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Figure 1: The performance of neural network models of varying complexity in three predictive
settings on two tasks. Schematic diagrams of (a) cross-chromosome, (b) cross-cell type, and (c) hybrid
cross-cell type / cross-chromosomal model evaluation schemes. (d—f) The figure plots the average precision
(AP) of a machine learning model predicting gene expression as a function of model complexity. Evaluation
is performed via (d) cross-chromosome, (e) cross-cell type, and (f) a combination of cross-chromosome and
cross-cell type validation. In each panel, each point represents the test set performance of a single trained
model. (g-i) is the same as (d—f) but predicting TAD boundaries rather than gene expression.
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the model increases. To illustrate this phenomenon, we train a series of increasingly large neural networks
to predict gene expression as measured by RNA-seq in the H1 cell line (E003), evaluating each model using
the cross-chromosomal and the cross-cell type approaches. As input, each model receives a combination of
nucleotide sequence and epigenomic signal (see Methods). In every case, we evaluate model performance
using the average precision score relative to a binary gene expression label (“high” versus “low” expression).
In the cross-chromosome setting, the performance of the models remains fairly constant as the complexity
of the learned model increases (green points in Figure 1d). On the other hand, the cross-cell type results
show a surprising trend: using more complex models appears to yield consistently better results, even as the
models become very large indeed (up to 100 million parameters; Figure le).

To see that this apparently good predictive performance is misleading, we perform a third type of vali-
dation, a hybrid “cross-chromosome / cross-cell type” approach in which the model is evaluated on loci and
cell types that were not present in the training set (Figure 1c). This approach eliminates the positive trend
in model performance as a function of model complexity (Figure 1f). Very similar trends are seen when we
train neural networks to predict the locations of topologically associating domain (TAD) boundaries in the
H1 cell line (Figure 1g—1i).

Interestingly, we note that the performance of models that use only epigenomic signal is fairly invariant to
the number of parameters in the model. This suggests that there is an association between our representation
of histone modification and gene expression that requires only few parameters to capture, such as H3K4me3
and H3K4mel generally being activating marks and H3K27me3 generally being a repressive mark. Indeed,
when we project the epigenomic signal into two dimensions, we observe regions in 2D where highly expressed
genes can be easily separated from lowly expressed genes and regions where separation seems difficult by any
method (Supplementary Figure Sla/b). We see a similar trend in model performance on synthetic Gaussian
data when the two classes partially overlap (Supplementary Figure S2b). This is likely because while larger
models have greater potential to overfit to samples in the overlap, the overall metric is not significantly
influenced because the majority of points can be correctly classified by a simple rule.

The following two observations suggest that the positive trend in Figure le arises because more complex
models effectively “memorize” the genomic location associated with expressed versus non-expressed genes.
First, if we train a model using only the epigenomic signal, without including the nucleotide sequence as
input, then the model performance no longer improves as a function of model complexity (orange points
in Figure le); conversely, providing only nucleotide sequence as input yields very good performance across
many cell types (blue points in Figure le). Second, comparison to a suitable baseline predictor—namely, the
average expression value associated with a given locus across all cell types in the training set—outperforms
any of the trained models (solid yellow line in Figure le). Thus, it seems that the more complex neural
networks achieve good performance by effectively remembering which genes tend to exhibit high or low
expression across cell types. Furthermore, though we demonstrate here that models may use nucleotide
sequence to memorize gene activity, the phenomenon is more general, in the sense that any signal that
is constant across cell types can be exploited in this fashion. Examples include features derived from the
nucleotide sequence—k-mer counts, GC content, nucleotide motifs occurences, or conservation scores—or
even epigenomic data when the input is signal from a constant set of many cell types rather than a single
cell type.

