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Abstract 
 

Our understanding of the genetic control of bone has relied almost exclusively on estimates of bone 

mineral density. In contrast, here we have used high-resolution x-ray tomography (8 µm isotropic 

voxels) to measure femoral and tibial components across a set of ~600 mice belonging to 60 diverse 

BXD strains of mice. We computed heritabilities of 25 cortical and trabecular compartments. Males and 

females have well matched trait heritabilities, ranging from 0.25 to 0.75.  We mapped 16 QTLs that 

collectively cover ~8% of all protein-coding genes in mouse. A majority of loci are detected only in 

females, and there is also a bias in favor of QTLs for cortical traits. To efficiently evaluate candidate 

genes we developed a method that couples gene ontologies with expression data to compute bone-

enrichment scores for almost all protein-coding genes. We carefully collated and aligned murine 

candidates with recent human BMD genome-wide association results. We highlight a subset of 50 strong 

candidates that fall into three categories: 1. those linked to bone function that have already been 

experimentally validated (Adamts4, Ddr2, Darc, Adam12, Fkbp10, E2f6, Adam17, Grem2, Ifi204); 2. 

candidates with putative bone function but not yet tested (e.g., Greb1, Ifi202b) but several of which have 

been linked to phenotypes in humans; and 3. candidates that have high bone-enrichment scores but for 

which there is not yet any specific link to bone biology or skeletal disease, including Ifi202b, Ly9, 

Ifi205, Mgmt, F2rl1, Iqgap2.  Our results highlight contrasting genetic architecture between the sexes 

and among major bone compartments. The joint use and alignment of murine and human data should 

greatly facilitate function analysis and preclinical testing. 

 

Key words: microCT, trabecular bone, cortical bone, QTL, gene ontology, systems genetics, animal 

model, GWAS, ignorome 
  

Introduction 

 

The development and maintenance of the skeletal system is modulated by a large number of genetic and 

environmental factors with many adaptive and age-related changes in bone phenotype that lead to 

osteoporosis and increased fracture risk.  Over the past decade more than 1000 loci and gene variants 

have been defined using human, mouse, and rat cohorts that control bone mineral density, risk of 

fracture, and other morphometric traits (1). Most large genetic studies of osteoporosis in humans have 

exploited dual-energy x-ray absorptiometry (DXA) to quantify areal bone mineral density (BMD) (2). 

Some of genome-wide association studies (GWAS) have exploited peripheral quantitative computed 

tomography (pQCT) to define subsets of sequence variants that modulate bone architecture and strength 
(3). While BMD accounts for about 70% of bone strength, this method lacks the 3-dimensional (3D) 

structural precision of high-resolution microCT (4-7). 3D maps of structure and architecture generated by 

microCT have many advantages, including (1) avoidance of interference from intra- and extra-osseous 

soft tissues, (2) high-content data acquisition, and (3) isotropic resolution as high as 6 µm (8, 9). Finally, 

the development of finite element analysis models derived from microCT data provide a way to model 

mechanical properties of bone (10).  
 

Experimental rodent models provide a way to evaluate candidate genes generated in GWAS and other 

human genetic and genomic studies and to reduce variants to mechanisms and even treatments (11). The 

use of knockouts or knockins of single mutation is a well-established approach to test the roles of genes 

on skeletal system structure and function. An alternative unbiased whole genome approach to map 

natural genetic variants that control bone growth and homeostasis uses a large family panel of 

genetically diverse mice (12). This allows some of the clinical complexity of bone disease to be captured, 
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while retaining tight control over diet, environment, and genotypes. For example, the set of 96 strains 

that are part of the Hybrid Mouse Diversity Panel (13, 14) and a subset of strains that belong to the BXD 

recombinant inbred (RI) family have been used to define a key role of ASXL2 in BMD and an important 

role of ALPL in hypophosphatasia (15). In comparison to standard F2 intercrosses, these large families of 

isogenic but diverse strains can be used to systematically test gene-by-environmental interactions, to 

evaluate the replicability of findings, and to test new therapies and treatments (16). Families of strains, 

such as the BXDs, are also advantageous because so much genomic, metabolic, and phenotypic data has 

already been collected for these mice (17). It becomes practical to measure heritability for virtually any 

trait and to map sets of quantitative trait loci (QTLs) that influence bone and other traits (15, 18-21).  

 

In this study we have combined deep quantitative phenotyping of bone microstructure derived from 

microCT combined with a fine-grained genetic dissection to understand the complex control of regional 

bone traits-focusing on femur and tibia.  We have systematically evaluate the whole bone, and cortical 

and trabecular segments in the BXD family of strains. Finally, we have applied a new method to rank 

essentially all protein-coding genes in mice, and therefore humans, with respect to their potential roles in 

bone biology. We define for the first time those genes with no published function or literature 

connection to skeletal homeostasis as “bone ignorome” (22, 23).  These set of uncharacterized genes are 

likely to be important in skeletal system biology and function. We have merged information on 

microCT-associated genes with data on the bone ignorome to systematically rank candidate that may 

contribute to variation in bone size and architecture. 

 

Materials and Methods 

 

Animals 

 

All the mouse experimental procedures were in accordance with the Guidelines for the Care and Use of 

Laboratory Animals published by the National Institutes of Health and were approved by institutional 

Animal Care and Use Committee in the University of Tennessee Health Science Center (UTHSC). 

 

The BXD family of strains was housed in a single specific pathogen-free (SPF) facility at UTHSC, and 

maintained at 20 °C to 24 °C on a 14/10 hours light/dark cycle. The mice were provided with 5% fat 

Agway Prolab 3000 (Agway Inc., Syracuse, NY) mouse chow and Memphis aquifer tap water, ad 

libitum. Sixty-one BXD strains and both parental strains, C57BL/6J (B6) and DBA/2J (D2), were 

sacrificed for tissue harvest. The age of these mice ranged from 50 to 375 days with an average of 100 

days. A total of 597 animals were studied, including 290 females and 307 males. Five hundred and 

seventy-six femurs and 515 tibias were harvested. The differences in animal numbers and bone numbers 

reflect breakage or loss of material prior to measurement. The precise numbers of BXD strains varies by 

trait, sex, and age, but all parameters were evaluated using between 50 to 63 strains. (For details on 

sample sizes see Supplemental Data S1 and data in GeneNetwork.org). Many cases used here had been 

previously used for other analysis by Zhang and colleagues (24), although here we have integrated much 

additional data, including 239 new cases and 15 additional strains. After dissection and removal of soft 

tissue, femurs and tibias were stored in 75% ethanol until measurement.  

MicroCT measurements 

High-resolution x-ray tomography (μCT40, Scanco Medical, Basserdorf, Switzerland) was used to scan 

and measure morphometric parameters of femurs and tibias. Bones were placed in a 12.3-mm-diameter 
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sample holder filled with 75% ethanol and immobilized with styrofoam. Samples were scanned at 8-μm 

resolution (isotropic voxel size) using an energy level of 55 kVp, an integration time of 300 ms, and an 

intensity of 109 μA. Morphometric parameters were evaluated using a fixed Gaussian filter and a 

threshold of 220 for trabecular bone, and 250 for both cortical bone and whole bone. 

Each femur and tibia was measured separately using Scanco software that estimates values of more than 

50 quantitative traits per bone (whole bone, cortical and trabecular segments). We selected a subset of 

25 of the more interesting and interpretable traits for in-depth phenotyping as listed in Table 1. Three 

whole-bone parameters were measured: length, mineralized volume, and material bone mineral density 

(mBMD). For cortical bone, 100 transverse slices were acquired at the middle of the shaft—a total 

length of 0.8 mm. From these cross-sections a total of 11 cortical microtraits were generated, including: 

cortical thickness, cortical volume, porosity, polar and area moment of inertia. For trabecular bone 

analysis, 100 slices were acquired at the secondary spongiosa of the distal femur or the proximal tibia. A 

total of 11 trabecular microtraits were generated, including among others, bone volume fraction 

(BV/TV), trabecular thickness, trabecular number, trabecular separation, and the trabecular connectivity 

density (Figure 1A) 

 

Statistical analysis 

Bones were harvested immediately after sacrifice from roughly equal numbers of males and females 

ranging from 50 days to 375 days of age (100 ± 56 SD). This age range is equivalent to early adulthood 

to middle age in humans (25). Body weight ranged from 13.4 to 48.5 g (24.9 ± 5.1 SD). The relation 

between body weight and the logarithm of age (log age) fits a linear regression reasonably well in which 

weight (g) = –3.5 + 14.5(log10 of age), with an r = 0.45 and p < 0.0001.   

 

All data and metadata on cases used in this study are provided in the Supplemental Data S1 

(BXD_bone_data_master_table). To minimize effects of age as a confounder, we performed linear 

regression for each variable across 307 male samples and 290 female samples separately, using 

logarithm of age as a predictor. Log age-corrected values in all tables for each trait and for each sex 

were computed by adding the residuals to means for male or female samples (Supplemental Data S1. 

Sheet: Female_Raw_Res_Corr and Male_Raw_Res_Corr). Since the average age of males and females 

was ~100 days, the corrected values by case, by strain, and by sex should be considered as those that 

will typically be measured at this age. Both the original values and the corrected values are provided in 

Supplemental Data S1 (BXD_bone_data_master_table). Sex-averaged values were computed as above 

by fitting the cofactors sex and logarithm of age (without grouping by strain) across the entire data set. 

Means were added to the residuals, and these values were summarized to generate sex- and age-

corrected strain means. 

 

We also analyzed the relation between body weight and bone length/volume before and after correction 

for age. As expected, there is a strong positive correlation before age correction (body weight and bone 

volume covary with an r of 0.61, both sexes combined). After the log age correction, there is still a 

significant association between body weight and bone parameters. For example, the correlation between 

femur volume and body weight is 0.35. We chose not to correct for this source of variation since body 

weight and body size are also key variables of interest. But this does mean that bone data sets need to be 

considered in light of general variation in body size. All bone trait data used in subsequent analyses—

heritability, trait covariance, and trait genetic mapping—include the adjustment for log age only. Effects 

of sex and strain as predictors were estimated by ANOVA.   
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After generating the corrected values we again searched for outliers at both the level of individual cases 

and strain means. All cases appear to be within normal limits when traits are examined individually. 

However there are strains such as BXD13 with small sample size (n = 2 males) and that are clearly 

outliers for some traits. These cases and data were censored in some analyses as described in Results and 

figure legends, either by complete removal or by winsorizing the outliers (26). Mean strain data entered 

into GeneNetwork has been reviewed and when necessary, has also been winsorized. However we do 

provide the original value in trait descriptions. Users can revert to the original data as needed. 

 

The broad-sense heritability (h2) was calculated to estimate the effect of genetic factors on variance of 

bone traits. It is the genetic variance (variance among strain means) divided by the total variance 

(variance among all measurements). The variance and bias of the estimate of h2 was computed using a 

“drop-one-out” resampling jackknife procedure using JMP Pro 12 (27, 28). This involved calculating 

heritabilities for subsamples of data, each deleting all data for one strain (h(-i) ). The jackknife variance is  

 

.  

Where  is the mean heritability of all strains. 

 

To test if there is sex difference between female and male heritabilities, we computed Z value:

,  

 

where �̅�1 , �̅�2  are the average of female and male heritabilities of each bone trait, σ1
2 and σ2

2
 are 

jackknife variances of female and male heritabilities, respectively.  n1 = n2 = 35.  |z| ≥ 3.18 is considered 

significant with a Bonferroni corrected p < 0.00143 (0.05/35 ≅ 0.00143, two-tailed).  
 

Correlation analysis 
 

We studied correlations among bone phenotypes using strain averages. We selected three representative 

traits for each of three major categories: whole bone (GeneNetwork Record ID 18130, 18131, 18132), 

cortical bone (GN 18134, 18136, 18141), and trabecular bone (GN 18146, 18148, 18149). Since the 

sample size is generally reasonably large (n ~60), we used Pearson product-moment correlations, and 

confirmed that results were not sensitive to outliers (BXD13 and BXD78 were often outliers for both 

sexes). We also correlated new bone phenotypes with 5000 previously published phenotypes for BXD 

family (17). Finally, we computed correlations between bone microtraits and an adult femur mRNA 

expression data (UCLA GSE27483 BXD Bone Femur ILM Mouse WG-6 v1.1 (Jan13) RSN that is 

included in  GeneNetwork (GN accession number: GN410) generated by Farber and colleagues (14, 29). 
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This data set includes expression values for 32 BXD strains and other strains for which we have 

matched bone phenotypes. Since the overlap of sample size is modest, we used rank order correlations in 

comparing bone phenotypes with expresssion data.  

 

QTL mapping 
 

We carried out conventional interval mapping using Haley-Knott regression equations (30) as 

implemented in GeneNetwork. To estimate genome-wide thresholds of significance we permuted 

phenotypes 2000 or more times. Confidence intervals were defined as the chromosomal region within a 

1.5 LOD (log of the odds) drop from the linkage peak. We have taken several approaches to evaluate the 

consistency of QTL results, including the use of two genotype files, different methods to correct for 

variation attributable to age and sex, and several different mapping algorithms that handle kinship 

relations. In total we mapped 50 traits for males, for females, and the sexes combined. Initial analysis 

was corrected for logarithm of age, but for comparison, we also remapped using only young animals 

within a relatively narrow age range. All aspects of this analysis can be reviewed and replicated using 

Record IDs in GeneNetwork (Table 4 and Supplemental Data S1). 

 

Classic and new genotype files. We used two genotype files for mapping. The first file is an older 

genotype file that has been used by almost all investigators from 2002 through to late 2016. We refer to 

this as the “classic” genotype file because it has been used in hundreds of studies. The second file was 

released in January 2017 and includes roughly twice as many markers. Both files are available at 

www.genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=600.  

There is of course, a great deal of similarity between these files. The main difference is that several 

BXD strains were not fully inbred during the earlier phase of genotyping. Since the mice that we have 

studied here were born between 2011 and 2013, it is useful to compare results using both files. 

