correlations. Voxels in red and blue

showed significant age association only in S7 and UKB pipelines, respectively. The voxels where

both pipelines detected significant age correlations are not shown. The relationship between the

number of voxels marked as pipeline specific (red or blue) to the total number of voxels (yellow-red

for each pipeline S7 and UKB) is summarised in Table 3. For example, for DTI metrics such as MD
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and AD the S7 pipeline identified strong age correlations in splenium as well as in the occipital

white matter. Similar behaviour is observed for WMTI metrics with strong associations detected by

S7 pipeline. In turn, DKI metrics exhibited more regions with strong correlations detected by UKB

pipeline.

Discussion

A growing interest  in  utilising  advanced diffusion  weighted  imaging to  study the  human brain

motivated us to test the effects of various data processing pipelines on different diffusion metrics.

Differences  in  data  post-processing steps  are  likely to  influence reliability and results.  Thus,  a

harmonised  diffusion  pipeline  may  prove  valuable  for  increasing  sensitivity,  reliability,  and

generalisability across studies. We suggest a general framework with the following post-processing

steps: 1) noise correction, 2) Gibbs ringing correction,  3) field mapping, 4) susceptibility, eddy

current and motion distortion corrections, 5) B1 field correction, 6) spatial smoothing; and 7) final

metrics estimation. Our comparison between four diffusion pipelines demonstrated that the general

pipeline suggested here yield a substantially higher tSNR compared to the original UKB pipeline,

and also influence the estimated age curves for MK, RK, AE, and AWF, with potentially important

implications for the interpretations.

Overall,  the  diffusion  metrics  derived  using  the  different  pipelines  demonstrated  high

correlations and similar standard deviations. In some cases, S7 resulted in lower standard deviations

of the diffusion metrics than others, e.g. for WMTI. S7 also exhibited high correlations with S5 for

the conventional DTI metrics. Results from the UKB pipeline showed relatively high correlations

with S4 and S5 for the DTI metrics, and slightly lower for DKI and WMTI. For cDTI the UBK

pipeline showed stronger correlations with S4 than to S5. The correlations between the S7 and UKB

pipelines were lower than for other pipeline pairs. Overall, the results support that all blocks of the
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proposed S7 pipeline might lead to relevant improvements in the estimations of absolute diffusion

metrics.

TBSS revealed a significant difference between the S7 and UKB pipelines for all diffusion

metrics. Interestingly, the differences between pipelines did not reflect global shifts of the diffusion

parameters  across  the  skeleton,  but  rather  spatially  variable  differences  across  several  metrics,

including DTI, DKI, and WMTI. The observed differences between S4 and S5 pipelines suggest

significant effects  of bias field corrections across a large part  of the skeleton,  nevertheless,  the

difference between the S4 and S5 pipelines looks similar to the value shift in contrast to the case of

S7 and UKB comparison. The comparison between S5 and UKB pipelines revealed similar results

as  those  seen  when  comparing  the  S7  and  UKB  pipelines  (Fig  7b),  suggesting  that  spatial

smoothing  in  the  S7  pipeline  is  a  reasonable  improvement  which  did  not  remove  important

information from the dataset. The findings of regionally specific increases or decreases in diffusion

metrics for different pipelines might partly be explained by an effect of the noise correction step on

physiological noise around the large arteries or strong susceptibility artefacts close to air cavities in

the brain. Such artefacts might introduce spatially variable distortions, which could lead to spurious

findings in clinical studies. This could explain the previously demonstrated higher sensitivity to

group  differences  after  noise  correction  (Kochunov  et  al.,  2018).  Moreover,  our  comparison

between pipelines demonstrated that noise and Gibbs ringing corrections influenced tSNR both in

the case of conventional diffusion data (b = 1000 s/mm2) and at higher diffusion weightings (b =

2000 s/mm2). In contrast, the spatial smoothing step (S7) did not introduce a strong shift in tSNR in

our analysis (S4, S5), however, has been shown to influence further diffusion metric estimations by

reducing the number of “bad” voxels (Veraart et al., 2013).

