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Abstract

A preliminary version of this work, [doi.org/10.1101/512780], was deposited in bioRχiv on January 6, 2019, and in
a revised form on May 15, 2019

New mathematical methods have been developed for processing titration curves (TC) obtained from Isothermal
Titration Calorimetry (ITC). Exact TC equations for the usual multi-injection method (MIM), or for the
single-injection method (SIM) with continuous injection, were derived by taking into account rigorously the e�ect
of dilution resulting from the titration process. Several practical consequences of these results are discussed.
An exact �t of a TC can thus be obtained, even with large injected volumes leading to important dilution. All
available programs show systematic di�erences with the exact results, NanoAnalyze from TA being signi�cantly
more accurate. A part of the results have been incorporated into AFFINImeter from S4SD. It is also examined how
certain multi-step mechanisms are in fact thermodynamically equivalent to the one-step association/dissociation
mechanism. They will thus never explain any "atypical" TC not showing the classical sigmoid shape. Although
only a single pair of parameters (Kd and ∆H) can explain an experimental TC compatible with the one-step
mechanism, an in�nite number of parameters explain equally well the same data with such an equivalent multi-step
mechanism. An explicit link between the two sets of parameters is given. A parallel with the concept of gauge
invariance in physics is proposed.

Statement of signi�cance This work reconsiders in full the processing of ITC data by taking into account
exactly the dilution due to the titration. New equations are obtained both for the single and multiple injection
methods, which suppresses systematic problems in commonly used programs. The method is made practically
available to everyone.

Index terms� ITC, Single Injection Method,
Multiple Injection Method, Titration curve equations,
Gauge Invariance.

1 INTRODUCTION

Isothermal Titration Calorimetry (ITC) is now a widely
spread technique in chemistry and biology. This is due
to the development of commercially available instru-
ments with small cell volumes and high sensitivity
(down to 200 µl and 0.1 µW, respectively). The range of
application of ITC extends from classical chemical reac-
tions to lipid-membrane studies, from macromolecule-
ligand to macromolecule-macromolecule interactions;
ITC also allows studying bacteria in solution and in

bio�lms by monitoring the evolved heat attached to
their metabolism [1]. Interestingly, the list is not closed
and new developments are being made like those on the
determination of surface tension of liquids (A. Piñeiro,
personal communication). Here, we will focus on the
most common application of ITC consisting in titrating
one molecule (the titrant) against another one initially
present in the measurement cell (the titrate). This cov-
ers the vast area of all possible molecular interactions of
chemical or biological interest. The aim of this work is
of presenting the development and the consequences of
a new mathematical method for processing such experi-
mental data. The sole hypothesis being made is that the
cell content is always well mixed, which allows to derive
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2 2 MATERIALS AND METHODS

an exact equation of a titration curve (TC) for the sim-
ple one-step association/dissociation mechanism obey-
ing A+B
 C and being described by one pair of ther-
modynamic parameters: the dissociation constant Kd

and the enthalpy variation ∆H. It is also shown how to
extend exactly the method to any complex mechanism
without invoking any simpli�cation. Several practical
and theoretical consequences are presented. In a second
part, these results are used with n-step mechanisms that
one may be tempted to consider to account for atypical
titration curves that cannot be explained by the usual
one-step mechanism. Two such examples of composite
mechanisms involving n pairs of parameters (Kdi , ∆Hi,
i = 1, n), will be shown to be in fact thermodynami-
cally equivalent to the one-step association/dissociation
mechanism fully described by a single pair of param-
eters Kd(global) and ∆H(global). The exact, and by
far non trivial, correspondence between the two sets of
thermodynamic parameters is then obtained from the
TC equations, which is a strong mark of theoretical
consistency.

2 MATERIALS AND METHODS

2.1 Initial considerations

Two methods can be used in an ITC experiment:
the Single Injection Method (SIM) wherein a single
continuous injection at a steady rate is performed and
the more common Multiple Injection Method (MIM)
wherein successive injections lasting a few seconds
are performed. Importantly, the time left between
successive injections with MIM has to be su�cient
to allow the reaction to reach equilibrium (that is to
allow the power curve to reach the baseline), which can
last much longer than the injection time. In this work,
this hypothesis is supposed to hold true. Each heat
power curve is integrated to yield the heat Q produced
or absorbed in the syringe after each injection. The
experimental data, the so-called titration curves (TC),
or binding isotherms, thus correspond with MIM to
discrete values Q(Vi) of the function Q(V ) where Vi is
the sum of all injected volumes from the �rst to the ith

injection. We are interested in an equation yielding a
rigorous evaluation of dQ/dV . It will be shown how this
di�erential quantity can be used to take into account
injections of �nite size.

We �rst consider the simple situation correspond-
ing to a single step:

A + B
 C (Ka, ∆H) (1)

where compound A is initially alone in the measure-
ment cell at a concentration A0 and compound B in the

syringe at a concentration B0 (the concentration [X]
of a compound X is noted simply X). Note that these
neutral notations A and B are used to emphasize that
one does not presuppose that a macromolecule (pro-
tein, nucleic acid,...) is initially in the cell. This reaction
is characterized by an association constant Ka (or a
dissociation constantKd = 1/Ka) and an enthalpy vari-
ation ∆H per mole of C produced during the reaction.
If A0 and B0 are known, the Q(Vi) can be translated
into Q(si) where the si are the successive stoichiomet-
ric (or molar) ratios Btot/Atot with Atot = A + C and
Btot = B + C. Although the experiments with MIM
only yield a discrete sampling of the function Q(V ), it is
legitimate to consider the function itself with V varying
continuously as in SIM.