  

Age effects. We were concerned that animals older than 150 days may have sufficiently different bone 

architecture that the age adjustment would not compensate fully. For this reason, we compared results 

based on the complete data set of 597 cases corrected for logAge (GN 18130 – 18279) to a subset of 484 

cases ranging from 65 to 116 days and processed without any age correction (GN 18986 – 19086). This 

age range is equivalent to young adults in humans (25). 

 

Mapping algorithms. Differences in algorithms and their sensitivities to trait distribution and kinship 

among strains will have effects on mapping results, in particular, on the maximum LRS scores. We 

therefore remapped traits—particular the 13 traits that gave strong initial results—using complementary 

algorithms that account for kinship and cofactors such as age and sex. These methods include several 

variants of R/qtl (31-33), and two algorithms that explicitly model kinship—pyLMM (34) and GEMMA (35, 

36). All algorithms were run using implementations that are part of GeneNetwork 2 

(gn2.genenetwork.org). 

 

Composite interval mapping. Seven of 16 traits have QTLs on several chromosomes. For example, 

traits associated with femur moment of inertia (GN 18191, 18192, 18193) have loci on Chrs 7, 10, and 

17 (Fpmoif7, Fpmoif10a, Fpmoif10b and Fmoif17). In cases with multiple QTLs, we wanted to ensure 

that the loci were in statistical linkage (37). To ensure independence, we selected background markers 

close to each QTL and remapped using composite interval mapping methods. 
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Interaction effects. While we have studied 60 or more BXD strains of both sexes, the sample size is 

marginal to test for two-way epistatic interactions. We used the pair-scan module in GeneNetwork and 

estimated empirical p values of the full model (V = Q1 + Q2 + Q1×Q2), where V is the trait variance, 

Q1 and Q2 are additive effect variance components for two QTLs, and Q1×Q2 is the variance 

attributable to an epistatic interaction. For these cases we reviewed results to ensure adequate 

distribution of genotypes among the four two-locus combinations of genotypes (B/B, B/D, D/B, and 

D/D), and to avoid effects generated by outliers. In general, we biased our pair-scan analysis is favor of 

results that included one or more loci with significant additive effects (LRS >10). We also tested for sex-

by-QTL (S×Q) interactions using the model: V = Q1 + S + S×Q1. Sample size within strain was 

generally not sufficient to test for sex-by-strain differences. 

 

Gene ontology candidate analysis 

 
To evaluate candidate genes using a more objective and unbiased method we exploited a femur gene 

expression data set (GN410) for the BXD strains (14). We used the following workflow (Figure 2): 

 

1. We selected a list of 34 GO terms of eight major categories linked to bone and connective tissues 

(see Supplemental Data S3. Sheet: GO genes). 

2. We extracted the list of genes linked to these 34 GO categories for mouse. Gene symbols were 

curated and edited to improve symbol alignment with the BXD femur gene expression database 

(14). 

3. All the 46,621 Illumina probe sets corresponding to each key bone GO categories were used to 

validate the GO alignment using the femur mRNA expression data (GN410). For example for 

GO:0001503 (ossification) we expect each of the top 20 GO genes to generate lists of expression 

covariates that are themselves highly enriched in this category. As expected, the top 1,000 

covariates of Alpl have an enrichment p of 10–20 for ossification. In the majority of cases this 

process using the bone expression data validate the precise parental GO classification.  

4. Having established the validity of the adult femur mRNA expression data to detect GO 

enrichment for known bone-associated genes in step 3, we applied the same procedures to every 

candidate gene by computing its enrichment for bone GO terms. To be considered a strong 

biological candidate, these genes had to have a GO enrichment equal to or greater than the 

average of known members of the ontology. For example, genes known to be associated with 

GO: 0001503 have an average GO enrichment p value of 10–8 —a value that candidates had to 

match or beat exceed. 

 

Scoring system of candidate genes 

 

As shown in the Results, we have mapped 16 QTLs that typically contain 45 to 174 positional candidate 

genes within the 1.5 LOD confidence intervals. Collectively, these 16 QTLs include 1,638 protein-

coding genes. Based on the assignment of these candidates to 34 bone GO terms (e.g.,” bone 

development”, “ossification”, “bone remodeling”, etc.), only 2% (n = 36 genes) have been associated 

with bone biology in the literature. We wanted to develop a more comprehensive and objective method 

to evaluate the remaining 98% of candidate genes for possible association with bone biology.  

 

To do this we adapted methods used in previous studies to define potential candidate genes by 

computing so-called bone scores using methods similar to those described in references (22, 23, 38). In our 
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case, we specifically defined a bone score that estimates the potential association between each gene and 

a reference set of 770 genes already associated with 34 bone GO terms. We exploited the same large 

femur expression dataset (GN410) that includes probes that target essentially all protein-coding 

transcripts. For each of 46,621probes, we first calculated the absolute Spearman correlation between the 

mRNA abundance of this probe and all other probes. We then selected the top 1,000 probes with the 

highest correlations and performed a GO enrichment analysis (biological process) based on the 

hypergeometric test (39-41):  

 

𝑝 = 1 −∑
(
𝑚
𝑖
) (
𝑀 −𝑚
𝑁 − 𝑖

)

(
𝑀
𝑁
)

𝑘−1

𝑖=0

 

where M represents the total number of genes targeted by all probe IDs (n = 30,880); N represents the 

number of unique genes among the top 1,000 covariates; m represents the number of genes listed in the 

GO term; and k represents the number of genes among the top 1,000 covariates that are in the GO term. 

 

For example, the top 1,000 covariates of Alpl (alkaline phosphatase, probe ID ILM2340168) includes 

369 genes associated with “ossification” (GO:0001503). Even after correction for multiple comparisons, 

the p value of this GO term enrichment is 5x10–23. We computed enrichment p values for a set of 34 

bone-associated GO terms (Supplemental Data S3). The average p value of 40 well known ossification 

genes such as Alpl was used as reference standard against which we compared all other genes/probes 

(also see Supplemental Data S3). Many positional candidate genes had p values that were as good as or 

better than those of these 36 known bone-associated genes. We converted values to –log10 (p) across all 

34 terms and used the average value as a GO-associated “bone score”. Genes such as Alpl that are 

linked to several bone GO terms typically have average scores above 1 (the peak score is 10.5 for 

Col15a1). Genes linked to 10 or more terms typically have scores above 2. Genes without links to bone 

have averages well below 1. A large subset of genes were further defined as bone ignorome genes—

those that have high bone scores based on the GO analysis but no known literature associated with the 

skeletal system. 

 
Finally, we generated a summary candidate score on a scale of 1 to 10 points for all genes based on: 

 

1. Average bone score (1 to 3). The gene is grading-scored 1 if its average bone score across 34 

GOs is between 0 and 1; 2 if between 1 and 3; and scored 3 if greater than 3. 

2. Highest bone score (0 to 1). Some genes are restricted to only one or two bone GO, with high 

bone score in these a few Go, but very low average score across 34 GOs. We therefore assigned 

these genes a grading score of 1 provided that its highest bone score is between 5 and 10; and a 

grading score of 2 if greater than 10. None of 1,638 positional genes has a highest bone score 

greater than 10.  

3. Coding DNA variants (0 to 3). In a recent study we defined 35,068 coding SNPs in the BXDs, 

of which 11,979 are non-synonymous (nsSNP) with Grantham scores (complete list is 

Supplementary Data 4, of Wang et al (17)). Grantham scores estimate the impact of non-

synonymous variants into classes based on chemical dissimilarity of amino acids (42). A higher 

Grantham score reflects a greater potential impact (43). The gene is grading-scored 1 if it has a 

sum of Grantham values less than 100; 2 if the sum is between 100 and 300; and 3 if the sum is 
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greater than 300. We also identified 173 SNPs with nonsense, frame shift, or splice site mutation 

(Supplementary Data 5 of Wang et al. (17)). Genes with these variants were scored 3.  

4. Cis-regulation (0 to 3). If a gene is cis-regulated in bone, it receives a score of 3. If in cartilage 

and muscle, it is scored 2. If in other tissue, it is scored 1. 

 

All genes received a summary candidate score on a 1 to 10 point scale (Supplemental Data S4 and 

Table 5). We focused most analysis on a subset of 212 candidates within 16 QTLs with scores greater 

than 4. With the goal of functional validation of candidates, we needed to shorten even this list even 

more, and we therefore restricted analysis to the top 50 candidates—the top 10–20 from seven robust 

QTLs.  

 

Candidate gene analysis using RGD, GWAS, and KO resources 

 

We scored candidates using several public resources:  

 

1. The Rat Genome Database (RGD, www.rgd.mcw.edu). This resource provides current genome 

and phenome data for mouse, rat, and human (44). We downloaded a list of 1,000 genes from RGD 

using “bone” as the keyword in all species and used this set to decide if candidate genes have 

known bone association.  

2. Human GWAS gene compendium (www.ebi.ac.uk/gwas) using “bone” and "skeletal" as 

keywords at a p threshold ≤ 5 x 10-4.  We download a list of 1125 genes associated with diseases 

that impact bone and skeletal system.  

3. International Mouse Phenotyping Consortium, a collection of phenotype data on mouse knockout 

lines (IMPC, www.mousephenotype.org). We searched and downloaded a list of 699 genes 

associated with abnormal skeletal phenotype (mouse phenotype MP: 0005508). 

 

Candidate genes underlying human GWAS loci for BMD 

 

Using the 2017 UKBB eBMD GWAS data (45), we defined bins between the furthest upstream and 

downstream SNPs with a linkage disequilibrium r2 of ≥ 0.7 with the lead SNP, and calculated from 

European populations in the 1000 Genomes Phase III data (46). For each bin, we identified all genes that 

overlap a bin. If no genes intersected the bin, the nearest upstream and downstream genes were included. 

This yielded 731 genes underlying GWAS loci for eBMD (Supplemental Data S4, sheet 

“731_BMD_GWAS_genes”). 

 

Results  
 

We measured 25 microCT phenotypes from femur and tibia in a total of 63 BXD strains. Gross bone 

morphology and size vary significantly by age and sex. The range is a function of dimensionality, and as 

expected volumetric measurements typically have a wider range compared to linear and areal 

measurements. For example, the maximum range of femoral length among individuals is ~1.55-fold—

from 10.9 to 17.0 mm, while that for femoral volume is ~3-fold—from 8.6 to 26.2 mm3. Material BMD 

has comparatively low variation of 1.3-fold. 

 

The coefficient of variance (CV, SD/mean x 100) is a better metric for comparing variation among traits. 

CVs will be a function of biological variation, developmental variation (e.g. right versus left 
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differences), technical error, and even the dimensionality of the measure. For example the CV of 

material BMD range from 2.9% to 4.1% (3.7% ± 0.1%, both sexes combined, including material BMD 

of whole bone, cortical and trabecular bone compartments). This is also true for other ratio-based traits, 

including cortical bone fraction (0.3 – 0.4%) and trabecular degree of anisotropy (9.7 – 11.1%). In 

contrast, several clusters of related bone microtraits have high CVs. For example, several parameters 

related to cortical moment of inertia are sensitive to slight differences in geometry and have CVs that are 

100-fold higher—from 33 to 51% in both sexes and both bones. At trabecular site the variation is 

particularly high because of complex microstructure and active bone turnover and comparatively high 

technical and sampling error. CVs in this cluster of traits also range from 33 to 54%, including 

trabecular volume, bone fraction, and connectivity density.  

   

BXD strain averages 

 

Much of the variation among mice is attributable to differences among the inbred BXD strains, and in 

the following sections we discuss correlations and mapping results of strain means. All strain averages 

of nine representative femoral phenotypes, split by sex and corrected for age, are provided in Table 2, 

including three for whole bone (bone length, mineralized volume and material BMD); three for cortical 

bone (cortical thickness, porosity and polar moment inertia); three for trabecular bone (trabecular 

thickness, bone fraction and connectivity density). Averages for the other 16 femur and 25 tibia 

phenotypes can be computed from data in Supplemental Data S1, but are also presented in 

GeneNetwork (GN IDs 18130 to 18279) for sex averages, females alone, and males alone.  

  

Differences of BXD strain means are more modest than those among all individuals (Figure 3). Typical 

CV range from a high of 34% for femur trabecular connectivity density to a low of 2% for tibia material 

BMD. The overall 3-fold difference in bone volume of two extreme cases is reduced to 1.5-fold (13.1 vs 

20.2 mm) when the analysis is restricted to strain means.  Femoral length ranges from 12.2 ± 0.1 mm in 

BXD27 to 14.7 ± 0.13 mm in BXD55, representing a ~20% difference. Similar to individual data, there 

is wider variation in strain means of femoral mineralized volume, with 1.55-fold increase from BXD27 

(13.08 ± 0.44 mm3) to BXD55 (18.14 ± 0.74 mm3). Not surprisingly, the variation in BMD is much 

smaller (~1.7%).   
 

Femoral length and volume of B6 are greater than those of D2 (Figure 3, 13.5 ± 0.02 mm vs.12.9 ± 0.03 

mm in length and 15.8 ± 1.6 mm3 vs. 13.8  ± 0.2 mm3 in volume, respectively). The material BMD of 

B6 (1,016 ±19.1 mgHA/cm3), however, is lower than that of D2 (1,084 ±1.2 mgHA/cm3). A similar 

pattern is also seen in other strains such as BXD100 and BXD71, but not all strains.  

 

BXD strain effects and heritability 

 

Among these three key parameters we have studied--strain, sex and age--mouse strain is the dominant 

factor controlling trait variation. Under carefully controlled laboratory conditions approximately one-

third of variation is accounted for by strain even after controlling for log of age and sex. Heritabilities 

range from 0.29 to 0.78 across all traits (Table 2). The range for females is from 0.36 to 0.69 (mean of 

0.59 ± 0.02) and that for males is 0.29 to 0.78 (mean of 0.57 ± 0.01). In our study the typical sample size 

within strain by sex is 4 to 5. Belknap provides estimate of the corrected or effective heritability of strain 

means at different resampling depths. When a base heritability of 0.5 is calculated using standard 

methods then the effective heritability of the means will be close to 0.8 (47). 
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Heritabilities were also computed using a jackknife procedure, but did not differ appreciably from those 

computed using conventional methods (the range is slightly smaller—from 0.25 to 0.67). However, the 

jackknife procedure also allowed us to estimate standard errors and coefficient of errors of h2 estimates. 