In order to assess possible practical consequences of the different noise correction steps we

compared  the  estimated  age  slopes  in  DKI  and  WMTI  metrics  between  pipelines.  Age-related
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differences are abundant in the relevant age span (Grinberg et al., 2017; Westlye et al., 2010). Apart

from MD and RD, all included metrics showed a large main effect of pipeline and, although similar

signs,  different  estimated  age-slopes  between  the  S7 and UKB pipelines.  In  particular,  the  S7

pipeline  revealed  stronger  age-correlations  compared  to  UKB for  WMTI  metrics.  Further,  the

voxel-wise comparisons revealed a higher number of voxels showing significant age associations in

the S7 compared to  the UKB pipeline for DTI and WMTI metrics.  On the contrary, the UKB

pipeline  demonstrated  a  higher  number  of  significant  voxels  in  the  case  of  DKI  estimations.

Although subtle, pipeline related global and spatially varying differences in diffusion metrics will

have consequences for subsequent analyses, for example, for machine-learning based age prediction

or diagnostic classification or prediction of clinical traits (Alnaes et al., 2018; Doan et al., 2017;

Kuhn at al., 2018; Richards et al., 2018). 

In conclusion, our analysis demonstrated that diffusion metric estimations are sensitive to

specific pipeline and might benefit from the proposed sequential advanced post-processing steps.

Our  proposed  pipeline  is  also  an  example  of  a  general  approach  for  harmonisation  of  post-

processing steps across diffusion MRI studies for increased sensitivity and generalisability, which

may be particular important when applying complex diffusion models to multishell diffusion data. 
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Supplementary Materials

An example of diffusion bash scripts used in the work are accessible as a text file.

References

Aja-Fernandez S., Vegas-Sanchez-Ferrero G., Tristan-Vega A., 2014. Noise estimation in parallel

MRI: GRAPPA and SENSE. Magn. Reson. Imaging 32, 281-290.

Alfaro-Almagro F., Jenkinson M., Bangerter N.K., Andersson J.L.R., et al., 2018. Image processing

and Quality Control for the first 10000 brain imaging  datasets from UK Biobank. Neuroimage 166,

400-424.

Alnaes D.,  Kaufmann T.,  Doan N.T.,  Cordova-Palomera A.,  Wang Y.,  Bettella  F.,  Moberget T.,

Andreassen  O.A.,  Westlye  L.T.,  2018.  Association  of  Heritable  Cognitive  Ability  and

Psychopathology With White Matter Properties in Children and Adolescents. JAMA Psychiatry 75,

287-295.

Andersson J.L.R., Skare S., Ashburner J., 2003. How to correct susceptibility distortions in spin-

echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 20, 870-888.

Andersson J.L.R.,  Jenkinson M.,  Smith S.,  2007.  Non-linear  optimisation  In:  FMRIB technical

report TR07JA1 from www.fmrib.ox.ac.uk/analysis/techrep

Andersson J.L.R., Sotiropoulos S.N., 2016a. An integrated approach to correction for off-resonance

effect and subject movement in diffusion MR imaging. Neuroimage 125, 1063-1078.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

http://www.fmrib.ox.ac.uk/analysis/techrep
https://doi.org/10.1101/511964


Andersson  J.L.R.,  Graham  M.S.,  Zsoldos  E.,  Sotiropoulos  S.N.,  2016b.  Incorporating  outlier

detection and replacement into a non-parametric framework for movement and distortion correction

of diffusion MR imaging. Neuroimage 141, 556-572.

Andersson J.L.R., Graham M.S., Drobnjak I., Zhang H., Filippini, Bastiani M., 2017. Towards a

comprehensive  framework  for  movement  and  distortion  correction  of  diffusion  MR  imaging:

Within volume movement. Neuroimage 152, 450-466.

Andre  E.D.,  Grinberg F.,  Farrher  E.,  Maximov I.I.,  Shah N.J.,  Meyer  C.,  Jaspar  M.,  Muto V.,

Phillips C., Balteau E., 2014. Influence of noise correction on intra- and inter-subject variability of

quantitative metrics in diffusion kurtosis imaging. Plos One 9, e94531.

Banerjee  A.,  Maji  P.,  2015.  Rough  sets  and  stomped  normal  distribution  for  simultaneous

segmentation and bias field correction in brain MR images. IEEE Image Processing 24, 5764-5776. 