2.2 The 'over�ll mode'

Most often, any injected volume δV of compound B
implies that an equivalent volume δV of the reaction
mixture has to leave the measurement cell. This corre-
sponds to the over�ll mode and this implies that the
measurement cell is already �lled at the beginning of
injections. Note that, with the instruments from TA,
the user may or may not choose the over�ll mode. In
the following, we will only consider the over�ll mode.

2.3 The dilution problem with the 'over�ll mode'

A simpli�ed method for obtaining dQ/dV is of consid-
ering that B in the syringe is much more concentrated
than A (B0 � A0) and, therefore, that there is negligi-
ble dilution of the reaction mixture during the titration
(as this was supposed in the seminal paper by Wiseman
et al. [2]). As a consequence, any in�nitesimal variation
dC of the concentration of C is due to the reaction,
which implies:

dQ

dV
= ∆H Vcell

dC

dV
= ∆H

dC

dv
(2)

where the reduced volume v = V/Vcell has been intro-
duced and will be used throughout to obtain equations
valid for all instruments. However, this is most often
an oversimpli�ed hypothesis, particularly in the over-
�ll mode enhancing the e�ect of dilution. Assuming
that the cell content is always well mixed, the
in�nitesimal variations of the total concentrations of
A and B are thus dAtot = −Atot dV/Vcell = −Atot dv
and dBtot = (B0−Btot) dV/Vcell = (B0−Btot) dv. The
equation for compound B takes into account both the
injection of new material and the dilution e�ect. After
integration, it is obtained:
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2.4 Accounting for the dilution by the usual processing programs 3

Atot(v) = A0 e
−v; Btot(v) = B0

(
1− e−v

)
(3)

The current stoichiometric ratio is thus s(v) =
Btot(v)/Atot(v) = r (ev − 1) where r = B0/A0, which
implies:

ev = 1 +
s(v)

r
;

ds

dv
= r + s (4)

The total concentrations can thus be expressed as func-
tions of s considered as the independent variable:

Atot(s) = A0
r

r + s
; Btot(s) = B0

s

r + s
(5)

2.4 Accounting for the dilution by the usual
processing programs

Equations (3, 4) have already been derived [3, 4]. They
are both very simple and "exact" (provided that com-
plete mixing is always achieved). Strangely, various
approximations of them are considered in all estab-
lished programs. For example, the programs PEAQ
from Microcal/Malvern and AFFINImeter from S4SD
(http://software4science.com/), rely on the rational
function (1 − v/2)/(1 + v/2) in lieu of the term e−v

in equations 3 (see [5]). This rational function obtained
after approximate considerations appears to be a �rst-
order Padé approximant of the exact term e−v (see
equation (24) in [6]). The approximation is excellent
when v = V/Vcell � 1, but deteriorates rapidly for
larger values, which has serious consequences when the
experimental conditions impose to inject large volumes
due to insu�cient concentration in the syringe. Further-
more, as already noticed in [7], an additional approxima-
tion of the approximation is made by using Btot(v) ≈
B0 v (1 − v/2) instead of Btot(v) ≈ B0 v/(1 + v/2). A
better approximation than the Padé approximant for
large v values, but not an optimal one for small val-
ues, is based on e−v ∼ (1 − v/n)n where v/n is the
(reduced) injected volume at each injection and n the
number of injections to reach v (see [8, 9]). This approx-
imation is used in NanoAnalyze from TA. Finally, the
program SEDPHAT [10] makes use of still another
approximation.

2.5 Limits of the complete mixing hypothesis

The unique assumption made in this work is that the
cell content is always well mixed, which may not be
the case in short time intervals following quick injec-
tions. Compound B being injected at a distance from
the output tubing, incomplete cell mixing tends to push

out of the cell material less concentrated in free B than
average. One may thus foresee further improvements in
this area by introducing kinetic methods as in the full
kinITC procedure [11]. To achieve realistic modelling
(i) of the mixing of a stirred liquid, (ii) of the chemi-
cal reaction and of the resulting thermogenesis (variable
both in time and space) and (iii) of heat transfer, it is
likely that empirical methods used in engineering will
be useful.

2.6 Using of a symbolic mathematical tool

Several results of this work could only be obtained, or
checked, by using a mathematical software with sym-
bolic capabilities. Here, Mathematica 11.3 from Wol-
fram Research (Champaign, IL) was used. All �gures
were made with Mathematica too.

3 RESULTS

3.1 Accounting rigorously for the in�uence of dilution

Here, the function Q(v) is evaluated and, for that, we
need to consider the e�ect of dilution on compound C.
The in�nitesimal concentration variation dC is the sum
dCchem + dCdil of a term dCchem due to the chemical
reaction consuming A and B to produce C, and of
dCdil due to the dilution resulting from the injection of
dV = Vcell dv. As for dAtot, one has dCdil = −C(v) dv.
The reason why there was no distinction between
chemical and dilution e�ects for Atot and Btot is that
d(A + C)chem = d(B + C)chem = 0 and, therefore,
Atot = A + C and Btot = B + C are only a�ected by
the dilution.