Given the large sample size (63 strains) and the good control over environmental factors, estimates are 

surprisingly accurate, and have coefficients of error (SE/mean) that average 1.8%. The highest error is 

4.3%, indicating that the heritability estimates are reliable. 

 

Sex differences 

 

While heritabilities of male and female traits are closely matched (males 0.57 ± 0.01 vs. female 0.59 ± 

0.02, mean ± S.E., r = 0.29, n = 50), values in bone traits differ significantly. With few exceptions, body 

weight and bone traits are greater in males than females (Table 2). For example, body weight, bone 

length, and bone volume (Figure 4A) are significantly higher in males. Most other microtraits share this 

pattern (Figure 4C and 4E). A few traits that do not show sex bias are ratio-based measurement such as 

femur material BMD (GN 18182 vs. 18232), cortical bone porosity (GN 18185 vs.18235), and 

trabecular degree of anisotropy (DA, GN 18204 vs. 18254).  

 

Correlational statistics of bone traits and other phenotypes 

 

Our comparisons are based on nine examples of bone traits—three sex-averaged representative traits 

each from whole femur and tibia (GN 18130, 18131, 18132), cortical bone (GN 18134, 18136, 18141), 

and trabecular bone (GN 18146, 18148, 18149). Overall, these sets of whole bone parameters (bone 

length, bone mineralized volume, and material BMD) correlate modestly with each other (Table 3). 

However, femur mineralized volume (GN 18131, range from 10 to 21 mm3) correlates reasonably well 

with the other eight traits (Pearson product-moment correlations from 0.28 to 0.70). 

 

Cortical parameters, including cortical volume, thickness, and polar moment of inertia (pMOI), correlate 

well with each other. The correlation between cortical volume (GN 18134) and pMOI (GN 18141) is 

0.90, whereas that between cortical thickness (GN 18136) and pMOI is 0.47. These traits also correlate 

with whole bone volume and BMD. For example, correlations between total femur volume and cortical 

volume is 0.63 (GN 18131 and 18134); that between femur BMD and cortical thickness is 0.41 (GN 

18132 and 18136), and that between total femur volume and cortical pMOI is 0.58 (GN 18131 and 

18141). This is not a surprising finding because cortical bone comprises the largest fraction of mouse 

long bone. In contrast, trabecular bone parameters—bone fraction BV/TV (GN 18146), SMI (GN 

18148), and trabecular number (GN 18149)—do not correlate well with whole bone and cortical bone 

parameters, except for whole bone volume (range from 0.32 to 0.50).  Both the femoral and tibial traits 

have the same pattern. This site-specificity suggests that the cortical and trabecular components are 

differentially modulated by gene variants. 

 

We computed correlations between femur traits and other musculoskeletal traits, as well as ~5000 other 

phenotypes that have already been measured in the BXD family (17) (Supplemental Data S2). As 

expected, femur length correlates with body weight and length with correlations close to 0.5 (n of 20 to 

30 common strains). In comparison, the correlation within our own study using precisely the same 

animals is not much higher (r = 0.55 with 397 cases).   
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MicroCT estimates of femur mineralized volume correlate well with previous DXA data of Jiao and 

colleagues (DXA, r ~0.5, 48 strains in common). However, bones used by Jiao overlap to some degree 

(about 250 common cases) with those used in the current analysis. Likewise, our femur BMD data 

correlate to other phenotypes in musculoskeletal system, such as muscle mass (48, 49) and alkaline 

phosphatase (ALPL) activity (15). These bone traits also correlate to several other metabolic traits, 

including carnitine levels, blood glucose and corticosterone in response to ethanol (50, 51), body weight 

gain on high-fat diet, and both high-density lipoprotein (HDL) and low-density lipoprotein (LDL) 

cholesterol levels (52, 53).  

 

Principal component analysis 

To systematically analyze the correlation structure among femoral and tibial traits s, we used 

conventional principal component analysis (PCA) to reduce the dimensionality of 100 traits—50 from 

males and 50 from females. The first principal component (PC1, GN 18424) accounts for 23% variance 

and is generally associated with bone volume in both sexes. PC2 and PC3 (GN 18425 and 18426) 

account for 15% and 12% of variance, and are related to trabecular traits in both femur and tibia, 

whereas this correlation from PC3 is not strong. PC4 (GN 18427) accounts for 8% of variance and is 

non-specifically related to the bone length in both femurs and tibias. PC5 and PC6 (GN 18428 and 

18429) accounts for 6.5 % and 5% variance, and are generally associated with material BMD in both 

bones. We also conducted QTL mapping of these top principal components and they did not match up to 

individual trait well with only one exception: PC4 and femur length in males (GN 18427 and 18230) 

both map to Chr13 at about 100 Mb. Overall, it was difficult to identify PCs with coherent sets of bone 

traits, either by sex, or bone type (femur vs. tibia) and site (cortical vs. trabecular).  

 

Genetic correlations of bone traits with gene expression 

 

We used GeneNetwork to generate lists of the top 1,000 transcripts with expression levels that correlate 

highly to femur phenotypes using femur mRNA databases (GN410). Lists of these top-ranked transcripts 

(mean expression level > 7.0) were exported to WebGestalt (WEB-based GEne SeT AnaLysis Toolkit: 

www.webgestalt.org) for enriched Gene Ontology (GO) category with its sub-root (biological process, 

molecular function, or cellular component) (40, 54). 

 

Whereas there were a large number of correlated transcripts, we looked the transcripts with high 

significant correlations and selected a manageable number to present in Supplemental Data S2, giving 

the priorities to the genes encoding extracellular bone matrix, calcium modulating molecules, receptors, 

second messengers and relevant hormonal agents and cytokines. While most of related genes are 

associated with general biological process and molecular function, some are closely relevant to bone 

biology. For example, the bone morphogenetic protein 2 (Bmp2) and 7 (Bmp7) are correlated to femur 

trabecular fraction (BV/TV), together with interferon induced transmembrane protein 1 and 5 (Ifitm1 

and Ifitm5). And all of these genes are grouped as regulators of ossification and bone mineralization. 

Additionally, there are other transcripts with high genetic correlation, and encoding protein molecules 

relevant to bone biology, including TNFRSF, NFκB, insulin, calcium channel, cadherin, and 

extracellular matrix molecules such as collagen, integrin, fibronectin, hyaluronic acid.  

 

Genome-wide QTL mapping 
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We generated QTL maps for all phenotypes (GN 18130 – 18279) and identified a total of 16 significant 

loci lon Chrs 1, 2, 6, 7, 9, 10, 11, 12, 13, 17 and X (Figure 1C). There was no association between 

heritabilities of traits and yield of QTLs.  

 

There were only small differences in QTL peak locations (up to 6 Mb) and LRS scores using the two 

genotype files. The average maximum LRS scores were 13.4 ± 3.2 using the classic file and 13.7 ± 3.3 

using the 2017 file. To compare to almost all other data and published QTLs, we have opted to present 

results using the classic file, but it is a simple matter to update maps using the newer genotype files in 

GeneNetwork.  

 

We evaluated effects of age differences on mapping results. We compared mapping results from the 

complete data set of 597 cases (GN 18130 - 18279, with a log age correction) to those from a subset of 

484 cases between 65 and 116 days-of-age, without log age correction (GN 18986-19086). The Pearson 

product-moment correlations between full data with age correction and the trimmed dataset without age 

correction range from 0.67 to 0.98 (0.93 ± 0.06 SE, n = 25 male traits, 25 female traits). 

 

We performed additional analysis that considered genetic markers, mapping algorithm, and composite 

interval mapping (see Methods).  We selected seven common and robust QTLs (Figure 1) for key bone 

microtraits of biological importance (8). The maximum LRS for all traits is about 22 while the minimum 

genome-wide threshold (p < 0.05) is about 17. These QTLs account for between 25 to 35% of genetic 

variance in phenotypes (the r2 between the best marker in Table 4 and the strain mean data). Table 4 

also provides information on locations, intervals, maximum LRS scores, additive effect sizes, 

representative bone phenotypes with GN record IDs of these seven QTLs. We also list the p values for 

gene-by-sex interactions. Five QTLs are related to cortical bone traits, whereas two are related to 

trabecular traits, including Fttf1a on Chr 1 and Ttsf11 on Chr 11.    

 

Sex differences in QTL mapping. We succeeded in mapping significant QTLs for female traits but not 

for corresponding traits in males. Seven robust QTLs are all detected in females and most of the 

corresponding QTLs in males are not even suggestive (Table 4). The only exception is tibia cortical 

thickness in males (GN 18261) reached suggestive level (LRS ~ 11). Among the subset of seven most 

robust QTLs, four are associated with sex-by-genotype effects.  

 

This sex bias in mapping success was unexpected in our study, because heritability is so closely matched 

between sexes (Supplemental Data S1) though many prior mouse QTL mapping studies have shown a 

high level of sexual dimorphism (55-59). We note that body weight loci for the sexes covary well (r = 0.69, 

n = 53, GN IDs 18547 and 18548), but QTLs also differ, with suggestive peaks on Chr 1 in males (LRS 

of 15 at 120 Mb and a high D allele) and on Chr 8 in females (LRS of 14 at 80 Mb with a high D allele). 

QTLs for body weight do not match up with any of the bone trait QTLs. And vice versa, in comparison 

with the only male QTL (GN 18248, LRS = 19.7), the LRS of the corresponding female trait (GN 

18198) at the same location (~35 Mb on Chr 9) is as low as 0.7. The numbers of the suggestive QTLs in 

the same interval mappings also share the same pattern, with 42 in females, 19 in males and 31 in sex-

averages.    

 

There are several QTLs particularly interesting relevant to sex difference. For example, the femur 

trabecular thickness in females (GN 18200) has two significant QTLs on Chr 1 (LRS peaks at ~72 and 

~176 Mb, respectively), while the corresponding trait in males (GN 18250) is not even suggestive. One 
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candidate gene Igfbp5 (Insulin-Like Growth Factor-Binding Protein-5, starting at 72.90 Mb, candidate 

score = 4) in this interval is contributory to skeletal development and BMD acquisition in a sex and age-

dependent manner (60). The distal QTL on Chr 1 also harbors a number of genes modulating bone, 

including Grem2, Ddr2, Ifi203, Ifi204, Ifi205 (61).  

 

There is another strong QTL on Chr 12 for femur cortical volume traits in females only. Greb1 (growth 

regulation by estrogen in breast cancer 1) is an estrogen-responsive gene that plays an important role in 

hormone-responsive tissues and cancer, including breast cancer (62). It is also expressed in the prostate 

and its putative promoter contains potential androgen receptor (AR) response elements (63). Its possible 

roles relevant to osteocytes and osteoblasts may be mediated by IL6/Stat3 (64, 65) and Wnt signaling (66). 

 

Mirroring the results above, the heritability of pairs of male and female traits did not predict whether or 

not a QTL was detected. QTLs found in females included both cortical and trabecular phenotypes for 

both bones. Males and females were often littermates, and all phases of the phenotyping were carried out 

without batch processing by sex. We therefore believe that sex differences in mapping success reflect 

underlying differences in genetic architecture—for example, traits in males may be controlled by larger 

numbers of loci with smaller additive effects or controlled to a greater degree by epistatic interactions. 
     
GO validates known bone-associated genes and defines new bone-associated genes 

 

We extracted sets of genes linked to 34 common bone-associated GO terms from femur gene expression 

data (14). These eigengenes correlate well with subsets of known bone-associated genes, but more 

importantly, also highlight potentially novel genes linked to bone traits. In general, these eigengenes 

correlate modestly with femur traits and other BXD phenotypes related to the musculoskeletal system. 

For example, GO:0060346 (bone trabecula formation) includes ten genes: Chad, Col1a1, Fbn2, Grem1, 

Mmp2, Msx2, Ppargc1b, Sfrp1, Thbs3, Wnt10b. The eigengenes (GN18479, 18480, 18481) derived from 

this set correlate with several femoral traits (|r| between 0.51 and 0.59), and six tibial trabecular traits (|r| 

between 0.51 and 0.67).   

 

We computed another three eigengenes from GO:0001503 (ossification, see traits GN 18476, 18477, 

18478) that also correlate modestly with femoral traits. We selected four known genes for ossification: 

Bmp1, Alpl, Mmp23, Col1a1 with corresponding transcripts (ILM2940576, ILM2340168, ILM3940278, 
ILM730020) for correlation comparison analysis to generate 200 probes for this GO. The adjusted p 

values for the top 20 probes range from 10-6 (ILM70193 for Cpz-carboxypeptidase Z) to 10-23 

(ILM4780484 for Pard6g- par-6 partitioning defective 6 homolog gamma). Among them, 14 genes are 

known to be implicated to bone biology or encoding bone matrix, including Bmp1, Alpl, Mmp23, 

Tmem119, Serpinf1, Ifitm5, Col5a1, Rcn3, Col1a1, Adamts2, Smpd3, Pthr1, Mmp16, Col22a1; and 2 

genes (Maged1 and Pard6g) are involved in the regulation of osteoblast activity and/or bone mass (67). 

The rest of other genes are not known to be bone-associated, but with a significant GO enrichment p 

value for ossification, including Fkbp10 (p< 10-22), Kdelr3 (p< 10-28). 

 

We extended this analysis to 34 bone ontology terms, and listed the p values and defined –log10 (p) as 

the “bone scores” (both the average and best score) in each GO in Supplemental Data S3. We found 

there are more than 500 probes with highest p value less than 1x10-17, i.e., highest bone scores greater 

than 17. Among them, there are 188 probes with the average bone scores greater than 7.0, and we 

focused analysis on these genes.  
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We also counted the total presence numbers or “hits” of each of these 46,621 gene probe (30,890 unique 

protein-coding genes) in 34 bone GO terms. Not surprisingly, the probes with more “hits” have higher 

bone scores. The average score is 2.90 for those probes with more than 10 “hits”; 1.73 and 1.54 for those 

with 5-9 “hits” and 0-4 “hits”, respectively.  