It is worth pointing out that, from a machine learning perspective, the neural network is not doing
anything wrong here. On the contrary, the neural network is simply taking advantage of the fact that most
genomic or epigenomic phenomena that are subjected to machine learning prediction exhibit low variance,
on average, across cell types. For example, the gene expression level of a particular gene in a particular cell
type is much more similar, on average, to the level of that same gene in a different cell type than it is to the
level of some other gene in the same cell type. Similarly, many transcription factors bind to similar sets of
sites across many cell types, and most regions of the genome are unlikely to ever serve as TAD boundaries.

This pitfall can be identified in several ways. First, comparison of model performance to an appro-
priate baseline, such as the average activity in the training cell types at the given locus (yellow lines in
Figure le,f,h,i), will often show that an apparently good model underperforms this relatively simple com-
petitor. If the trained machine learning model cannot outperform this “average activity” baseline, then the
predictions from this model are not practically useful.

Second, the performance of the model can be more fully characterized by partitioning genomic loci into
groups according to their variability across cell types and then evaluating model performance separately
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for each group (Supplementary Figure S3). This partitioning removes the predictive power of the average
activity; thus, models that have memorized this average activity will no longer perform well. Indeed, we
observe that models that use only nucleotide sequence appear to perform well in the cross-cell type setting
but perform markedly worse when evaluated in this partitioned manner.

We have identified several publications that adopt the cross-cell type strategy and hence may be sus-
ceptible to the nucleotide memorization pitfall. As more data becomes available, we anticipate that more
projects will risk suffering from the pitfall that we describe. Fortunately, avoiding this trap is straightfor-
ward: always compare model performance to a baseline method that simply extracts the experimental signal
from one or more training cell types. The simplest such strategy is to average the signal at a given locus
across all training cell types. A more sophisticated strategy would be to use as a baseline the activity of
a cell type in the training set that is empirically similar to the target cell type. Regardless, comparing a
model’s predictions to the activity of the training cell types is a necessary component of demonstrating the
utility of the model.

Methods

Data sets

Nucleotide sequence are extracted from the hgl9 reference genome. Before input to our models, each sequence
is one-hot encoded such that each genomic position is represented by four bits, of which only a single one is
1. For the task of active gene prediction, a 2 kbp region is extracted upstream of the transcription start site,
accounting for the strand of the gene. For the task of TAD boundary prediction, a 2 kbp region is extracted
from the middle of the 40 kbp region to be considered.

The ChIP-seq, DNase-seq and gene expression RPKM values were downloaded from the
Roadmap compendium (https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/
macs2signal/pval/ and https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/). Each
ChIP-seq and DNase-seq experiment is reported using — log;, p-values, indicating the statistical significance
of the enrichment of the measured phenomenon at each genomic position. Additionally, these tracks are
arcsinh transformed, which is similar to a log transform and is a standard technique to reduce the effect of
outliers on the model. After this transformation, the average signal value for each epigenomic mark across
the 2 kbp region of interest is used as input to our models.

Gene bodies were defined as GENCODE v19 gene elements (https://www.gencodegenes.org/human/
release_19.html) on chrl-22, resulting in 17,951 gene bodies for each of 56 different human cell types. We
define active genes as those that have an RPKM value of > 0.5.

TAD boundary calls were obtained from the supplementary material of [22] for the seven cell lines TRO,
H1, NPC, GM12878, MES, IMR90, and MSC. These calls are binary indicators and were specified at 40 kbp
resolution.

Model architectures

We evaluated the performance of a variety of neural network models for our tasks. For models that used
only epigenomic signal as input, we considered all models that had between 1 and 5 layers and all powers of
2 between 1 and 4096 neurons per layer.

For models that used only nucleotide sequence as input, we considered two different types of models. The
first are fully dense networks similar to those that used only epigenomic signal. These models had between
1 and 3 layers with all powers of 2 between 1 and 1024 neurons per layer. The second are convolutional
models that are composed of a variable number of convolutional layers followed by max pooling layers and
ending with a single dense layer. These convolutional models had between 1 and 3 convolutional layers,
between 1 and 256 filters per convolutional layer, and between 1 and 1024 nodes in the final dense layer.
The convolutional layers used a kernel of size 8 and a stride of 1. The max pooling layers had a kernel of
size 4 and a stride of 4.