Obviously, the heat evolved or absorbed during
the titration is only linked to the variation of the
concentration of C due to the chemical reaction, not
to C leaving the cell. Therefore, taking into account v
instead of V , equation 2 has to be replaced by:

dQ

dv
= ∆H Vcell

dCchem
dv

(6)

From the preceding, dCchem = dC − dCdil = dC +
C(v) dv, which gives an exact expression for the heat
per injected mole of B:

Q(v) =
1

B0 Vcell

dQ

dv
=

∆H

B0

[
dC

dv
+ C(v)

]
(7)

where the new notation Q(v) for dQ/(B0 Vcell dv) has
been introduced. Considering that ds/dv = r+s (equa-
tion 4), an alternative form with s instead of v as the
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4 3 RESULTS

variable is obtained as:

Q(s) =
∆H

B0

[
(r + s)

dC

ds
+ C(s)

]
(8)

Equations 7,8, which do not seem to have been men-
tioned yet, open the way for a rigorous treatment of
ITC experiments. The di�erence with all approximate
treatments is the term C(v) added to dC/dv. Its justi�-
cation is not immediately intuitive, which explains why
it remained overlooked. Its importance is highlighted in
the next section. Equation 7 may be considered from
two di�erent view points. First, one may see it as a
di�erential equation yielding C(v) by integration if the
thermogenesis term Q(v) is known:

C(v) =
B0

∆H

v∫
0

Q(u) e−(v−u) du (9)

This tells that C(v) can be obtained from the convolu-
tion of Q(v) with the function H(v) exp(−v) describing
the progressive dilution in the measurement cell (H is
the Heaviside step function: H(v < 0) = 0, H(v ≥
0) = 1). Alternatively, one may consider that equation
7 yields Q(v) if C(v) is known from the equations of
equilibrium. Clearly, we are usually interested in the
latter view point as we seek to compute Q(v) (or equiv-
alently Q(s)) at any step of a titration to determine
Ka and ∆H by �tting the observed TC. Interestingly,
if C(v) is known analytically, it derives that Q(v) is also
known analytically from equation 7 (see 3.3). Also, this
result can readily be used with any complex mechanism
involving several reactions and thus several functions
Ck(v) by considering the sum:

Q(v) =

n∑
k=1

∆Hk

B0

[
Ck(v) +

dCk
dv

]
(10)

where n is the number of independent products par-
ticipating in the thermogenesis and ∆Hk the enthalpic
term speci�c of the kth product. It is of utmost impor-
tance to note that Ck is di�erent from the concen-

tration of the kth product itself if this compound
participates in di�erent reactions. This requires to be
examined with great care and will be illustrated in the
following with three independent products among �ve
compounds in total being engaged in three reactions
(see section 3.8.2 and section A.2 in Supplementary
information).

3.2 In�uence of the term C(v)

The importance of the in�uence of the term C(v) on
Q(v) (equation 7) is illustrated by considering the single

association/dissociation mechanism described by equa-
tion 1. From mass action law (A × B/C = Kd) and
the conservation equations (A+C = Atot and B+C =
Btot), the concentration of C is obtained as a function
of Atot and Btot at any stage of a titration:

C =
1

2

[
S −

√
S2 − 4P

]
S = Atot +Btot +Kd P = AtotBtot

(11)

The latter result on C is readily transformed into a
function C(v) by replacing Atot and Btot with equa-
tions 3. The variation of C(v) is shown with �gure 1.
Importantly, for increasing values of v, dC/dv becomes
asymptotically equal to−C(v) (veri�ed withMathemat-
ica), which means thatQ(v) −→ 0 from equation 7, as it
should. This important feature derives directly from the
new exact equations, and not from the previous approx-
imate treatments. As a matter of fact, we will see that
three commonly used programs, out of four, do not ful�ll
this requirement of a null asymptotic value of Q(v).

Figure 1: In�uence of C(v). Dashed curve: C(v), solid thin
curve: C′(v), solid thick curve: C(v) + C′(v).

3.3 An exact analytical expression for Q(v) (and
Q(s))

We continue with the classical situation of a single asso-
ciation/dissociation mechanism described by equation
1. Here, only the logic is exposed as it is not useful to
show the details. The latter result on C(v) allows to
obtain the heat per injected mole Q(v) by using equa-
tion 7. Then, the result is transformed by using equation
4 in order to express the heat per injected mole as a
function of the stoichiometric ratio s = Btot/Atot, as
usually in practice. The �nal result is:
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3.4 Equation for the measured heat power during a continuous injection in SIM 5

Q(s) =

(
γ−1 + 1

)
[Y (s)− r]−

(
γ−1 + γ + 2

)
s+ γ − 1

2Y (s)
∆H

Y (s) =

√
[γ (s− 1) + r + s]

2
+ 4 γ (r + s)

r = B0/A0; c = A0/Kd (Wiseman parameter); γ = r c
(12)

This corresponds to an exact explicit solution replacing
the numerical approach described in [9]. It may be
veri�ed that for r −→ ∞, corresponding to negligible
dilution, this is identical to the Wiseman isotherm
(equation 3 in [2] where Xr stands for s and r for 1/c).