 

However, in this large set of genes and probes, the majority does not have bone GO “hits”. Among the 

top 20 genes with the highest bone scores (> 8.96), only three (Cd276, Bmp3, and Satb2) are listed in 

current bone GO terms. Another five (Col15a1, Unc5b, Fam78b, Dlx6, and Nkd2) have been implicated 

in bone biology or skeletal system development, but are not currently part of any bone-related GO term. 

Surprisingly, the remaining 12 (P3h4, Unc5b, Srpx, C1orf198, Gxylt2, Clec11a, Sec31a, Bok, Clec11a, 

Kdelr3, Prss35, Tmtc2) with these high bone scores have not been known to be functionally associated 

with bone biology, and are therefore strong candidate genes that are well worth focused analysis and 

validation.    
 

Collectively, there are only 36 genes associated with bone GO terms among 1,638 positional candidate 

genes ( ~2%) within 16 significant QTLs. There genes include: Adam8, Adamts14, Asf1a, Bcor, Cadm1, 

Cartpt, Col13a1, Ddr2, Dscaml1, F2r, Gas1, Gata1, Gja1, H3f3a, Hexb, Hey2, Hnrnpu, Id2, Ifi204, 

Igfbp5, Ihh, Itgb1bp1, Med1, Nodal, P4ha1, Pcgf2, Ptch1, Pvrl1, Rara, Rgn, Sgpl1, Srgn, T, Thra, Wnt6, 

and Zfp640. The remaining 98% genes are absent in any of current bone GOs.  
 

We have used three gene datasets to define bone ignorome (Figure 2), with a goal to highlight all 

members of the large set of positional candidates potentially involved in bone biology. The average bone 

score of 30890 protein-coding genes (blue line in Figure 5) and 1,344 positional candidate genes 

(yellow line) are close: 0.85 ± 0.01 and 0.88 ± 0.03, as compared to a higher mean of 1.74 ± 0.07 in 770 

known bone GO genes (green line). If a stringent threshold of 3 in bone score is chosen, there is a total 

of 2075 genes (gray area between blue and green lines) above that level. They may be ignorome bone 

genes. Not surprisingly, the percentages of genes with bone scores above 3 in these categories are 7.3%, 

7.2% and 25.2%, respectively (Figure 5). At more stringent levels of 6 and 9, gene numbers above 

threshold are 437 and 59, respectively. These highly ranked genes with minimal or no known links to 

bone biology should be carefully evaluated as candidate genes.  

   

Candidate genes. We define a total of 212 candidate genes with scores greater than 4. We provide all 

genome-wide maps, high-resolution maps around peaks, and lists of the top 10 to 20 candidates for each 

QTL (Supplemental Data S4). Among candidates, some are well known genes related to bone biology, 

such as Ihh, interferon activated genes, and genes from the WNT and ADAM families (Supplemental 

Data S3). Some are not well known, but have been linked to rare types of bone disorders. For example, 

Fkbp10 (FK506 binding protein 10) is linked to recessive osteogenesis imperfect or Bruck syndrome (68-

70). For the majority of genes, however, their functional linkage to bone biology is largely unknown.  

 

Based on summary candidate scores, we have listed 50 robust candidates with high summary scores 

between 5 and 8 linked to seven robust QTLs (Table 5). These candidates are grouped into three 

categories: 1) known bone-associated genes experimentally validated in animal models (Adamts4, 

Adam12, Adam17, Ddr2, Darc, Fkbp10, E2f6, Ifi204, Grem2); 2) candidates with putative bone 

functions reported in human studies but not yet validated in animal studies (Ifi202b, Greb1); 3) bone 

ignorome genes with high summary scores but no known link to bone (Ly9, Ifi205, Arhgap30, Slamf9, 

Ifi203, Sde2, Usp21, Klhdc9, Slamf7, Cd84, Ncstn, Copa, Tmem63a, Ephx1, Cd244, Atp1a4, Slamf8, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512103doi: bioRxiv preprint 

https://doi.org/10.1101/512103
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Pyhin1, Rgs7, Mgmt, Frk, Krt10, Tubg2, Krt12, Stat5a, Trib2, Lpin1, Pqlc3, Hpcal1, F2rl1, Iqgap2, 

Mrps27, Naip5, Cmya5, Arsb, Polk, Rgnef, Mtap1b, Fndc) 

 

Lack of significant epistatic interactions  

 

We searched for two-way epistatic interactions that potentially modulate bone phenotypes in males and 

female samples. Of a total of 100 traits (50 per sex) we only detected one significant interaction (p ~ 

0.02) for tibia moment of inertia around the shorter axis in males (GN ID 18267). While this interaction 

is nominally significant, we are not convinced that this interaction is genuine for two reasons: 1) our 

search for epistatic interactions does not correct for the many secondary tests we performed, and 2) 

neither loci in this epistatic pairing are associated with a significant additive effect for this or any of the 

other 49 traits (Chr 1 at 100.7 Mb and Chr 15 at 33.4 Mb). We therefore conclude that epistatic 

interactions have relatively modest effects that are not detectible with our modest sample size (71, 72).  

 

Combined analysis of mouse candidate genes with QTLs and GWAS hits in rat and human  

 

RGD lists 295 bone QTLs and 646 bone-associated candidate genes in mouse; 213 QTLs and 269 genes 

in rat; and 70 QTLs and 230 candidate genes in human. In mouse, roughly half of all autosomes are 

overlapped by one or more of 295 generally broad QTLs.  

 

We compared all 16 of our prime QTLs with those previously mapped in mouse, and found that 14 are 

novel. Three define entirely new loci (labeled in red in Figure 1C): Chr 6 (Ttda6) and Chr X (FcvfXa 

and FcvfXb). The others overlap previously reported QTLs but eleven are microCT-derived structural 

traits not directly related to BMD, and should therefore also be considered novel (labeled in green in 

Figure 1C), including Fttf1a, Tcv2, Fpmoif7, Ftsmoim9, Ttdaf9, Fpmoif10b, Ttsf11, Fcvf12, Tmoif13, 

Tct13, and Fmoif17. The only two QTLs with similar phenotypes and map positions, and therefore 

provisionally replicated, are Fttf1b (73) and Fpmoif10a (74) (labeled in black in Figure 1C). 

 

At the level of candidate genes, only 18 out of 212 of our candidates overlap those already curated in 

RGD. Of these 18, 17 are genes defined as having a role in bone biology in mouse, 2 in rat, and only 1 

(Ihh) in human cohorts. 

 

Of 212 candidate genes for all traits seven have human homologs that lie within a GWAS locus as 

shown in Supplemental Data S4 (1638_sorted_212candidates_>4): (1) Grem2 (gremlin 2, DAN family 

BMP antagonist) (Paternoster et al., 2013) is located on chromosome 1 in both mouse and human and 

overlaps an association for estimated BMD on chromosome 1 spanning from 240.1 - 241.1 Mbp. Grem2 

is a member of a family of bone morphogenic protein antagonists, is expressed in bone and has been 

linked to low BMD (75, 76). (2) Sorl1 (sortilin-related receptor 1) is a VPS10 multifunctional receptor, 

serving as a trafficking receptor located in the Golgi apparatus(77). Sorl1 is located on chromosome 3 in 

mice, on chromosome 1 in humans, and overlaps an association for estimated BMD on chromosome 1 

spanning from 121.3-122.3 Mbp. Sorl1 has previously been identified in screens for differentially 

expressed genes in mesenchymal stem cell differentiation, but the mechanism by which Sorl1 relates to 

bone biology remains unclear (78, 79). (3) Cadm1 (cell adhesion molecule 1) is a cell adhesion molecule 

that has been observed to be downregulated in many different cancers (80). Cadm1 is located on 

chromosome 9 in mouse, on chromosome 11 in human, and overlaps an association for estimated BMD 

on chromosome 11 spanning from 115-115.2 Mbp and is just upstream of an association spanning from 
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115.4-115.6 Mbp. In the context of osteosarcoma, Cadm1 has been observed on the osteoblast cell 

surface and has been used as a marker of differentiation in osteoblasts (81). Additionally, Cadm1 has been 

demonstrated to play a role in NFATc1 regulation of osteoclast activity (82). However, its role in the 

determination of bone architecture has not yet been elucidated. (4) Hap1 (huntingtin-associated protein 

1) Hap1 was identified as interacts with the huntingtin protein and modulates intercellular trafficking in 

that context (83). Hap1 is located on chromosome 11 in mouse, on chromosome 17 in humans, and 

overlaps an association for BMD on chromosome 17 spanning from 39.4-40.4 Mbp. Hap1 has not been 

demonstrated to have a function in bone. (5) Fancc (FA complementation group C) is part of a protein 

complex associated with Fanconi Anemia and plays a role in DNA stability (84). Fancc is located on 

chromosome 13 in mouse, on chromosome 9 in humans, and overlaps an association for estimate BMD 

on chromosome 9 spanning from 97.7-98.7 Mbp. Fancc has not been demonstrated to have a function in 

bone. (6) Ptch1 (patched 1) plays a role in Hedgehog signaling, which is a critical pathway in osteoblast 

activity (85). Ptch1 is located on chromosome 13 in mouse, on chromosome 9 in humans, and overlaps 

an association for estimated BMD on chromosome 9 spanning from 98.1-98.3 Mbp. Mutations in Ptch1 

has been shown to affect bone metabolism (86) and BMD and fracture (87). (7) Msh3 (MutS Homolog 3) is 

involved in the process of mismatch repair (88). Msh3 is located on chromosome 13 in mouse, on 

chromosome 5 in human, and overlaps an association with estimated BMD on chromosome 5 spanning 

from 80.2-80.3 Mbp. Msh3 has not been demonstrated to have a specific function in bone. (8) Tns1 

(tensin 1) is located on chromosome 1 in mouse, on chromosome 2 in human and overlaps an 

association for estimated BMD on chromosome 1 spanning from 218.0 - 218.2 Mbp. Tns1 is 

concentrated at focal adhesions, binds actin filaments, and regulates cell migration (89). 

 

In addition, in comparison with the known gene variants with abnormal skeleton morphology on IMPC, 

there are eight common genes: Greb1 (score of 6 on Chr 12), Praf2 (score of 4 on Chr X), Timp1 (5 on 

Chr X), Nr1d1 (4 on Chr 11), Thra (4 on Chr 11), Tmem63a (5 on Chr 1), Nsun2 (4 on Chr 13), Sdhc (4 

on Chr 1), with summary candidate scores greater than 4.  

 

Discussion 
 

Synopsis 

 

Compared to previous low-resolution studies using DXA, we have used high-resolution microCT 

imaging to measure bone traits in a large cohort of BXD strains. We selected a subset of 25 traits from 

trabecular and cortical compartments of tibia and femur for genetic dissection. These microstructural 

traits have heritabilities that range from 30% to 78% in both sexes. We successfully mapped 16 QTLs—

10 for femur and 6 for tibia—and we generated a list of 1,638 positional candidate genes within 1.5 

LOD confidence intervals that ranged from 4 to 20 Mb in length. Surprisingly, no QTLs were shared 

between sexes, and we were far more successful in defining QTLs for females than males, suggesting 

sex differences in genetic architecture (90) and the modulation of bone microstructure. From these 16 

QTLs we filtered and extracted the seven most consistent traits that we regard to be of highest 

importance, as well as least dependent on mapping methods or variation in age. We nominated 50 genes 

with strong associations to skeletal homeostasis and with high summary candidate bone scores using a 

novel GO annotation strategy. Seven candidate genes have been associated with bone biology or 

abnormalities in both humans and animal models, including Adamts4, Ddr2, Darc, Adam12, Fkbp10, 

E2f6, and Adam17, whereas another four have been linked either in humans (Grem2 and Greb1) or in 

vitro animal models (Ifi204 and  Ifi202b). All are worth additional genetic and molecular studies to test 
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their roles in bone biology and expression patterns in osteoblasts and osteoclasts. Molecular and cellular 

functions of the remaining 39 genes are still largely unknown. Some have unusually high bone scores 

and are therefore primary candidates, especially Ly9, Ifi205, Mgmt, F2rl1, and Iqgap2 that are ranked as 

top 10 candidates. 
 

The genetic and molecular mechanisms of bone homeostasis, osteoporosis, and other bone diseases are 

more complicated than originally predicted (91, 92). However, as we and others have shown, mapping 

sequence variants modulating bone structure and function is now becoming much easier (14, 93-95). 

Defining causal genes is also finally becoming more practical by combining mapping with omics data 

sets—in our case by combining mapping results with expression data and with GO analyses to generate 

both bone scores and summary candidate scores (96-99). The hard job of validation and mechanistic 

interpretation is also getting easier, with faster gene engineering methods to modify DNA sequence (91). 

What is still most challenging is understanding how combinations of loci and gene variants collectively 

influence bone biology and disease risks and how therapeutic intervention are likely to interact with 

genotype (11, 12, 16). 

 

The significance of computing bone ignorome scores for candidate gene ranking 

 

We compared all 16 of our bone QTLs with 295 published mouse and 213 rat bone QTLs listed in the 

RGD (100, 101). Of these 16, three are completely novel—those on Chr 6 (Tcv2) and on Chr X (FcvX and 

FcvfX). The other 13 overlap bone-associated QTLs reported in RGD, but only two have similar 

phenotypes and map positions: Fttf1b and Fpmoif10a. The other 10 of our new QTLs are specifically 

linked to microCT bone traits and therefore should also be considered novel.  

 

Given the large number of QTLs and positional candidate genes we uncovered, we needed to develop 

efficient and objective methods to evaluate candidates and their potential role in bone biology. Of 1,638 

overlapping the locations of QTLs, only 36 (~ 2%) have already been linked to any of the major bone 

and skeletal system GO terms (see Methods). The major skeletal system GO terms incorporate ~360 of 

24,495 genes in the mouse genome (~1.5% of all coding and non-coding genes), and approximately 404 

genes when the list is expanded to include rat and human. Similarly, RGD currently lists 652 genes 

associated with bone structure and function in mouse—roughly 2.7% of all genes. Even this higher 

value is likely to seriously underestimate the number of genes and the fraction of genome associated 

with the development, structure, function, and homeostasis of bone.  