Basser P.J., Mattiello J., Le Bihan D., 1994. MR diffusion tensor spectroscopy and imaging. Bioph.

J. 66,  259-267.

Bastiani  M.,  Andersson  J.L.R.,  Cordero-Grande  L.,  Murgasova  M.,  Hutter  J.,  Price  A.N.,

Makropoulos A., Fitzgibbon S.P., Hughes E., Rueckert D., Victor S., Rutherford M., Edwards A.D.,

Smith S.M., Tournier J.D., Hajnal J.V., Jbabdi S., Sotiropoulos S.N., 2019. Automated processing

pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage

185, 750-763.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Cui Z., Zhong S., Xu P., He Y., Gong G., 2013. PANDA: a pipeline toolbox for analyzing brain

diffusion images. Frontiers in Human Neuroscience 7, 42.

Doan N.T., Persson A.E.K., Alnaes D., Kaufmann T., Rokicki J., Cordova-Palomera A., Moberget

T.,  Braekhus  A.,  Barca  M.L.,  Engedal  K.,  Andreassen  O.A.,  Selbaek  G.,  Westlye  L.T.,  2017.

Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer’s

disease spectrum. Scientific Reports 7, 45131.

Esteban O., Birman D., Schaer M., Koyejo O.O., Poldrack R.A., Gorgolewski K.J., 2017. MRIQC:

Advancing the automatic prediction of image quality in MRI from unseen sites. PLOS ONE 12,

e0184661.

Farzinfar M., Oguz I., Smith R.G., Verde A.R., Dietrich C., Gupta A., Escolar M.L., Piven J., Pujol

S., Vachet C., Gouttard S., Gerig G., Dager S., McKinstry R.C., Paterson S., Evans A.C., The IBIS

network, Styner M.A., 2013. Diffusion imaging quality control via entropy of principal direction

distribution. Neuroimage 82, 1-12.

Fieremans E., Jensen J.H., Helpern J.A., 2011. White matter characterization with diffusion kurtosis

imaging. Neuroimage 58, 177-188.

Gallichan D., Scholz J., Bartsch A., Behrens T.E., Robson M.W., Miller K.L., 2010. Addressing a

systematic artifact in diffusion-weighted MRI. Human Brain Mapping 31, 193-202.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Ganzetti M., Wenderoth N., Mantini D., 2016. Quantitative evaluation of intensity inhomogeneity

correction methods for structural MR brain images. Neuroinformatics 14, 5-21.

Glasser M.F., Sotiropoulos S.N., Wilson J.A., Coalson T.S., Fischl B., Andersson J.L., Xu J., Jbabdi

S., Webster M., Polimeni J.R., Van Essen D.C., Jenkinson M., for the WU-Minn HCP Consortium,

2013. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80,

105-124.

Grinberg F.,  Maximov  I.I.,  Farrher  E.,  Neuner  I.,  Amort  L.,  Thoennessen  H.,  Oberwelland  E.,

Konrad  K.,  Shah  N.J.,  2017.  Diffusion  kurtosis  metrics  as  biomarkers  of  microstructural

development: A comparative study of a group of children and a group of adults. Neuroimage 144

(Pt. A), 12-22.

Hasan K.M., 2007. A framework for quality control and parameter optimization in diffusion tensor

imaging: theoretical analysis and validation. Magn. Reson. Imaging 25, 1196-1202.

Jensen J.H., Helpern J.A., Ramani A., Lu H., Kaczynski K., 2005. Diffusion kurtosis imaging: the

quantification of non-gaussian water diffusion by means of magnetic resonance imaging.  Magn.

Reson. Med. 53, 1432-1440.

Johansen-Berg H., Behrens T.E.J., 2014. Diffusion MRI: From quantitative measurement to in-vivo

neuroanatomy. Elsevier Academic Press.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Kellner E., Dhital B., Kiselev V.G., Reisert M., 2016. Gibbs-ringing artifact removal based on local

subvoxel-shifts. Magn. Reson . Med. 76, 1574-1581.