One might argue that this rigorous result is of
limited practical use because, being based upon dif-
ferential calculus, it would only be signi�cant for a
continuous process with an in�nite number of in�nitely
small injections. However, precisely for that reason,
this provides us with an exact description of the
continuous variation of s, or v, with SIM (if equilibrium
is always reached), which is examined in the next
section. Moreover, as we will see, one can take into
account rigorously �nite injections in MIM.

3.4 Equation for the measured heat power during a
continuous injection in SIM

The continuous injection (cITC) used with SIM was
presented by Markova and Hallen in [12]. The method
has been analyzed in depth for being used with enzyme
kinetics [13]. With cITC, the chemical reaction is per-
turbed at all times by the continuous injection of
new material. In theory, therefore, equilibrium is never
reached during the titration. However, in situations
where the continuous injection is su�ciently slow that
(i) the reaction is always very close to equilibrium and
(ii) that the instrument response time may be neglected,
Q(s) given by equation 12 can be used directly to rep-
resent the evolution of the heat per injected mole dur-
ing the titration. In general, however, the instrument
response time τr has to be taken into account. This is
done by estimating the measured heat per mole Qm(s)
by:

Q(s) = Qm(s) + τr
ds

dt

dQm
ds

, (13)

which is known in calorimetry as the Tian equation (for
accessible references, see [14, 15]). From equation 4 it is
obtained:

ds

dt
= r ϕ ev = ϕ (r + s)

r = B0/A0; ϕ = dv/dt
(14)

with ϕ being the reduced injection rate (in s−1). Q(s)

being known (equation 12), Qm(s) can be obtained by
numerical integration of equation 13. Finally, Qm(s) is
transformed into ϕVcellB0Qm(s) to translate a heat
per injected mole into a thermal power. Therefore,

Figure 2: Fit of a continuous SIM curve (red) with equa-
tion 13. The experimental points were obtained from �gure
2B in [12]. A correction of dilution was made as mentioned
in [12]. The origin of times was displaced by 0.11 min to
account for a clear lag before the abrupt rise of power in
the original �gure. A normally distributed random noise of
zero mean and 0.5 µW standard deviation was added to the
points to account for the small errors in the determination
of their coordinates from the �gure. This yielded reasonable
error estimates on Ka and ∆H through multiple repeats
of the �tting procedure each time with a new set of noise
(inset: cloud of points corresponding to 200 repeats). The
black curve corresponds to a �t with the nominal value of
Vcell = 1.36ml, whereas the red curve was obtained with
Vcell = 1.069× 1.36 = 1.45ml (see text).

ϕVcellB0Qm[s(t)] can be used to �t the measured
experimental power curve Pm(t). However, in [12], the
curve to be �t was not the measured power curve, but
an ideal power curve Pi(t) that would be obtained with
an ideal instrument having a null response time. Such
an ideal power curve is represented by ϕVcellB0Q[s(t)].
It is argued here that the two methods are not equiv-
alent in practice because the information content in
Pm(t) is higher than in Pi(t) due to the necessary
convolution operation to derive the ideal power curve
from the measured power curve (see section A.4 in
Supplementary information).

The �t of the measured power curve has been
tested with one experimental dataset reported in [12].
These data obtained with a VP-ITC-like instrument are
from the continuous titration of Ba++ with 18-crown-6.
(Another experiment was reported about the titration
of cytidine-2' monophosphate by bovine RNase A, but
could not be used here because the raw power curve
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6 3 RESULTS

was not shown). It appeared that the �t of these data
with equation 13 was unacceptably poor when the
expected values r = B0/A0 = 29.95 and Vcell = 1.36ml
were used (�gure 2, black curve), but that it improved
considerably either after decreasing r by ca. 5− 6%, or
after increasing Vcell by the same relative amount. A
priori neither r nor Vcell are free parameters; however,
accurate measurements that were made in view of
calibrating one VP-ITC instrument have shown that
the e�ective cell volume could be signi�cantly di�erent
from its nominal value, which led to an e�ective volume
smaller than expected by 5 − 7 % [7]. Here, it was
thus attempted to include the cell volume among the
free parameters, which e�ectively led to a perfect �t
with Ka and ∆H values in better agreement with
the reference values in [16] than those obtained in
[12] (�gure 2, inset). In addition, the obtained value
τr = (19.6 ± 0.2) s for the instrument response time
agrees perfectly with the expectation for a VP-ITC-like
instrument. At variance with the decrease observed
in [7], the e�ective cell volume had to be signi�cantly
increased by (6.9 ± 0.4) % to �t the data. (Note
that this is somewhat a fudge parameter that also
aggregates any errors on A0 and B0, and thus on r).
Although not proved �rmly, this result looks reasonable.