 

We therefore needed to develop a more objective and comprehensive way to highlight additional genes 

potentially associated with bone biology but for which there is currently no compelling experimental or 

clinical data. In a recent study (22) we developed a relatively unbiased computational method to generate 

lists of genes with both high expression and highly selective expression in organs and tissue types using 

comprehensive transcriptome data. In the present study we have used a new variant of this method to 

extract a much larger list of genes that have not been previously linked to bone biology. We refer this as 

the bone ignorome (22, 23, 102).  

 

The innovation in the present study is that we have defined the bone ignorome by computing a “bone 

score” based that ranged from a low of 0 to a high of 17. The mean score of known bone genes was 

1.74. In comparison, genes without any known association with bone biology in the literature or with 

bone GO terms had much higher scores. We opted to apply a stringent threshold to define genes with a 
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bone score of 3 or higher as part of a bone ignorome. This scoring system generated a set of 2,075 genes 

that are potentially associated with bone biology and the skeletal system (Figure 5), a value that we 

believe is more in line with the numbers of genes likely to have an important and possibly selective 

effect in bone biology.  

 

Candidate gene ranking 

 

We have defined strong candidates by combining bone scores above with several other key attributes. 

This provided us with a relatively objective way to rank candidates (16). This method can be easily 

adapted to provide different weighting to different variables, tissues, and crosses. 

 

We reviewed all 16 significant QTLs to evaluate their replicability when using a subset of data with a 

narrow age range (65 to 116 days) and without age correction (see traits GN 18986-19086). This 

reduced sample size by a third but did not affect strain number. As expected, mean linkage scores were 

reduced by the smaller sample size. Seven QTLs are insensitive to age as a confounder, and from these 

seven robust QTLs, we have nominated 50 candidate genes in Table 5, selecting only those with high 

summary scores. Two of these are described below as examples of compelling candidates; but this entire 

set is worth further systematic analysis. 

 

Grem2 (gremlin 2, DAN family BMP antagonist) that encodes a member of the BMP antagonist family 

is a strong candidate for femur trabecular thickness at the Fttf1a locus on Chr 1. Its effects on BMP 

signaling and osteoblast differentiation have been confirmed in in vitro studies (103, 104). Genetic variants 

in the GREM2 region influence GREM2 expression in osteoblasts and are associated with fracture risk in 

humans (3). Another study reported that the minor allele of rs4454537 in GREM2 is associated with low 

BMD in hips of a southern Chinese population (105). Our findings suggest that the BXD family—females 

in particular— would be good starting point to test genetic and molecular control of Grem2 and its 

possible modulation of trabecular thickness. 

   

Another gene, Greb1, is a robust candidate for cortical bone volume at the Fcvf12 locus on Chr 12. This 

locus also has a strong sex bias with LRS of 19.5 in females but only 1.1 in males. Greb1 is responsive 

to estrogen in breast tissue (106). It is expressed in prostate and its putative promoter contains potential 

androgen receptor binding sites (63, 107). In humans, GREB1 is associated with BMD at two sites with 

high fracture rates—femoral neck and lumbar spine (108). However, the association of Greb1 with bone 

biology has not been reported previously in animal models. Since both estrogen and androgen are strong 

regulators in bone remodeling, it is plausible that Greb1 is a target for both further osteoporotic genetic 

research and a target for the prevention and treatment of postmenopausal osteoporosis. 

 

In addition to these two obviously strong candidates that already have been characterized in human we 

also think that the follow genes with both missense mutations and strong cis eQTL would be worth 

aggressive molecular analysis using CRIPR-Cas9—Mgmt, Mrps27, Fndc1, and Krt10, that are linked to 

traits of femur polar moment of inertia, tibia cortical thickness, femur moment of inertia around the 

longer axis, and tibia trabecular number respectively 

 

Sex differences  
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Phenotypic differences of bone traits between sexes are large, but not surprising. Most values for males 

are greater than those for females, except a few ratio-based traits. However, we were surprised by the 

marked sex imbalance in numbers of QTLs we were able to maps. While heritability of traits is roughly 

matched (mean of 0.59 for females and 0.57 for males), the correlations of traits between sexes across 

all strains is unimpressive—about 0.43 ± 0.02 (mean ± S.E.). The failure to detect QTLs in one or the 

other sex is not an artifact of the thresholds we used to declare a QTL. For example, femur trabecular 

thickness in females is linked to two strong and independent QTLs on Chr 1 with LRS values of 16 and 

20. In contrast, the same trait in males does not even reach a suggestive level anywhere in the genome, 

and has a peak LRS of merely 7 on Chr 1. The same sex bias in favor of detectible QTLs in females was 

also noted among suggestive loci.  

 

We have detected sex-by-genotype interactions for half of these traits, but our analysis is not corrected 

for a full genome-wide scan. Sex differences in bone are generated by many genetic and non-genetics 

factors, and detecting interaction effects is difficult even with large sample size. We have reviewed other 

studies and none have reported such a strong sex by QTL discovery bias (109, 110).  

 

Site specificity 
 

Over the past decade more than 150 loci for bone-associated traits have been mapped in many mouse 

crosses (111, 112). Causal gene variants have been successfully defined for more than 10 of these, including 

Asxl1, Bbx, Cadm1, Cdh11, Fam73B, Prpsap2, Setdb1, Slc38a10, Spns2, Trim45, and Trps1 (93, 113, 114). 

Most previous work and over 120 of these loci have focused exclusively on BMD, either of the whole 

body or bone compartments. In comparison to this simple composite measure, we have focused almost 

exclusively on microCT bone traits from deep phenotyping. But for reference to previous work, we have 

also included BMD measures. While BMD by DEXA is still the preferred measurement to screen and 

diagnose osteoporosis, it is a collective “macrotrait” aggregate of both cortical and trabecular 

compartments, and differs from the fine-grained structural measurements generated by microCT. We 

measured three microCT-derived BMDs from whole bone, cortex, and trabeculae in ~600 cases, but 

failed to map any associated QTLs. In contrast, we were able to detect QTLs for several cortical and 

trabecular traits, particular in females. 

 

Remodeling and turnover of cortical and trabecular (cancellous) bones are differentially controlled and 

regulated (115). Trabecular bone is composed of internal rods and plates, forming a lattice that is the 

primary repository of bone marrow. Because of its close proximity with marrow and marrow-derived 

cells, trabecular bone has a higher level of turnover than cortical bone (116). Our genetic dissection of 

these two compartments confirms the distinction. We performed a correlation test and representative 

trabecular parameters do not correlate with cortical bone or whole bone parameters (bone fraction 

BV/TV, SMI and trabecular number). We also conducted PCA, but failed to identify eigentraits that 

collectively represent these two major bone regions (cortical bone vs. trabecular bone). However, 

individual trabecular and cortical sites did map well, suggesting that gene variants have relatively 

precise effects of specific regions and compartments. 

 

We mapped 16 strong QTLs for bone microtraits: six for trabecular bone and ten for cortical bone. There 

was no overlap among loci. Five of six trabecular bone loci have significant p values of sex-by-genotype 

interactions. In contrast, only two of the femur cortical bone loci have sex-by-genotype effects. Taken 

together, this confirms that trabecular and cortical bone microtraits are differentially and independently 
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modulated. These findings underscore the importance of precision phenotyping and in mapping and in 

precision medicine (117, 118). 

 

GWAS 

 

Since 2007 over 40 human GWAS studies of BMD have been published on skeletal phenotypes and 

more than 1000 polymorphisms are associated with BMD (1, 6, 119-122). However, there are no common 

variants with large effects on BMD or risk of osteoporosis (6, 123). Minor and major inconsistency are 

common among individual GWASs and even large-scale meta-analysis. Possible reasons include sample 

size and power, small effect sizes and population differences, and, variation in statistical procedures (124, 

125). Likewise, almost all of these GWASs are based on areal BMD from DXA measurement at various 

sites, including lumbar spine, femoral neck, total hip, wrist, radius, and tibia. Paternoster and collegues 
(3) published the only GWAS based on peripheral quantitative CT (pQCT) measurement of volumetric 

BMD (vBMD). The trabecular vBMD was linked to one significant SNP, and cortical vBMD analysis 

was linked to four loci. This study also confirms that variants related to cortical and trabecular 

parameters differ—rs1021188 on Chr 13 is associated with cortical porosity whereas rs9287237 on Chr 

1 is associated with trabecular bone fraction. Other DXA-based studies (126-128) have confirmed that 

BMD variants exert site-specific effects; that is to say that strengths of association and magnitudes of 

effect differ across different skeletal sites.  

 

Advantages and limitations 

 

This is one of the first genetic studies of bone microarchitecture in mouse using microCT. The method 

provides a precise way to quantify and image microarchitecture in trabecular and cortical bone 

compartments with a resolution of 10 microns or less. In contrast, DXA provides measures of total bone 

mineral density and bone content. One challenge of microCT is the large number of summary values 

generated per bone. We chose to evaluate and map 25 traits for each bone that are generally regarded as 

of genuine significance. This is still a large number, and raises the issue of study-wide false positive 

rates. All mapping is corrected for genome-wide testing, but is not corrected for numbers of traits—150 

total entered into GeneNetwork. As a result a subset of QTLs are likely to be false discoveries. This is 

the main motivation for why we extracted a core set of seven QTLs that we regard as robust in the sense 

that they are insensitive to variation in age, genotype file (old versus new), and mapping algorithm 

(Haley-Knott, R/qtl, pyLMM, GEMMA), or the distribution and transformation of the phenotype 

(original data or winsorized data to minimize the impact of outliers). There is inevitably still some risk 

of false discoveries, but we regard these QTLs to be strong enough to warrant independent validation 

using, for example, CRISPR-Cas9 engineering, pharmacological manipulation, or in-depth omics 

analyses. A straightforward alternative at this point would also be to extend the study using an 

independent panel of BXDs (there are another 80 BXD strains that have not been phenotyped at all), or 

related genetic crosses such as B6D2 crosses (129) or Diversity Outbred animals (95).   

 

Limitations of this study may be obvious. First, we have relatively modest numbers of replicates within 

strain between sexes. This means that we cannot yet evaluate strain-by-sex effects. However, we are 

able to evaluate overall sex differences for both phenotypes and QTL maps. Second, the sample size is 

still too small to detect epistatic interactions.  

 

Future directions 
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The fundamental goal of this work is to systematically transition from QTL, to gene, to mechanism, to 

potential preclinical therapies. The first step is to achieve high quality quantitative measures relevant to 

bone strength and metabolism and to demonstrate heritable control of variation. The second step is to 

demonstrate that single loci can be defined with sufficient precision to nominate strong candidate genes. 

Our work has reached the end of this second stage, but raises questions regarding subsequent steps that 

can most efficiently validate candidates and test them as therapeutic targets.  One approach would 

produce a multispecies meta-analysis of genes implicated in bone function. Those shared genes across 

species will be the most relevant candidates. Another consideration is to systematically study gene-by-

environmental interactions; something most efficiently handled using cohorts such as the BXDs in 

which genetically identical cases can be exposed to several environments or treatments. In addition, 

molecular biological method such as gain- and loss-of-function studies are needed to validate candidate 

genes and investigate the mechanism. Finally, we need to develop higher throughput ways to test 

therapeutic interventions starting at early stages and using rigorous quantitative methods; what we 

should call experimental precision medicine. Again, cohorts of isogenic animals for which we have 

superb baseline data will be essential resources to achieve this last goal and to evaluate impact of 

treatment as a function of genotype. 
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Figures 

 

 

Figure 1. (A) Representative microCT image reconstructions of whole bone (cut-planes of femur on the 

left and tibia on the right). Four red boxes represent reconstructed microtraits of either cortical bone 

(midshaft) or trabecular bone (bottom and top, distal femur and proximal tibia) generated from 100 

transverse sectional slices. The seven most robust QTLs are shown around the periphery with 

corresponding trait identifiers and QTLs: first letter F or T (femur or tibia), followed by abbreviation of 

key bone phenotype, and f or m (female or male if a QTL was sex-specific, pmoi = polar moment of 

inertia, cv = cortical volume, ct = cortical thickness, tn = trabecular number, tt = trabecular thickness). 
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The final number is the chromosome number. For each QTL map, the x axis is given in megabases, the 

left y axis is the LRS score. The red horizontal line provides the genome-wide significance level based 

on 2,000 permutations. Orange hash along the x axis indicates SNP density. Heavy blue lines provide 

linkage statistics, whereas thin green and red lines provide an estimate of the additive genetic effect 

(right y axis). (130) for details on replicating these QTL maps.  (B) The QTL heat map provides whole-

genome mapping results for all seven phenotypes in the form of color-coded horizontal bands. Bands of 

more intense color correspond to QTL linkage peaks, and colors encode the additive effect of alleles 

(blue for B and red for D alleles). (C) Chromosomal ideograms for all 16 significant QTLs (Chrs 1, 2, 6, 

7, 9, 10, 11, 12, 13, 17, and X) combined with mouse bone QTLs (interval coverage in blue bars) on 

these chromosomes listed on RGD from GViewer 

(www.rgd.mcw.edu/rgdweb/search/qtls.html?term=bone&chr=ALL&start=&stop=&map=360&rs_ter

m=&vt_term=&speciesType=2&obj=qtl&fmt=5). Fttf1b, and Fpmoif10a are two QTLs with similar 

phenotypes and map positions (labeled in black).Ttda6, FcvfXa and FcvfXb are three novel loci that do 

not overlap those listed on RGD (labeled in red). All the other 11 QTLs are overlap some known bone 

QTLs  (usually BMD) but are now linked to specific microCT bone traits and are therefore new or 

refined (labeled in green). 
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Figure 2. QTL-candidate gene analysis workflow. We exploited three primary data sources (bold font at 

top of figure) for this analysis. Bone traits were correlated to all Other BXD traits in GN. We also 

conducted PCA with the attempt to summarize all 150 bone traits into Eigentraits (six eigentraits were 

listed from GN 18424 to GN 18429). Finally, Bone traits were compared against a comprehensive 

Bone mRNA database GN410. The QTL analysis section (box with blue dashed line, bottom center) 

consists of three boxes that lead to Candidate genes in QTLs. The GO analysis section (box with red 

dashed line to right) summarizes the method used to generate “bone scores” for all probes in the Bone 

mRNA database. 
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Figure 3. Representative femur traits (sex-averaged) of two parental strains (B6 and D2), reciprocal F1 

hybrids (B6D2F1 and D2B6F1) and 59 BXD strains (mean ± SEM). (A) Femoral length (GN 18130). 