Kochunov P., Dickie E.W., Viviano J.D., Turner J., Kingley P.B., Jahanshad N., Thompson P.M.,

Ryan M.C., Fieremans E., Novikov D.S., Veraart J., Hong E.L., Malhotra A.K., Buchanan R.W.,

Chavez S., Voineskas V.N., 2018. Integration of routine QA data into meta-analysis may improve

quality and sensitivity of multisite diffusion tensor imaging studies.  Human Brain Mapping 39,

1015-1023.

Kuhn T., Kaufmann T., Doan N.T., Westlye L.T., Jones J., Nunez R.A., Bookheimer S.Y., Singer

E.J., Hinkin C.H., Thames A.D., 2018. An augmented aging process in brain white matter in HIV.

Human Brain Mapping 39, 2532-2540.

Maximov I.I., Grinberg F., Shah N.J., 2011. Robust tensor estimation in diffusion tensor imaging. J.

Magn. Reson. 213, 136-144.

Maximov I.I., Farrher E., Grinberg F., Shah N.J., 2012. Spatially variable Rician noise in magnetic

resonance imaging. Medical Image Analysis 16, 536-548.

Maximov  I.I.,  Thoennessen  H.,  Konrad  K.,  Amort  L.,  Neuner  I.,  Shah  N.J.,  2015.  Statistical

instability of TBSS analysis based on DTI fitting algorithm. J. Neuroimaging 25, 883-891.

Maximov I.I., Tonoyan A.S., Pronin I.N., 2017. Differentiation of glioma malignancy grade using

diffusion MRI. Physica Medica 40, 24-32. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


McRobbie  D.W.,  Moore  E.,A.,  Graves  M.J.,  Prince  M.R.,  2009.  MRI from Picture  to  Proton.

Cambridge University Press.

Miller  K.L.,  Alfaro-Almagro F.,  Bangerter N.K.,  Thomas D.L.,  Yacoub E.,  Xu J.,  Bartsch A.J.,

Jbabdi  S.,  Sotiropoulos  S.N.,  Andersson  J.L.,  Griffanti  L.,  Douaud  G.,  Okell  T.W.,  Weale  P.,

Dragonu I., Garratt S., Hudson S., Collins R., Jenkinson M., Matthews P.M., Smith S.M., 2016.

Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature

Neuroscience 19, 1523-1536.

Novikov D.S., Kiselev V.G., Jespersen S.N., 2018. On modeling. Magnetic Resonance in Medicine

79, 3172-3193.

Oguz  I.,  Farzinfar  M.,  Matsui  J.,  Budin  F.,  Liu  Z.,  Gerig  G.,  Johnson H.J.,  Styner  M.,  2014.

DTIPrep: quality control of diffusion-weighted images. Frontiers in Neuroinformatics 8, 4.

Perona P., Malik J., 1987. Scale-space and edge detection using anisotropic diffusion. Proc. IEEE

Comp. Soc. Workshop Comp. Vision 16-22.

Perrone D., Aelterman J., Puzurica A., Jeurissen B., Philips W., Leemans A., 2015. The effect of

Gibbs ringing artifacts on measures derived from diffusion MRI. Neuroimage 120, 441-455.

Richard  G.,  Kolskaar  K.,  Sanders  A.M.,  Kaufmann T.,  Petersen  A.,  Doan  N.T.,  Sanchez  J.M.,

Alnaes  D.,  Ulrichsen  K.M.,  Dorum  E.S.,  Andreassen  O.,  Nordvik  J.E.,  Westlye  L.T.,  2018.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on

diffusion tensor imaging and brain morphometry. BioRxiv doi: https://doi.org/10.1101/313015.

Roalf D.R., Quarmley M., Elliott M.A., Satterthwaite T.D., Vandekar S.N., Ruparel K., Gennatas

E.D., Calkins M.E., Moore T.M., Hopson R., Prabhakaran K., Jackson C.T., Verma R., Hakonarson

H.,  Gur R.C.,  Gur R.E.,  2016.  The impact  of quality assurance assessment  on diffusion tensor

imaging outcomes in a large-scale population-based cohort. Neuroimage 125, 903-319.