In conclusion, equations 13 and 14 provide us with
an accurate description of the measured heat power
in SIM since this led to introducing an unexpected,
but likely justi�ed, correction on the cell volume.
This could incite to use more widely this method
introduced in [12]. It should be recalled, however, that
this accuracy only holds if one is always very close to
equilibrium. Indeed, if the continuous injection is too
fast in comparison of the kinetics of equilibration of
the reaction, then the latter equations are no more
valid. In such a case, a true kinetic analysis (kinITC),
as described in [11, 17], would ne necessary. This will
only require a slight adaption to SIM of the description
of the kinetic process that was performed for MIM.

3.5 Equation for the measured heat per mole for
�nite injections in MIM

Here, we consider how to account for �nite-size injec-
tions. In practice, the acquisition program of an ITC
instrument reports the average value of the heat power
during short time intervals (all of the same duration).
The heat evolved or absorbed following any injection
comprised between the stoichiometry limits s1 and s2 is
then the sum of these elementary power measurements
multiplied by the short time interval. This is equivalent
to the average value of the elementary power measure-
ments mutiplied by the overall time interval between

the stoichiometry limits s1 and s2. We can therefore
obtain this exactly as the average valueQ(s1, s2) ofQ(s)
between s1 and s2. From equation 8 leading to a fortu-
nate cancellation upon integration, it is obtained:

Q(s1, s2) =

∫ s2
s1
Q(s) ds

s2 − s1
=

(r + s2)C(s2)− (r + s1)C(s1)

(s2 − s1)

∆H

B0

(15)

where C(s) is the equilibrium concentration of the com-
plex C as a function of s. This corresponds to the exact
counterpart of the common approximation:

Q(s1, s2) ' C(s2)− C(s1)

δV/Vcell

∆H

B0
=
C(s2)− C(s1)

v2 − v1
∆H

B0

(16)

Equation 15 is not su�cient by itself since C(s1) and
C(s2) have to be evaluated. By direct integration of
Q(s) from equation 12 a stand-alone equation may be
obtained as:

Q(s1, s2) =
1 + γ − [Z(s2)− Z(s1)] /(s2 − s1)

2 γ
∆H

Z(s) =
√

(r + γ)2 + 2 [r + γ + (r − γ) γ] s+ (1 + γ)2 s2

(17)

The integral was calculated with Mathematica. The
latter form is quite di�erent from the former because it
implicitly includes the evaluation of C(s1) and C(s2).
By de�nition of a derivative, Q(s1, s2) −→ Q(s2) when
δs = s2− s1 −→ 0. For su�ciently close injection limits
s1 and s2, the di�erence between the two estimates is
very small if Q is evaluated at s = s = (s1 + s2)/2, but
it becomes quite signi�cant when δs increases (Fig. 3).

Practical consequences: Equation 17 involves elemen-
tary mathematical functions and is easily programmed
in widely used spreadsheet tools. This allows anyone
to process TCs for the simple association/dissociation
mechanism with rigorous equations by using the 'solver'
functionality of such software (a Microsoft R© Excel �le
with explanations is available on line. See section A.1 in
Supplementary information). Another consequence is
that, as with a continuous injection, one can represent
the evolution of the heat per mole vs. s as a smooth
curve being sampled at discrete points si depending on
the successive injected volumes. This is illustrated with
�gures 3-6, 8.
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3.6 Comparison of the exact and approximate equations 7

Figure 3: In�uence of the injection width δs = s2 − s1 on
the resulting TC calculated with Q(s1, s2). The curves were
calculated with r = 10, c = 700 and with δs varying from
0, which corresponds to Q(s) (black), to 0.3 (red), in steps
of 0.1. The inset shows the di�erence curves corresponding
to Q(s1, s2)−Q(s) with the same color code. Note that the
large values reached by δs in this numerical test are unreal-
istic in practice and were used to show clearly the evolution
of the resulting TCs. However, δs = 0.1 is a realistic value,
which already shows well the di�erence between Q(s1, s2)
and Q(s) with the value c = 700 used. See below (equation
20) for a discussion on the in�uence of c.

3.6 Comparison of the exact and approximate
equations

Here, the results obtained in this work are com-
pared with those from di�erent programs (PEAQ from
Microcal/Malvern, NanoAnalyze from TA instruments,
AFFINImeter from S4SD, and SEDPHAT [10]). This
is done by comparing the theoretical TCs that are
obtained with the same parameters (�gures 4, 5, 6). Two
Kd values, leading to c = 10 and c = 1000, were consid-
ered to illustrate smooth and sharp TCs. A low value
r = B0/A0 = 3, implying important dilution of the
cell content, was chosen to better visualize the in�uence
of the approximations used for the stoichiometric ratio
estimates in the di�erent programs. The results from
PEAQ and AFFINImeter were virtually identical: only
the results from PEAQ are shown. There are signi�cant
errors in the ordinate values Q obtained from PEAQ,
AFFINImeter and SEDPHAT, and much less errors
from NanoAnalyze (insets in �gures 4, 5, 6). For sharp
TCs (high c value), the errors are systematically high
around the unit stoichiometry (s ≈ 1). Also, all pro-
grams, except NanoAnalyze, show TCs going wrongly
from negative to positive values at high stoichiometric
ratios. This is obviously due to the lack of the corrective
term C(v) in equation (7) whose in�uence is visualized
in �gure 1. The negative consequences of this are dis-
cussed in section 3.7. According to the model editor in

NanoAnalyze, the heat at the nth injection is evaluated
as (Cn−Cn−1)Vcell ∆H after a correction of the concen-
tration of the bound species Cn−1 reached at injection
n − 1 for the dilution resulting from the nth injection.
This is only a partial correction since it does not correct
Cn itself for the dilution e�ect. It is thus not clear how
NanoAnalyze circumvents the lack of the term C(v) in
equation (7).