(B) Femoral mineralized volume (GN 18131). (C) Femoral volumetric material BMD (GN 18132). Note 

that BXD13 is an outlier and requires special handling. We opted to winsorize this value in GN from 

963 to 1,016 mgHA/cm3. 
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Figure 4. The scatter plots of femur volume (A), cortical bone polar moment of inertia (C) and 

trabecular thickness (E) of females (red) vs. males (blue). Both the mean values of all animals and most 

strain averages are higher in males. This pattern is consistent in femur volume, cortical pMOI and 

trabecular thickness, and vast majority of other microtraits. All the corresponding genomic QTLs (B, D, 

F) show different locations, peaks and LRS scores between females and males. Data are expressed as 

mean ± SEM.  
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Figure 5. The histogram of average bone scores in three gene sets: 1) blue line: 30,890 unique protein-

coding genes in femur mRNA (GN410 dataset with 46,621 Illumina probes); 2) orange line: 1,344 

positional genes in 16 QTLs (with bone scores from 1,638 candidate genes); 3) green line: 770 known 

bone-related genes in MGI. Gray area represents 2,075 protein coding genes without implication with 

bone biology in current knowledge, but with a bone score greater than 3. Note: the gene numbers on Y-

axis is in log10 scale. 
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Tables 

 

Table 1. Abbreviations and explanations of bone traits measured by microCT 

Site Abbreviation Explanation 

Whole bone  Length (mm) Length of whole bone (femur or tibia) in the longitudinal axis 

 
 Mineralized.Volume (mm3) Total mineralized volume of femur or tibia 

   Material.BMD (mgHA/cm3) Material bone mineral density of whole bone in units of Hydroxyapatite density  

*Cortical bone  Ct.TV (mm3) Total volume of a cortical bone segment of 100 cross sectional slices at midshaft 

 
 Ct.BV (mm3) Mineralized volume of a cortical bone segment (based 100 cross sectional slices) at midshaft  

 
 Ct.BV/TV (ratio) Cortical bone fraction (BV/TV) 

 
 Ct.Porosity (%) Cortical bone porosity = (1-BV/TV)x100%  

 
 Ct.Th (mm) Cortical bone thickness  

 

 Ct.Apparent.BMD  
(mgHA/ cm3) Cortical apparent bone mineral density in units of hydroxyapatite density  

 

 Ct.Material.BMD  
(mgHA/ cm3) Cortical material bone mineral density in units of hydroxyapatite density  

 
 CSV (mm3) Total volume of 100 cross sectional slices in cortical bone segment, including the marrow space  

 
 Ct.V (mm3) Total mineralized volume of 100 cross sectional slices in cortical bone segment  

 
 Ct.Ma.V (mm3) Total marrow volume of 100 cross sectional slices = CSV- Ct.V  

 
 CSA (mm2) Cross sectional area = CSV/(0.008x100)  

 
 Ct.Ar (mm2) Cross sectional area of cortical bone = Ct.V/(0.008x100)  

 
 Ct.Ma.Ar (mm2) Cross sectional area of bone marrow = Ct.Ma.V/(0.008x100)  

 
 Ct.pMOI (mm4) Cortical polar moment of inertia 

 
 Ct.Imax (mm4) Cortical moment of inertia around the shorter axis  

 
 Ct.Imin (mm4) Cortical moment of inertia around the longer axis   

 
 Imax/Cmax (mm3) Cortical moment of inertia around the shorter axis divided by the maximum radius perpendicular to Imax direction  

   Imin/Cmin (mm3) Cortical moment of inertia around the longer axis divided by the maximum radius perpendicular to Imin direction  

#Trabecular 
bone  Trab.TV (mm3) Total volume in trabecular bone segment (based on 100 cross sectional contour slices)  

 
 Trab.BV (mm3) Mineralized volume in trabecular bone segment (based on 100 cross sectional contour slices)  

 
 Trab.BV/TV (ratio) Trabecular bone fraction (BV/TV) 

 
 Trab.Conn.Dens. (1/mm3) Connectivity density in trabecular bone, normed by TV  

 
 Trab.SMI Structure model index in trabecular bone: 0 for parallel plates, 3 for cylindrical rods 

 
 Trab.N (1/mm) Trabecular number  
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 Trab.Th (mm) Trabecular thickness 

 
 Trab.Sp (mm) Trabecular separation = marrow thickness  

 
 Trab.(1/N).SD Standard deviation of local inverse number  

 
 Trab.Th.SD Standard deviation of local thicknesses  

 
 Trab.Sp.SD Standard deviation of local separations 

 

 Trab.Apparent.BMD 
(mgHA/cm3) Trabecular apparent bone mineral density in units of hydroxyapatite density  

 

 Trab.Material.BMD 
(mgHA/cm3) Trabecular material bone mineral density in units of hydroxyapatite density  

 
 Trab.DA (ratio) Degree of anisotropy in trabecular bone, 1= isotropic, >1 anisotropic by definition 

* All the cortical bone traits are based on 100 transverse slices at the middle shaft of bone cortex. 

# All the trabecular bone traits are based on 100 transverse slices at the secondary spongiosa of distal femur or proximal tibia. 
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Table 2. Summary of Femur Phenotypes with Heritability 

 

Sex Strain N 
Femur Length 

(mm) 
Femur Volume 

(mm3) 
Femur BMD 
(mgHA/cm3) 

Femur Cortical 
Porosity (%) 

Femur Cortical 
Thickness (mm) 

Femur Cortical 
pMOI (mm4) 

Femur Trabecular 
Bone Fraction 

(BV/TV, %) 

Femur Trabecular 
Connectivity Density ( 

1/mm3) 
Femur Trabecular 
Thickness (mm) 

F C57BL/6J 6 13.529±0.176 14.178±0.374 997.391 ± 5.974 1.964±0.164 0.174±0.008 0.224±0.053 0.069±0.014 97.514±27.759 0.037±0.001 

M C57BL/6J 12 13.481±0.087 17.453±0.903 1035.563± 8.803 1.672±0.105 0.200±0.009 0.319±0.036 0.144±0.026 179.605±26.851 0.043±0.002 

F DBA/2J 13 12.822±0.080 13.604±0.538 1082.959±14.005 1.578±0.101 0.216±0.006 0.165±0.031 0.087±0.014 109.611±15.173 0.040±0.002 

M DBA/2J 13 12.880±0.086 14.073±0.322 1085.283± 8.003 1.498±0.047 0.214±0.007 0.161±0.012 0.124±0.011 227.495±25.913 0.042±0.001 

F D2B6F1 3 13.752±0.036 17.306±1.147 1060.429±26.612 1.653±0.341 0.225±0.001 0.355±0.072 0.083±0.027 89.568±33.391 0.042±0.002 

M D2B6F1 4 14.017±0.212 21.136±0.429 1068.421± 5.405 1.269±0.039 0.255±0.007 0.493±0.028 0.191±0.035 188.315±23.723 0.049±0.004 

F B6D2F1 3 13.441±0.059 15.007±0.352 1069.966± 2.365 1.369±0.068 0.201±0.005 0.240±0.007 0.138±0.014 187.241±28.057 0.044±0.001 

M B6D2F1 4 13.331±0.071 18.404±0.873 1075.654± 7.314 1.313±0.121 0.246±0.010 0.364±0.030 0.250±0.025 279.165±58.211 0.052±0.004 

F BXD1 4 13.811±0.452 17.079±0.770 1021.392±33.490 1.599±0.145 0.211±0.023 0.346±0.025 0.073±0.028 117.936±49.043 0.041±0.001 

M BXD1 5 13.677±0.243 19.924±0.564 1017.718±13.515 1.313±0.103 0.224±0.011 0.441±0.016 0.157±0.025 158.062±48.683 0.061±0.008 

F BXD11 3 12.376±0.175 13.672±0.723 1025.773± 9.838 1.283±0.081 0.202±0.003 0.252±0.017 0.095±0.009 87.859 ± 7.838 0.045±0.002 

M BXD11 3 12.601±0.089 17.700±0.849 1050.523± 2.341 0.915±0.077 0.251±0.011 0.320±0.025 0.237±0.021 241.900±30.241 0.052±0.004 

F BXD12 4 12.591±0.065 11.952±0.353 1055.507± 6.712 1.502±0.046 0.189±0.004 0.251±0.017 0.035±0.007 18.369 ± 7.544 0.031±0.001 

M BXD12 4 12.635±0.158 16.234±1.476 1043.468± 4.183 1.614±0.304 0.221±0.012 0.375±0.058 0.186±0.012 131.679±10.439 0.049±0.001 

F BXD13 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

M BXD13 2 12.649±0.029 11.425±0.050 963.190± 4.230 1.736±0.030 0.167±0.001 0.185±0.005 0.068±0.001 121.523± 8.509 0.033±0.001 

F BXD14 3 12.489±0.053 12.528±0.181 1032.288± 5.357 1.599±0.084 0.186±0.005 0.225±0.004 0.089±0.003 141.212±13.973 0.036±0.001 

M BXD14 3 13.098±0.150 14.927±1.421 1041.235±10.842 1.700±0.113 0.194±0.006 0.320±0.047 0.121±0.010 174.946±25.227 0.039±0.001 

F BXD24 2 12.224±0.021 12.727±0.127 1073.875±13.213 1.209±0.104 0.230±0.001 0.177±0.010 0.106±0.003 124.989± 4.329 0.041±0.000 

M BXD24 2 13.006±0.079 14.751±0.480 1067.121±25.922 1.071±0.140 0.261±0.004 0.372±0.142 0.132±0.017 193.775±31.600 0.042±0.002 

F BXD27 3 12.266±0.134 13.662±0.461 1063.378± 4.214 1.484±0.121 0.192±0.006 0.277±0.021 0.128±0.026 192.388±51.902 0.043±0.003 

M BXD27 3 12.250±0.079 12.671±0.366 1050.160± 2.985 1.739±0.315 0.186±0.004 0.238±0.008 0.099±0.003 150.561±11.935 0.041±0.002 

F BXD29 2 13.192±0.359 17.558±0.607 1064.533±18.882 1.924±0.393 0.223±0.002 0.410±0.012 0.207±0.022 235.793±30.098 0.051±0.002 

M BXD29 6 13.966±0.210 20.357±1.284 1044.187±21.407 1.793±0.121 0.204±0.007 0.416±0.047 0.230±0.019 306.409±26.746 0.047±0.002 

F BXD31 1 N/A N/A N/A N/A N/A N/A 0.052 52.690 0.034 

M BXD31 4 12.253±0.058 15.371±0.500 1064.321± 5.739 1.232±0.072 0.235±0.012 0.355±0.038 0.193±0.024 160.110±18.904 0.057±0.003 

F BXD32 6 12.927±0.209 15.783±0.573 1060.550± 9.021 1.335±0.054 0.224±0.002 0.220±0.003 0.173±0.013 191.970±12.952 0.049±0.002 

M BXD32 7 13.116±0.122 19.051±0.880 1091.380± 8.543 1.120±0.033 0.258±0.005 0.368±0.031 0.238±0.023 301.690±20.993 0.051±0.002 

F BXD34 12 13.658±0.197 16.317±0.513 1084.060± 8.190 1.640±0.064 0.192±0.003 0.187±0.004 0.107±0.004 151.223± 8.159 0.042±0.001 

M BXD34 10 13.871±0.183 19.293±0.676 1080.580± 5.769 1.409±0.046 0.213±0.002 0.331±0.014 0.191±0.013 272.218±21.465 0.045±0.001 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512103doi: bioRxiv preprint 

https://doi.org/10.1101/512103
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

F BXD38 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

M BXD38 4 14.390±0.430 17.132±0.662 1066.637±10.651 1.362±0.055 0.207±0.005 0.271±0.021 0.169±0.016 267.982±36.139 0.040±0.002 

F BXD39 2 14.299±0.313 15.526±0.084 1013.768± 4.030 1.715±0.270 0.188±0.016 0.302±0.059 0.219±0.115 251.840±113.506 0.052±0.007 

M BXD39 9 13.191±0.216 16.795±1.275 1071.651± 8.359 1.525±0.109 0.198±0.006 0.315±0.027 0.204±0.027 283.661±27.968 0.046±0.003 

F BXD40 3 14.070±0.612 17.800±2.578 1056.463±16.050 1.389±0.067 0.194±0.004 0.305±0.017 0.081±0.018 96.700±29.625 0.042±0.002 

M BXD40 7 13.964±0.273 19.140±1.561 1058.628± 6.208 1.639±0.099 0.197±0.010 0.319±0.032 0.202±0.021 290.189±24.561 0.048±0.003 

F BXD42 3 12.888±0.119 13.078±1.023 1093.227± 5.936 1.536±0.098 0.192±0.010 0.268±0.016 0.067±0.016 101.117±33.642 0.043±0.003 

M BXD42 1 12.868 14.041 1031.472 1.499 0.203 0.322 0.156 213.694 0.047 

F BXD43 5 12.523±0.073 14.277±0.312 1091.343±13.418 1.771±0.108 0.193±0.003 0.210±0.009 0.141±0.007 192.914±14.680 0.042±0.001 

M BXD43 5 12.898±0.122 17.262±0.770 1091.088±11.084 1.498±0.073 0.220±0.004 0.320±0.029 0.161±0.038 203.937±56.161 0.045±0.002 

F BXD44 5 13.033±0.289 13.269±0.734 1080.821± 9.563 1.539±0.080 0.197±0.009 0.220±0.013 0.124±0.017 151.634±14.036 0.043±0.003 