Sairanen V., Leemans A., Tax C.M.W., 2018. Fast and accurate slisewise outlier detection (SOLID)

with informed model estimation for diffusion MRI data. Neuroimage 181, 331-346.

Smith S.M.,  Jenkinson M.,  Woolrich M.W.,  Beckmann C.F.,  Behrens T.E.J.,  Johansen-Berg H.,

Bannister P.R., De Luca M., Drobnjak I., Flitney D.E. , Niazy R., Saunders J., Vickers J., Zhang Y.,

De Stefano N., Brady J.M., Matthews P.M., 2004. Advances in functional and structural MR image

analysis and implementation as FSL. Neuroimage, 23, 208-219. 

Smith S.M. Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T.E., Mackay C.E., Watkins

K.E., Ciccarelli O., Cader M.Z., Matthews P.M., Behrens T.E., 2006. Tract-based spatial statistics:

voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505.

Smith  S.M.,  Johansen-Berg H.,  Jenkinson M.,  Rueckert  D.,  Nichols  T.E.,  Miller  K.L.,  Robson

M.D., Jones D.K., Klein J.C., Bartsch A.J., Behrens T.E., 2007. Acquisition and voxelwise analysis

of multi-subject diffusion data with tract-based spatial statistics. Nat. Protoc. 2, 499-503.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/313015
https://doi.org/10.1101/511964


Smith  S.M.  Nichols  T.E.,  2009.  Threshold-free  cluster  enhancement:  addressing  problems  of

smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83-98.

Sotiropoulos  S.N.,  Jbabdi  S.,  Xu  J.,  Andersson  J.L.,  Moeller  S.,  Auerbach  E.J.,  Glasser  M.F.,

Hernandez M., Sapiro G., Jenkinson M., Feinberg D.A., Yacoub E., Lenglet C., Van Essen D.C.,

Ugurbil K., Behrens T.E.J., for the WU-Minn HCP Consortium, 2013. Advances in diffusion MRI

acquisition and processing in the Human Connectome Project. Neuroimage 80, 125-143.

Tamnes  C.K.,  Roalf  D.R.,  Goddings  A.L.,  Lebel  C.,  2017.  Diffusion  MRI  of  white  matter

microstructure development in childhood and adolescence: Methods, challenges and progress. Dev.

Cong. Neurosci. doi: 10.1016/j.dcn.2017.12.002.

Taylor  P.A.,  Alhamud  A.,  van  der  Kouwe  A.,  Saleh  M.G.,  Laughton  B.,  Meintjes  E.,  2016.

Assessing the performance of different DTI motion correction strategies in the presence of EPI

distortion correction. Human Brain Mapping 37, 4405-4424.

Tønnesen S., Kaufmann T., Doan N.T., Alnæs D., Córdova-Palomera A., Meer D.V., Rokicki J.,

Moberget T., Gurholt T.P., Haukvik U.K., Ueland T., Lagerberg T.V., Agartz I., Andreassen O.A.,

Westlye  L.T.,  2018.  White  matter  aberrations  and  age-related  trajectories  in  patients  with

schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci. Rep. 8, 14129.

Tustison N.J., Avants B.B., Cook P.A., Zheng Y., Egan A., Yushkevich P.A., Gee J.C., 2010. N4ITK:

improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310-1320.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Van Hecke W., Leemans A., De Backer S., Jeurissen B., Parizel P.M., Sijbers J., 2010. Comparing

isotropic and anisotropic smoothing for voxel-based DTI analysis: a simulation study. Human Brain

Mapping 31, 98-114.

Vellmer  S.,  Tonoyan A.S.,  Suter  D.,  Pronin  I.N.,  Maximov I.I.,  2018.  Validation  of  DWI pre-

processing procedures for reliable differentiation between human brain gliomas. Z. Med. Phys. 28,

14-24.  

Veraart J.,  Sijbers J.,  Sunaert S., Leemans A., Jeurissen B., 2013. Weighted linear least squares

estimation of diffusion MRI parameters: strenghts, limitations, and pitfalls. Neuroimage 81, 335-

346.

Veraart J., Fieremans E., Novikov D.S., 2016a. Diffusion MRI noise mapping using random matrix

theory. Magn. Reson. Med. 76, 1582-1593.