Figure 4: Comparison of the titration curves obtained from
equation 17 (dashed red) and from PEAQ software from
Malvern (blue). The results are virtually identical for the
comparison with AFFINImeter. The calculations were done
with the values Vcell = 200µ l, δV = 4µ l, A0 = 10µM ,
B0 = 30µM (r = 3), ∆H = −20 kcalmol−1 and either
Kd = 1µM (c = 10), or Kd = 10nM (c = 103). The
exact curve is superimposed onto the �gure produced by
the PEAQ software. The points for the same injection may
di�er signicantly in their s values (molar ratios) due to the
approximation used by PEAQ (section 2.1). The inset shows
the di�erences between the ordinate values of points for the
same injection. Note that the TC from PEAQ reaches the
horizontal axis at the end point for Kd = 1µM and crosses
the horizontal axis at s = 1.4 for Kd = 10nM , whereas the
exact curve remains negative and reaches the horizontal axis
asymptotically.
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8 3 RESULTS

Figure 5: Comparison of the titration curves obtained from
equation 17 (dashed red) and from SEDPHAT [10] (blue).
Same parameters as in �gure 4. Here also the TCs cross
wrongly the axis Q = 0

3.7 Consequences of the analytical expression for
Q(s) and Q(s1, s2)

Several quantitative results potentially with interesting
practical consequences derive from equations 12 and
17. Some of these results were obtained by Velázquez-
Campoy within the approximation of negligible dilution
e�ects [18].

3.7.1 Stoichiometry of the in�ection point (if
any)

An exact expression is obtained along with a simple
(and excellent) approximation for r � 1:

sinfl = 1− 1 + r + γ (r + 3)

(γ + 1)2
; r = B0/A0; γ = B0/Kd

sinfl ' 1− 1

c
for r � 1; c = A0/Kd = γ/r

(18)

The in�ection point is thus always located at s < 1 (this
obviously does not take into account the complications

Figure 6: Comparison of the titration curves obtained from
equation 17 (red dots) and from NanoAnalyze from TA (thin
curves). Same parameters as in �gure 4. Here, NanoAn-
alyze uses a particular axis labelling. The horizontal axis
corresponds to the injection numbers. One cannot therefore
visualize the (small) departure of the stoichiometric ratios
from the exact values. The ordinate axis gives the absolute
heat evolved during the injection, not the heat per injected
mole. The errors on the ordinate values are marginal for
c = 10 and become signi�cant for c = 103, but only around
s = 1 (injection # 15). At variance with PEAQ, AFFINIme-
ter and SEDPHAT the theoretical TCs do not cross wrongly
the axis Q = 0.

due to concentration errors and/or active fractions
di�erent from 1). The simple form sinfl ' 1 − 1/c was
already obtained in [18].
An in�ection point exists if sinfl > 0, which
requires from the preceding exact result that
γ = B0/Kd > (c + 1)/(c − 1), or equivalently
A0/Kd > (B0 + Kd)/(B0 − Kd). In usual situations
with B0 � Kd, this is very close to the simple condition
A0 > Kd, as expected from the approximation.

Practical consequence: when a TC has no visible
in�ection point, one can conclude that Kd & A0 (which
is equivalent to c . 1). However, when one is in the
'twilight zone', one cannot judge by eye whether an
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3.7 Consequences of the analytical expression for Q(s) and Q(s1, s2) 9

in�ection point is still present or not. Therefore, when
this applies, only a rough estimate of Kd is obtained.

3.7.2 Maximum slope at the in�ection point

We consider here the maximum slope derived either
from Q(s) for an in�nite number of in�nitely small
injections (equation 12), or from Q(s1, s2) for �nite-size
injections in MIM (equation 17). In the �rst case, it is
obtained:(

dQ
ds

)
max

= − (1 + γ)3

4 γ2
√
r + γ(1 + r)

∆H(
dQ
ds

)
max

' −c
1/2

4
∆H for r � 1

(19)

The approximate result was mentioned in [18]. For the
second case, one has to consider Q(s1, s2) with s1 =
s− δs/2 and s2 = s+ δs/2 (δs = s2 − s1) to be compa-
rable with Q(s). The exact expression of the derivative
is complicate and of no interest; we thus only consider
the approximate form that can be derived from it with
Mathematica:

(
dQ(s1, s2)

ds

)
max

' − c1/2

4
√

1 + c (δs/4)2
∆H for r � 1

(20)

Since usually r = B0/A0 ∼ 10, the approximation is
often valuable. Comparison of equations 19 and 20
shows that the maximum slope derived from Q(s1, s2)
is less than that from Q(s), which is clearly apparent
in �gure 3. This was expected since Q(s1, s2) results
from the averaging of Q(s) between s1 and s2.