M BXD44 4 13.391±0.217 16.179±0.858 1075.058± 5.399 1.191±0.063 0.233±0.005 0.281±0.016 0.182±0.031 250.397±29.664 0.045±0.003 

F BXD45 7 12.488±0.132 12.916±0.586 1071.149±11.202 1.897±0.138 0.184±0.006 0.245±0.063 0.136±0.010 218.080±22.486 0.040±0.001 

M BXD45 1 12.354 13.463 1053.226 1.426 0.184 0.242 0.078 114.577 0.036 

F BXD48 3 13.101±0.180 14.833±0.481 1048.655± 6.990 1.521±0.119 0.189±0.009 0.282±0.018 0.108±0.015 135.128±16.121 0.042±0.002 

M BXD48 4 13.198±0.248 17.145±0.380 1042.273±5.258 1.296±0.037 0.219±0.007 0.409±0.024 0.176±0.034 163.769±12.461 0.048±0.005 

F BXD48a 3 14.796±0.092 21.273±0.552 1084.702± 6.935 1.709±0.020 0.202±0.007 0.318±0.024 0.162±0.013 212.449±35.886 0.046±0.002 

M BXD48a 1 14.547 21.756 1075.341 2.259±0.550 0.168±0.042 0.265±0.029 0.171 218.479 0.047 

F BXD49 5 13.889±0.442 16.029±0.672 1064.274± 9.073 1.437±0.106 0.203±0.007 0.377±0.027 0.098±0.011 151.320±18.885 0.039±0.002 

M BXD49 3 14.113±0.171 19.560±1.444 1076.908±19.370 1.875±0.378 0.229±0.005 0.643±0.060 0.177±0.025 248.064±29.315 0.047±0.002 

F BXD50 4 13.273±0.177 15.707±0.834 1089.084±10.494 1.517±0.070 0.201±0.007 0.260±0.005 0.071±0.006 76.985±21.575 0.041±0.001 

M BXD50 2 13.722±0.446 17.743±0.835 1089.678±31.016 1.205±0.093 0.218±0.014 0.326±0.001 0.153±0.007 257.088±39.999 0.043±0.000 

F BXD51 3 13.675±0.176 17.399±1.047 1070.744±23.819 1.214±.0140 0.223±0.004 0.249±0.028 0.164±0.019 292.273±33.112 0.042±0.002 

M BXD51 2 13.847±0.285 18.443±1.639 1090.018± 0.966 1.213±0.145 0.224±0.011 0.274±0.038 0.174±0.009 344.364±20.297 0.041 

F BXD55 1 14.972 13.411 1094.549 2.138 0.158 0.195 0.061 98.457 0.031 

M BXD55 5 14.702±0.131 19.893±0.327 1071.538± 4.306 1.477±0.054 0.199±0.003 0.267±0.009 0.170±0.006 229.121±12.619 0.048±0.001 

F BXD56 3 13.643±0.100 16.666±0.334 1083.707± 5.038 1.361±0.127 0.203±0.002 0.261±0.007 0.132±0.010 209.582±28.704 0.040±0.000 

M BXD56 4 13.274±0.069 14.866±0.572 1085.606± 6.553 1.488±0.064 0.216±0.006 0.276±0.021 0.132±0.015 268.948±10.629 0.039±0.002 

F BXD60 5 12.976±0.463 13.391±1.188 1038.254±10.787 1.542±0.054 0.180±0.010 0.216±0.027 0.120±0.007 170.330±21.245 0.042±0.001 

M BXD60 10 13.549±0.220 18.203±0.835 1055.096± 5.896 1.471±0.101 0.208±0.004 0.326±0.020 0.185±0.010 301.356± 9.131 0.044±0.001 

F BXD62 5 12.735±0.402 14.524±0.951 1080.138± 7.689 1.287±0.108 0.215±0.006 0.316±0.015 0.095±0.010 111.789±15.417 0.045±0.001 

M BXD62 4 13.728±0.182 18.652±1.525 1087.383± 5.525 1.179±0.029 0.256±0.007 0.469±0.054 0.154±0.059 178.385±61.682 0.052±0.007 

F BXD63 6 13.367±0.092 13.952±0.547 1075.510± 3.753 1.791±0.086 0.194±0.004 0.192±0.010 0.134±0.005 190.611± 8.014 0.043±0.001 

M BXD63 2 13.588±0.245 14.178±1.088 1072.410± 2.549 1.343±0.105 0.228±0.008 0.253±0.029 0.163±0.010 347.890± 2.173 0.039±0.002 
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F BXD64 1 13.741 18.525 1024.623 1.176 0.206 0.282 0.259 336.811 0.050 

M BXD64 1 13.893 18.760 1021.347 1.708 0.193 0.302 0.183 398.234 0.043 

F BXD65 9 14.598±0.244 17.185±0.927 1096.500± 9.908 1.355±0.096 0.215±0.007 0.256±0.026 0.140±0.017 193.212±29.639 0.046±0.002 

M BXD65 10 14.034±0.163 15.868±0.674 1068.015±12.229 1.453±0.111 0.213±0.008 0.268±0.030 0.153±0.019 234.292±23.582 0.045±0.002 

F BXD65a 4 14.438±0.222 16.252±0.803 1077.536±10.469 1.521±0.226 0.196±0.007 0.272±0.011 0.107±0.012 177.243± 9.820 0.041±0.001 

M BXD65a 2 14.393±0.462 17.122±0.562 1065.767± 3.935 1.411±0.040 0.207±0.005 0.303±0.002 0.145±0.007 260.315±11.056 0.043±0.002 

F BXD65b 10 14.515±0.314 17.182±0.659 1045.131± 8.809 1.666±0.138 0.198±0.005 0.207±0.025 0.119±0.013 210.753±28.777 0.040±0.001 

M BXD65b 5 14.554±0.398 17.694±1.625 1088.247±11.776 1.375±0.082 0.218±0.004 0.244±0.011 0.123±0.020 210.841±43.201 0.040±0.002 

F BXD66 1 14.185 16.236 1005.265 1.482 0.177 0.231 0.092 171.503 0.040 

M BXD66 2 14.695±0.087 19.813±1.055 1064.586±24.540 1.179±0.063 0.225±0.009 0.296±0.065 0.211±0.023 270.819±88.948 0.055±0.012 

F BXD67 4 12.134±0.132 14.119±0.193 1062.413±10.738 0.916±0.067 0.224±0.003 0.320±0.020 0.110±0.002 154.176± 1.802 0.046±0.001 

M BXD67 2 12.271±0.158 13.665±0.089 981.907± 0.488 1.422±0.003 0.213±0.002 0.359±0.030 0.172±0.017 276.614±15.814 0.043±0.002 

F BXD68 8 14.062±0.162 16.638±0.833 1081.137± 4.319 1.330±0.057 0.228±0.004 0.213±0.009 0.095±0.009 92.893±11.648 0.049±0.002 

M BXD68 4 12.912±0.540 14.452±1.270 1050.424±14.848 1.377±0.095 0.220±0.015 0.271±0.049 0.128±0.024 206.433±34.482 0.043±0.004 

F BXD69 6 13.146±0.248 14.449±1.563 1036.981±16.560 1.763±0.171 0.185±0.008 0.201±0.017 0.159±0.031 229.544±38.046 0.044±0.003 

M BXD69 7 12.837±0.102 14.892±0.956 1053.375± 4.766 1.300±0.059 0.225±0.004 0.320±0.027 0.242±0.014 336.703±22.542 0.047±0.001 

F BXD70 6 13.310±0.394 14.403±1.094 1053.919± 9.451 1.499±0.098 0.195±0.007 0.250±0.032 0.076±0.014 112.349±24.547 0.038±0.002 

M BXD70 6 14.188±0.062 19.633±0.310 1032.436± 7.707 1.514±0.065 0.210±0.006 0.330±0.016 0.120±0.007 190.333±16.610 0.040±0.002 

F BXD71 8 12.858±0.171 12.850±0.442 1075.356± 7.222 1.591±0.070 0.188±0.005 0.186±0.008 0.049±0.005 37.426±10.861 0.039±0.001 

M BXD71 3 12.893±0.127 13.386±1.516 1066.489± 5.858 1.487±0.108 0.223±0.014 0.252±0.033 N/A N/A N/A 

F BXD73 3 13.116±0.329 11.000±0.084 1054.770±12.976 1.671±0.152 0.188±0.010 0.184±0.008 0.071±0.002 100.178±17.477 0.037±0.003 

M BXD73 7 13.766±0.143 18.303±1.093 1068.207± 8.100 1.526±0.086 0.222±0.005 0.338±0.020 0.213±0.022 250.224±20.592 0.049±0.002 

F BXD73a 2 13.531±0.400 10.893±0.230 1027.813±18.717 2.136±0.292 0.155±0.012 0.154±0.007 0.061±0.017 125.582±50.067 0.032±0.002 

M BXD73a 8 13.089±0.223 12.148±0.737 1033.195± 7.776 1.696±0.086 0.189±0.005 0.207±0.012 0.087±0.009 134.396±18.379 0.038±0.002 

F BXD73b 6 12.669±0.179 10.703±0.688 1024.722±12.447 1.679±0.110 0.160±0.005 0.123±0.005 0.104±0.015 210.268±57.296 0.036±0.001 

M BXD73b 5 13.302±0.220 13.768±0.908 1038.498±11.238 1.493±0.138 0.185±0.005 0.191±0.010 0.188±0.006 276.321±22.487 0.046±0.001 

F BXD74 2 12.761±0.198 15.319±2.199 1007.836±22.749 1.315±0.190 0.188±0.030 0.296±0.042 0.167±0.013 243.388±10.576 0.040±0.005 

M BXD74 4 13.904±0.255 20.768±2.175 1028.833±12.624 1.116±0.112 0.210±0.010 0.353±0.024 0.269±0.026 431.528±41.566 0.048±0.001 

F BXD75 5 12.998±0.340 14.181±1.733 1091.700± 3.351 1.645±0.210 0.209±0.012 0.229±0.051 0.108±0.012 166.405±28.776 0.041±0.002 

M BXD75 7 13.382±0.071 15.584±0.843 1075.741± 6.332 1.353±0.037 0.240±0.005 0.320±0.022 0.080±0.014 92.476±24.887 0.041±0.002 

F BXD77 5 14.288±0.124 19.224±0.642 1110.150± 7.520 1.613±0.158 0.206±0.007 0.278±0.019 0.139±0.007 195.399±15.544 0.045±0.002 

M BXD77 7 14.035±0.107 18.501±0.745 1105.172±12.202 2.071±0.237 0.204±0.010 0.289±0.062 0.173±0.011 287.141±14.822 0.044±0.001 

F BXD78 1 13.776 10.894 1037.972 1.974 0.162 0.164 0.087 133.266 0.038 

M BXD78 3 14.353±0.252 19.580±1.486 1158.264±47.949 1.691±0.341 0.218±0.011 0.416±0.056 0.138±0.028 88.873±39.453 0.057±0.010 
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F BXD79 6 12.572±0.534 13.090±1.193 1076.354±20.095 1.361±0.054 0.219±0.011 0.195±0.009 0.078±0.027 116.149±54.555 0.037±0.003 

M BXD79 3 13.752±0.145 18.117±1.248 1086.647± 1.851 1.095±0.066 0.266±0.006 0.384±0.045 0.208±0.043 161.983± 6.525 0.055±0.005 

F BXD83 4 13.619±0.294 14.743±0.985 1084.406± 6.020 1.492±0.131 0.210±0.006 0.278±0.020 0.103±0.005 152.990± 6.569 0.041±0.001 

M BXD83 6 13.880±0.278 18.620±1.251 1066.919± 6.977 1.678±0.156 0.225±0.007 0.379±0.046 0.175±0.024 255.159±22.043 0.046±0.003 

F BXD84 7 13.262±0.296 12.994±0.753 1044.219±13.135 1.618±0.087 0.194±0.008 0.224±0.011 0.064±0.017 98.203±38.125 0.036±0.002 

M BXD84 1 14.664 18.313 1005.695 1.093 0.199 0.196 0.118 187.898 0.044 

F BXD85 2 12.993±0.087 13.256±0.306 1034.424± 5.131 1.628±0.135 0.176±0.012 0.218±0.041 0.096±0.036 138.557±29.270 0.041±0.004 

M BXD85 2 13.654±0.085 16.545±0.951 1054.747± 4.393 1.235±0.020 0.214±0.004 0.303±0.031 0.161±0.011 184.167±35.782 0.048±0.003 

F BXD87 2 12.079±0.074 12.133±0.532 1064.210± 6.069 1.457±0.080 0.205±0.003 0.228±0.014 0.070±0.001 79.452± 4.062 0.042±0.001 

M BXD87 3 12.604±0.293 17.495±1.237 1067.766±12.969 1.183±0.097 0.252±0.005 0.398±0.005 0.166±0.014 124.423±15.673 0.052±0.001 

F BXD89 2 12.973±0.018 13.266±0.040 1062.483± 6.841 1.445±0.065 0.205 0.214±0.001 0.064±0.005 87.290± 1.713 0.037±0.002 

M BXD89 6 13.092±0.228 14.440±0.567 1048.943± 6.637 1.270±0.041 0.230±0.006 0.258±0.020 0.146±0.013 237.926±31.909 0.044±0.002 

F BXD90 9 14.003±0.383 17.074±1.174 1075.584±12.832 1.482±0.100 0.201±0.008 0.363±0.029 0.135±0.015 247.976±27.948 0.038±0.001 

M BXD90 7 14.333±0.221 18.979±0.524 1062.033± 9.645 1.432±0.057 0.210±0.010 0.421±0.034 0.170±0.012 357.559±27.835 0.039±0.001 

F BXD95 6 13.343±0.299 16.776±0.927 1037.854±16.495 1.466±0.054 0.206±0.004 0.340±0.025 0.131±0.013 151.017±16.386 0.048±0.002 

M BXD95 4 13.475±0.305 17.151±1.790 1022.122±12.965 1.517±0.132 0.205±0.014 0.388±0.051 0.144±0.031 191.055±41.278 0.044±0.003 