Veraart J., Novikov D.S., Christiaens D., Ades-Aron B., Sijbers J., Fieremans E., 2016b. Denoising

of diffusion MRI using random matrix theory. Neuroimage 142, 394-406.

Veraart J., Fieremans E., Jelescu I.O., Knoll F., Novikov D.S., 2016c. Gibbs ringing in diffusion

MRI. Magn. Reson. Med. 76, 301-314.

Walker L., Chang L.C., Koay C.G., Sharma N., Cohen L., Verma R., Pierpaoli C., 2011. Effect of

physiological noise in population analysis  of diffusion tensor MRI data.  Neuroimage 54, 1168-

1177.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Westlye L.T., Walhovd K.B., Dale A.M., Bjørnerud A., Due-Tønnessen P., Engvig A., Grydeland

H., Tamnes C.K., Ostby Y., Fjell A.M., 2010. Life-span changes of the human brain white matter:

diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20, 2055-2068.

Westlye L.T., Reinvang I., Rootwelt H. Espeseth T., 2012. Effects of APOE on brain white matter

microstructure in healthy adults. Neurology 79, 1961-1969.

Winkler  A.M.,  Ridgway  G.R.,  Webster  M.A.,  Smith  S.M.,  Nichols  T.E.,  2014.  Permutation

inference for the general linear model. Neuroimage 92, 381-297.

Wu M.,  Chang  L.C.,  Walker  L.,  Lemaitre  H.,  Barnett  A.S.,  Marenco  S.,  Pierpaoli  C.,  2008.

Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework.

Med. Image Comput. Comput. Assist. Interv. 11, 321-329.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Tables

Table 1.

Demographic data of the used UK Biobank sample.

Subgroups (years) Number of subjects Age (Mean/std) years Sex (F/M)

“40” 12 40.40/0.08 6/6

“42” 13 42.08/0.29 6/7

“44” 16 43.92/0.28 8/8

“46” 14 46.01/0.31 7/7

“48” 13 48.00/0.32 7/6

“50” 15 50.06/0.29 8/7

“52” 15 52.07/0.27 7/8

“54” 11 54.11/0.35 7/4

“56” 15 55.97/0.26 7/8

“58” 13 57.98/0.29 6/7

“60” 15 59.99/0.27 8/7

“62” 14 61.95/0.26 7/7

“64” 12 64.11/0.25 7/5

“66” 14 66.11/0.25 8/6

“68” 14 68.08/0.27 7/7

“70” 12 69.81/0.18 6/6

Total 218 54.95/9.09 112/106
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Table 2.

Estimated regression slopes/intercepts and Pearson correlations coefficient r/r2 for diffusion metrics

in age-curves in Fig.8. The red colour emphasises the significant differences (p < 0.003) in the

estimated parameters obtained after applied Fisher’s transformation.

Pipelines

metrics

FA MD AD RD MK AK RK AWF AE RE

S7

slope

intercept

-1e-3/

0.49

1.6e-3/

0.798

1.1e-3/

1.29

1.9e-3/

0.553

-1e-3/

1.07

-0.6e-3/

0.808

-2.1e-3/

1.49

-0.5e-3/

0.399

0.6e-3/

1.83

2.2e-3/

0.854

UKB

slope

intercept

-0.8e-3/

0.513

1.4e-3/

0.813

0.9e-3/

1.35

1.7e-3/

0.549

-1.4e-3/

1.04

-0.7e-3/

0.771

-2.7e-3/

1.48

-0.6e-3/

0.425

0

1.93

1.6e-3/

0.857

S7

r

r2

-0.44/

0.19

0.43/

0.19

0.29/

0.08

0.47/

0.22

-0.24/

0.06

-0.28/

0.08

-0.26/

0.07

-0.31/

0.09

0.13/

0.02

0.47/

0.22

UKB

r

r2

-0.39/

0.15

0.44/

0.19

0.26/

0.07

0.47/

0.22

-0.33/

0.11

-0.32/

0.10

-0.33/

0.11

-0.35/

0.12

0.39/

0.15

0.45/

0.20
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Table 3.