Practical consequence 1: When the transition zone
of the sigmoid-shaped curve is sharp (large c value),
the stoichiometry increment δs between successive
injections roughly has to be less than 4 c−1/2 to sample
the transition zone at least once for sure (the estimate
is safe since it is based on equation 19 giving the largest
maximum slope). Therefore, this is the maximum
acceptable δs value to obtain signi�cant information
on Kd. On the contrary, if δs & 4 c−1/2, the sampling
of the transition zone is a random event since its exact
position depends on any errors on the concentrations
and on the active fractions of A and B being potentially
less than 1. In ideal conditions (no concentration errors,
active fractions = 1), one can impose that the experi-
mental point of any particular injection (say injection
#i) fall very close to the in�ection point. For that, the
total injected volume Vi reached at that injection has
to be equal to Vcell ln[1 + 1/r] (that is vi = ln[1 + 1/r])
since the corresponding stoichiometric ratio si is then

equal to 1, which is very close to the exact position
(∼ 1 − 1/c from equation 18) of the in�ection point
when c is large. The practical interest of this is that
one can compute in advance Vcell ln[1 + 1/r] since
r = B0/A0 is known.

The previous considerations point to the fact that
it would be desirable to use variable injected volumes
δV for the di�erent injections. Indeed, with large
c values, it would be better to decrease δV around
the in�ection point and increase it in the almost �at
regions of the TC. A practical consequence is that the
data acquisition programs should be able to change δV
automatically during the acquisition itself. Ultimately,
in all simple situations described by equation 1, the
acquisition programs should be improved to perform
the �rst steps of data processing and, hence, should
tune in real time δV and the time interval between
injections, particularly close to the unit stoichiometry
s = 1 where the shape of the injection curves can
change signi�cantly. The latter point is of great impor-
tance for the ability of obtaining kinetic information
by kinITC [11, 17, 19].

Practical consequence 2: The previous considera-
tions give insight into the error resulting from using
the ideal equation 12 (which is equivalent to the Wise-
man isotherm when the dilution may be neglected)
instead of equation 17. The comparison of equations
19 and 20 shows that the error remains small as
far as c (δs/4)2 � 1 and becomes signi�cant when
c (δs/4)2 > 10−1. When c (δs/4)2 increases signi�cantly
above 1, the error resulting from using equation 12 to
�t an experimental TC is severe since an erroneous
c value that tends towards the limiting value (4/δs)2

would be obtained. Therefore, in such situations,
equation 12 would lead to Kd approaching the limiting
value A0 (δs/4)2, which only depends on "freely"
adjustable experimental parameters, and not on the
actual chemical interaction. More or less erratic results
in the literature might originate from this. De�nitely,
equation 17 taking in consideration the injection width
has to be used.

3.7.3 Value of Q0 for s→ 0

It is usually considered that, for large c values, Q0 =
Q(s → 0) = ∆H. However, from equations 12 and 17
the exact value (also mentioned in [18]) is:

Q0 =
c

1 + c
∆H (21)

Practical consequence: If c is known, ∆H is obtained
as (1 + 1/c)Q0. If c is not yet known and no in�ection
point is visible (i.e. c . 1 from the preceding), one may
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10 3 RESULTS

conclude that |∆H| & 2 |Q0| (the sign being obviously
known).
Theoretical consequence: Equation 21 joined to equa-
tion 10 will lead to a stringent test of theoretical con-
sistency (section 3.8.2). Therefore, equation 21 is rig-
orous and any processing method not respecting it is
incorrect. An example of this is in [20] where their
equations 4.153, 4.154 imply ∆H = (1 + 1/(r c))Q0,
instead of the r-independent exact value (1 + 1/c)Q0.
This results in underestimating |∆H| with a relative
error |δ∆H/∆Hexact| = (1 − 1/r)/(1 + c), which is as
high as 45% with c = 1 and r = 10.

3.7.4 Asymptotic behavior of Q(s) for high
stoichiometric ratios

Base-line correction is a recurrent problem due to
more or less small-amplitude injections often being still
present at high stoichiometric ratios. Normally, the so-
called "blank experiments" performed by injecting the
bu�er without ligand, or by injecting the ligand into the
bu�er, are used to know whether or not the contribu-
tion of such injections may be legitimately subtracted.
However, these blank experiments may be missing and,
when present, may lead to bad corrections, particularly
when the signal-to-noise ratio is high. It is thus of inter-
est to know the asymptotic behavior of Q(s) when the
stoichiometric ratio s becomes large to decide whether
the experimental TC should be base-line corrected prior
to the �tting procedure, or whether an additional free
parameter should be used in the �tting procedure to
determine the base-line. Since we consider �at regions
of the TC, equation 12 may be used instead of equation
17, which yields the following exact and approximate
asymptotic dependences for large s values:

Q(s) ∼ c r2(1 + c+ c r)

(1 + c r)3
∆H

s2
; r = B0/A0; c = A0/Kd

Q(s) ∼ 1

c

∆H

s2
for r � 1

(22)

Theoretical and practical consequence 1: This shows
�rst that Q(s) −→ 0 when s −→ ∞ and, second, that
the sign of Q(s) cannot change. The same conclusion
also applies to Q(s1, s2) for s1 and s2 −→ ∞ (see
�gure 3 for a visual "proof"). Therefore, with all simple
reactions A + B � C, an ideal TC (i.e. not a�ected
by a baseline shift) cannot cross the horizontal axis
Q(s) = 0. It was seen that three programs out of four
do not ful�ll this requirement. As a consequence, no
baseline correction can be made safely on an exper-
imental basis by using "blank experiments" because
the processing method introduces a systematic error
on the theoretical baseline. Only by using a baseline

shift as a fudge parameter in the �tting procedure
can one "correct" the problem with these approximate
methods. However, this will introduce errors on ∆H
and, in turn, on Kd.