The models that used both nucleotide sequence and epigenomic signal were composed of one of the
nucleotide models above and one of the epigenomic models. The final hidden layers of the two models were
concatenated together and fed through an additional hidden layer before the output. Rather than consider
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all potential model architectures that utilized nucleotide sequence, we limited our evaluation to only 100
randomly selected model architectures for computational reasons.

In all models, both the convolutional layers and the hidden dense layers used ReLLU activations, where
f(z) = maz(0, x).

Model training

The models were trained in a standard fashion for neural network optimization. This involved using the
Adam optimizer [23] and a binary cross-entropy loss. All model hyperparameters were set to their defaults
as specified by Keras version 2.0.8 [24], and no additional regularization was used. The models were trained
on balanced mini-batches of size 32, and an epoch was defined as 400 mini-batches. Training proceeded for
100 epochs, but was stopped early if performance on a balanced validation minibatch of size 3,200 did not
improve after five consecutive epochs.

The training, validation, and test sets consisted of different genomic loci depending on the model eval-
uation setting. In the cross-chromosomal setting, the validation set was derived from chromosome 2 and
the test set was derived from chromosome 1 for both tasks. For the gene expression task, the training set
consisted of all genes in chromosomes 3 through 22, while for the TAD boundary prediction task, it consisted
of all 40 kbp bins in chromosome 3. In the cross-cell type setting, the training, validation, and test sets were
derived from chromosomes 2 through 22 in the gene expression task or chromosomes 2 and 3 in the TAD
boundary prediction task. In the hybrid setting, the training and validation sets were the same as in the
cross-cell type setting, but the test set for both tasks were samples derived from chromosome 1.

Depending on the evaluation setting, these models were also trained on either a single, or multiple, cell
types. In all cases, models were evaluated on data derived from the H1 cell line (E003). In the cross-
chromosomal setting, models for both tasks were also trained on data from the H1 cell line (E003). For
the gene expression task in both other settings, samples drawn from spleen (E113), H1 BMP4 derived
mesendoderm cultured cells (E004), CD4 memory primary cells (E037), and sigmoid colon (E106) were used
as the validation set, and all other cell types (excluding the H1 cell line) were used as the training set.
For predicting TAD boundaries, the validation set was drawn from GM12878 (E116) and the training set
consisted of all other cell lines (excluding the H1 cell line).
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Figure S1: Projections of the epigenomic signal used to predict gene expression. The five histone
modifications that were used to predict gene expression were projected down to two dimensions using (a)
PCA and (b) UMAP. The projections are then colored by whether the gene is highly expressed (orange) or
lowly expressed (blue) in H1.
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Figure S2: Classification performance of neural networks when the decision boundary is simple.
(a) Random data was generated from two overlapping 2D Gaussian distributions. (b) Neural networks
of increasing size were trained to classify points as either orange or blue and evaluated using the average
precision. The y-axis is scaled to the same range as Figure 1d/e/f to demonstrate a similar trend.
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Figure S3: Epigenomic signal yields more predictive models than nucleotide sequence in the
cross cell-type setting when locus-specific biases are factored out. Genes in the cross-cell type
setting were split into 54 groups based on the number of training and validation set cell types that they are
active in. (a) For each group, the AP score was calculated using the predicted probabilities from models
that use only nucleotide sequence or use only epigenomic signal. Each box shows the three quartile values,
with whiskers extending to 1.5 the inter-quartile range. (b) The AP scores from those two groups were then
compared using a one-sided Mann-Whitney U test. The -logl0 p-values of this test are displayed for each
group. The null hypothesis is rejected for most groups, indicating that models that use epigenomic signal
outperform those that use only nucleotide sequence when the average activity is factored out of the evaluation.
As expected, the epigenetics-only case is relatively better as the uncertainty increases, corresponding to the
middle of the plot above.
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