F BXD98 1 14.041 16.740 1074.541 1.211 0.193 0.264 0.148 153.834 0.051 

M BXD98 4 12.930±0.380 13.346±1.141 1048.002±13.947 1.557±0.022 0.194±0.005 0.237±0.013 0.093±0.013 107.846±19.062 0.042±0.001 

F BXD99 3 12.834±0.208 13.892±0.422 1027.939± 8.621 1.987±0.155 0.159±0.003 0.188±0.011 0.117±0.017 234.633±33.424 0.038±0.001 

M BXD99 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

F BXD100 7 13.881±0.283 18.234±1.225 1035.925±13.065 1.318±0.082 0.198±0.005 0.390±0.024 0.150±0.022 203.713±28.279 0.045±0.001 

M BXD100 9 14.321±0.197 21.895±1.044 1068.625±11.070 1.666±0.261 0.229±0.005 0.460±0.029 0.194±0.010 284.210±14.814 0.044±0.001 

F BXD101 3 13.476±0.394 15.290±0.833 1046.598± 7.537 1.271±0.071 0.193±0.005 0.226±0.010 0.148±0.006 158.856± 5.613 0.047±0.002 

M BXD101 1 13.650 15.891 1026.369 1.398±0.111 0.184±0.009 0.219±0.006 0.154±0.017 224.839±39.199 0.043±0.001 

F BXD102 3 12.677±0.687 14.723±2.329 1032.288±23.284 1.369±0.074 0.188±0.003 0.227±0.017 0.139±0.029 160.763±41.176 0.048±0.002 

M BXD102 8 12.652±0.226 14.952±0.697 1034.898± 7.545 1.396±0.093 0.205±0.009 0.313±0.014 0.130±0.018 180.066±20.822 0.045±0.002 

 

Average 
per 
strain 

8.
67 13.418±0.219 15.948±0.856 1058.565±10.376 1.489±0.114 0.206±0.007 0.286±0.025 0.138±0.017 191.835±25.734 0.044±0.002 

 
Heritability 
Males and Females Combined                     

Variance of Strain Averages 0.44 
 

5.89 833.30 0.064 4.72E-04 0.007 0.002 5333.20 3.19E-05 

Total Variance 0.69   10.14 1182.46 0.117 6.57E-04 0.011 0.004 9087.32 4.37E-05 

Heritability 0.64 
 

0.58 0.70 0.55 0.72 0.65 0.50 0.59 0.73 
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Females only 

          Variance of Strain Averages 0.47 
 

4.91 686.04 0.057 3.14E-04 0.003 0.002 5132.51 1.99E-05 

Total Variance 0.80 
 

7.91 1311.88 0.107 5.06E-04 0.007 0.002 7197.09 2.98E-05 

Heritability_F 0.59 
 

0.62 0.52 0.53 0.62 0.46 0.69 0.71 0.67 

Males only 

          Variance of Strain Averages 0.44 
 

5.89 833.46 0.064 4.72E-04 0.007 0.002 5333.53 3.19E-05 

Total Variance 0.56 
 

10.32 1139.06 0.125 6.64E-04 0.012 0.004 8339.11 5.32E-05 

Heritability_M 0.78 
 

0.56 0.73 0.52 0.71 0.61 0.48 0.64 0.60 

Data are expressed as mean ± S.E. Femur cortical porosity, thickness and polar moment of inertia (pMOI) are representative traits of femoral cortical 

bone; trabecular bone fraction, connectivity density and thickness are representative traits of trabecular bone. 

Broad-sense heritability (h2) = variance of strain averages / total phenotypic variance. 
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Table 3. Correlation matrix for 9 key bone traits in femur and tibia 

 

  
F_Length 

(GN:18130) 

F_Mineralized 
Volume 
(GN:18131) 

F_BMD 
(GN:18132) 

F_Cortical 
Bone Volume 
(GN:18134) 

F_Cortical 
Thickness 
(GN:18136) 

F_Cortical 
pMOI 
(GN:18141) 

F_Trabecular 
Bone Fraction 
(GN:18146) 

F_Trabecular 
Bone SMI 
(GN:18148) 

F_Trabecular 
Number 
(GN:18149) 

F_Length -- 0.784** 0.215 0.165 -0.038 0.164 0.278* -0.286* 0.279* 

F_Mineralized Volume 0.731** -- 0.169 0.551** 0.217 0.537** 0.534** -0.495** 0.378** 

F_BMD 0.277* 0.275* -- 0.111 0.343** -0.006 0.068 -0.091 0.065 

F_Cortical Bone Volume 0.180 0.625** 0.269* -- 0.711** 0.868** 0.248* -0.231 0.030 

F_Cortical Thickness -0.041 0.295** 0.405** 0.758** -- 0.408** 0.138 -0.068 -0.048 

F_Cortical pMOI 0.184 0.575** 0.115 0.899** 0.474** -- 0.234 -0.239 0.071 

F_Trabecular Bone Fraction 0.233 0.604** 0.128 0.361* 0.240 0.312* -- -0.890** 0.808** 

F_Trabecular Bone SMI  -0.254* -0.549** -0.166 -0.282* -0.151 -0.262* -0.899** -- -0.672** 

F_Trabecular Number 0.219 0.418** 0.029 0.117 0.006 0.124 0.824** -0.652** -- 

          

  
T_Length 
(GN:18155) 

T_Mineralized 
Volume 
(GN:18156) 

T_BMD 
(GN:18157) 

T_Cortical 
Bone Volume 
(GN:18159) 

T_Cortical 
Thickness 
(GN:18161) 

T_Cortical 
pMOI 
(GN:18166) 

T_Trabecular 
Bone Fraction 
(GN:18171) 

T_Trabecular 
Bone SMI 
(GN:18173) 

T_Trabecular 
Number 
(GN:18174) 

T_Length -- 0.570** 0.155 0.176 -0.116 0.139 0.109 -0.003 0.143 

T_Mineralized Volume 0.603** -- 0.050 0.672** 0.048 0.523** 0.344** -0.290 0.172 

T_BMD 0.341** 0.214 -- -0.040 0.147 -0.046 -0.018 0.015 -0.041 

T_Cortical Bone Volume 0.154 0.646** -0.079 -- 0.406** 0.846** 0.220 -0.135 0.038 

T_Cortical Thickness -0.116 0.099 0.076 0.456** -- 0.129 0.067 -0.015 -0.144 

T_Cortical pMOI 0.138 0.498** -0.038 0.783** 0.111 -- 0.137 0.006 0.063 

T_Trabecular Bone Fraction 0.183 0.496** -0.013 0.230 0.137 0.095 -- -0.863** 0.718** 

T_Trabecular Bone SMI -0.117 -0.446** -0.112 -0.150 -0.011 0.010 -0.852** -- -0.515** 

T_Trabecular Number 0.163 0.319** -0.035 0.033 -0.042 -0.009 0.829** -0.584** -- 

Summary of associations among the most representative bone traits in both femur and tibia. The lower left half lists Pearson product-moment 

correlations, whereas the upper right half lists the Spearman rank order correlations. All correlation was computed from strain averages.   

F: Femur     T: Tibia      BMD: bone mineral density        pMOI: polar moment of inertia        SMI: structure model index 

** p < 0.01     * p < 0.05 
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Table 4. List of 8 strong QTLs, with details of chromosome peak locations, intervals, representative bone traits, sex differences, additive 

allele effect, corresponding markers and p values of gene-by-sex interaction.  

 

   QTL 
symbol * 

Chr 

LRS 
peak 

location 
(Mb) 

QTL 
interval 

(Mb) 

Max 
LRS

^ 

Max LRS 
female vs 

male^ 
GN ID  

Representative 
phenotype 

Additive 
effect 

Units Best SNP 
p sex-by-
genotype 

#  

LRS 
young 
only 

Fttf1a 1 175.68 
170.0 – 
185.0 

20.5 20.5 / 1.0 18200 
Femur trabecular 
thickness 
(females) 

0.003 mm rs3682996 0.0305 17.2 / 0.8 

Fpmoif7 7 144.22 
141.0 – 
147.5 

19.4 19.4 / 6.2 18191; 18192 
Femur polar 
moment of inertia 
(females)  

0.037 g*mm2 rs6334210 0.4434 17.1 / 6.5 

Fpmoif10a 10 30.73 
30.0 – 
38.0 

22.8 22.8 / 1.2 18191; 18192 
Femur polar 
moment of inertia 
(females)  

–0.036 g*mm2 rs13480570 0.0287 12.5 / 2.5 

Ttsf11 11 97.97 
96.5 – 
101.2 

16.8 16.8 / 1.1 18224; 18226 
Tibia trabecular 
number (females) 

0.367 1/mm rs13481180 0.0068 21 / 4.0 

Fcvf12 12 15.74 
15.0 – 
27.0 

19.5 19.5 / 1.1 
18189;18183;

18184 
Femur cortical 
volume (females) 

–0.037 mm3 rs3657682 0.1214 21 / 2.0 

Tctf13 13 99.63 
93.0 – 
102.0 

17.8 17.8 / 10.1 
18211;18161;

18160 

Tibia cortical 
thickness 
(females)  

0.009 mm rs13481968 0.5527 12.5 / 7.6 

Fcbmd13 13 105.97 
104.5 – 
109.0 

16.8 15.9 / 11.3 18137 

Femur cortical 
material bone 
mineral density 
(sex averaged)  

–16.116 
mgHA/

cm3  
D13Mit270 ---- 11 / 7.4 

Fmoif17 17 6.04 
5.0 – 
9.5 

22.3 22.8  /1.2 18193 

Femur moment of 
inertia around the 
longer axis 
(females) 

–0.012 g*mm2 rs13482851 0.0124 23 / 1.0 

 *   QTL symbol: first letter F or T (femur or tibia), followed by abbreviation of bone phenotype, and f or m ( female or male if sex-specific  

               QTL). The number at last is the chromosome number.  

 ^   Bold numbers are significant genome-wide. 

         #   The sex-by-genotype effects are not genome-wide corrected. 
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QTL 
symbol  

Chr 

LRS 
peak 

location 
(Mb) 

QTL 
interval 

(Mb) 

Max 
LRS 

Max 
LRS in 
female/

male  

Record ID  
Representative 
phenotype 

Additive 
effect 

Units 
Representa

tive SNP 

p value of 
sex-by-

genotype 
effects  

LRS 
using 
mice 

aged 65-
116 days 

Fttf1a 1 175.68 
170 - 
185 

20.5 20.5/1.0 18200 
Femur trabecular 
thickness (females) 

0.003 mm rs3682996 0.0305 17.2/0.8 

Fpmoif7 7 144.22 
141.0 - 
147.5 

19.4 19.4/6.2 18191; 18192 
Femur polar 
moment of inertia 
(females)  

0.037 g*mm2 rs6334210 0.4434 17.1/6.5 

Ttsf11 11 97.97 
96.5 - 
101.2 

16.8 16.8/1.1 18224; 18226 
Tibia trabecular 
number (females) 

0.367 1/mm rs13481180 0.0068 21/4.0 

Fcvf12 12 15.74 15 - 27 19.5 19.5/1.1 
18189;18183;

18184 
Femur cortical 
volume (females) 

-0.037 mm3 rs3657682 0.1214 21/2.0 

Tct13 13 99.63 93 - 102 17.8 
17.8/10.

1 
18211;18161;

18160 
Tibia cortical 
thickness (females)  

0.009 mm rs13481968 0.5527 12.5/7.6 

Fcbmd13 13 105.97 
104.5 - 

109 
16.8 

15.9/11.
3 

18137 

Femur cortical 
material bone 
mineral density 
(sex averaged)  

-16.116 
mgHA/

cm3  
D13Mit270 N/A 11/7.4 

Fmoif17 17 6.04 5.0 - 9.5 22.3 22.8/1.2 18193 

Femur moment of 
inertia around the 
longer axis 
(females) 

-0.012 g*mm2 rs13482851 0.0124 23/1.0 

*   QTL symbol: first letter F or T (femur or tibia), followed by abbreviation of bone phenotype, and f or m ( female or male if sex-specific  

              QTL). The number at last is the chromosome number.  

        ^   In the column of “Max LRS in female/male”, the LRS in females and males are listed, and the significant QTLs in females are in bold. 

        #   The sex-by-genotype effects are not genome-wide corrected.           
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         Table 5. Robust candidate genes based on cumulative scores on 8 strong QTLs. 

Chr QTL 
Bone-associated candidates (confirmed by 
animal model/study):                                  
Symbol (candidate score, PMID) 

Bone-associated candidates (not 
confirmed by animal model/study):                                  
Symbol (candidate score, PMID) 

Bone ignorome candidates 
(candidate score) 

1 Fttf1a 
Adamts4 (8, 22432033); Ddr2 (5, 25805889); 

Darc (5, 24146983) 

 Ifi204 (5, 18287524); Ifi202b (5, 
18791844); Grem2 (5, 23437003, 

23902946) 

Ifi205 (8); Ifi203 (7); Sde2 (7); 
Usp21 (6); Klhdc9 (6); Arhgap30 (6); 

Ly9 (6) 

7 Fpmoif7     Adam12 (6); Mgmt (6); Cfap46 (5) 

10 Fpmoif10a     Frk (5) 

11 Ttsf11 Fkbp10 (5, 26538303, 24777781)   Krt10 (6); Krt12 (5); Tubg2 (5) 

12 Fcvf12 E2f6 (6, 18366140); Adam17 (5, 22876197) Greb1 (6, 28293781) Trib2 (5) 

13 Tct13     Iqgap2 (6); Naip5 (6) 

13 Fcbmd13     Ndufa12l (5) 

17 Fmoif17 
  

Zdhhc14 (5); Fndc1 (5) 

Robust candidates with top cumulative scores on each of these eight QTLs: gene symbols followed by scores (in bold in parenthesis) and PubMed ID 

(PMID in parenthesis, if any for known bone-associated genes). 
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Supplemental Data 

Supplemental Data S1: Supplement_Data S1_BXD_bone_data_Master_Table 

Supplemental Data S2: Supplement_Data_S2_Table_correlation 

Supplemental Data S3: Supplement_Data_S3_BoneScore_GO 

Supplemental Data S4: Supplement_Data_S4_final_candidate_scor
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