The number of voxels depending on the pipeline with significant age-correlation specific for the

given pipeline vs a total number of voxels with significant age correlation (p < 0.001). See also Fig.

9.

pipeline 

specific/total 

numbers

FA MD AD RD MK AK RK AWF AE RE

S7 35151/

70335

45335/

79974

20385/

30240

43889/

87989

10816/

26896

16210/

33217

18620/

39786

21452/

52974

7525/

8436

47265/

81148

UKB 23744/

58928

19593/

54232

7034/

16889

23717/

67817

43297/

59377

27680/

44687

39003/

60169

38180/

69702

832/

1743

19421/

53304
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Figures

Figure 1.
Schematic representation of a general pipeline. Numbers in the upper left corner correspond to the 
step order. The step 7 is an estimation of final diffusion metrics depending on used diffusion model. 
The step i presents a possible variability in the pipeline but omitted in the present work, for 
example, a frequency drift correction, application of different spatial filters (isotropic vs 
anisotropic), difference in algorithmic utility implementations (ANTs vs FSL), permutations in the 
step orders (step 5 vs step 4).
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Figure 2. Correlation plots for diffusion metrics based on DKI fitting obtained for four different pipelines (see Fig. 1): 
a) up to Step 5; b) up to Step 4; c) up to Step 7 ; d) original UK Biobank  pipeline. Diffusion metrics were averaged 
over estimated subject skeletons in the case of each pipeline in accordance with the TBSS preparation pipeline.
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Figure 3. Correlation plots for diffusion metrics based on DKI fitting obtained for four different pipelines: a) up to Step 
5; b) up to Step 4; c) up to Step 7 ; d) original UKB pipeline. Diffusion metrics were averaged over estimated subject 
skeletons in the case of each pipeline in accordance with the TBSS preparation pipeline.
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Figure 4. Correlation plots for diffusion metrics based on DKI fitting obtained for four different pipelines: a) up to Step 
5; b) up to Step 4; c) up to Step 7 ; d) original UKB pipeline. Diffusion metrics were averaged over estimated subject 
skeletons in the case of each pipeline in accordance with the TBSS preparation pipeline.
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Figure 5. Correlation plots for diffusion metrics based on conventional DTI fitting obtained for four different pipelines: 
a) up to Step 5; b) up to Step 4; c) up to Step 7 ; d) original UKB pipeline. Diffusion metrics are averaged over 
estimated subject skeletons in the case of each pipeline in accordance with TBSS preparation pipeline.
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Figure 6. Results of TBSS analysis between the pipelines: original UKB and the proposed here 
(S7).  a) TBSS analysis for diffusion metrics based on DKI and WMTI approaches (2 b-shells); b) 
TBSS analysis for diffusion metrics based on DTI fitting (1 b-shell). All images are in standard 
MNI space and correspond to the coordinates: x = 26; y = -8; z = 24. Any coordinate changes are 
marked. The red-yellow colour means that metrics from S6 pipeline are significantly higher than 
from UKB (p < 0.05); the blue-light-blue colour means an opposite situation. 
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Figure 7. Results of TBSS analysis between a) S5 and S7; b) S5 and original UKB pipeline. All 
images are in standard MNI space and correspond to the coordinates: x = 26; y = -8; z = 24. Any 
coordinate changes are marked. The red-yellow colour means that the first pipeline is significantly 
higher than the second one (p < 0.05); the blue-light-blue colour means an opposite situation. 
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Figure 8. Linear age correlations of diffusion metrics obtained from two pipelines (S7 and original 
UKB). Colour rectangles present an 95% interval of confidence. The red colour corresponds to 
UKB values, the blue colour corresponds to the S7 pipeline values.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511964doi: bioRxiv preprint 

https://doi.org/10.1101/511964


Figure 9. Results of General Linear Model (GLM) tests of diffusion metricses vs age across the skeleton. The linear fitting model is based on two pipelines S7 and UKB. “Diff” 
columns visualise the spatial difference between the GLM results: the red colour marked the regions with significant difference (p < 0.001) detected along S7 pipeline but not in 
UKB based tests; the blue colour marked the voxels with significant age correlation detected along UKB pipeline but not in S7. The mean skeleton is visualised by the green colour. 
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