Practical consequence 2: Equations 22 also pro-
vide us with an objective criterion to locate a practical
titration-curve end point by determining smax such
that Q(s > smax) may be considered null in practice.
The criterion is that Q(s > smax) should become less
than some fraction (say 1/2) of the experimental error
σ(Q) (i.e the standard deviation of the heat-per-mole
values in the �at base line). In usual situations for
which r � 1, this gives:

smax '

√
2

c

|∆H|
σ(Q)

(23)

This result is interesting for its simplicity but two
remarks should be made. First, it depends on the arbi-
trary choice for the fraction of the experimental error.
Second, the obtained value for smax is valid only if it
is large enough to justify using the previous asymptotic
expressions. Numerical calculations have shown that it
should be greater than 1.5 to be signi�cant, which will
not be the case with too high c values and/or with too
low signal-to-noise ratio |∆H|/σ(Q). In any case, equa-
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Figure 7: Minimum value of the stoichiometric ratio to be
reached for various c values so that the residual heat signal
becomes less than some fraction of the ∆H (valid for the
usual one-step mechanism). The dashed line is for a residual
signal equal to 5× 10−3 ∆H. As a rule of thumb, this 0.5 %
residual signal is reached for a stoichiometric ratio close to
12 c−1/3.

tion 12 yields an exact estimate of smax in all situations
by solving numerically the equation Q(smax) = σ(Q)/2.
This shows that smax is well above usual experimen-
tal stoichiometry limits when c is not large (Figure
7). It resuts that when c is roughly around, or less
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3.8 Consequences of the previous results on complex mechanisms 11

than 100, the base-line is most often not reached in
practice and it is then incorrect to perform a base-line
correction by subtracting the observed Q values at the
highest stoichiometric ratios. Instead, it is safer to con-
sider the modi�ed theoretical function Q(s1, s2) + δQ
from equation 17, δQ being an additional free param-
eter in the �tting procedure. An even more accurate
procedure (used in AFFINImeter) is to consider that
δQ is in fact a function δQn of the injection number
n to take into account the di�erence of concentrations
between the newly diluted ligand and the free ligand
during the injection.

3.8 Consequences of the previous results on complex
mechanisms

It is not uncommon to observe atypical TCs that cannot
be explained by the usual simple mechanism involving
one binding site characterized by one dissociation con-
stant Kd and one enthalpic term ∆H. Examples of such
curves are in Fig. 8.

These curves were obtained in [21] during the titra-
tion of thiamine pyrophosphate (TPP) with its target,
the TPP riboswitch found in the plant Arabidopsis
thaliana [22, 23]. A riboswitch is a non-coding RNA
sequence present in the 5'- or 3'-untranslated region
(UTR) of a messenger RNA (here, in the 3'-UTR of
the gene THIC). The biological role of this interaction
is of sensing the presence of the cognate ligand and of
triggering a speci�c response depending on whether or
not the ligand is present in su�cient concentration [24].
For this plant riboswitch, the interaction with TPP trig-
gers a conformational change of the RNA provoking an
alternative splicing mechanism that directs the mRNA
to rapid degradation [25, 22]. Because it was needed to
explain the non-classical shape of the TCs and because
of this dynamic process, it was natural to suppose that
the riboswitch could be present under two conforma-
tions R1 and R2, and that each conformation would
recognize the TPP with a speci�c Kd and a speci�c
enthalpic term ∆H. It was also natural to suppose that
the two riboswitch conformations R1 and R2 were in
equilibrium with an equilibrium constant K = R2/R1.
Such alternative RNA conformations are common and
many such examples having functional consequences
have been described [26, 27, 28, 29, 30, 31]. The follow-
ing three-step mechanism was thus considered in order
to explain the curves shown in Fig.8.

R1 � R2 (K, ∆H) (24)

R1 + TPP� C1 (Ka1 = 1/Kd1, ∆H1)

R2 + TPP� C2 (Ka2 = 1/Kd2, ∆H2)
(25)

It was thought that with as many as six free parame-
ters, instead of two, one would easily explain the non
classical features of these TCs. Rather strangely at �rst
sight, all attempts at obtaining such non-monotonous
curves failed and purely classical sigmoid shapes were
invariably obtained. On this practical basis, it was thus
concluded that such attempts were vain. The �ts shown
in �gure 8, therefore, do not correspond to this three-
step mechanism. In fact, suppressing the interconversion
step (equation 24) between the two species R1 and
R2 is necessary and su�cient to �t the TCs in �gure
8. This was rather unexpected since this corresponds
to a decrease of the number of free parameters. It is
explained in the following why this is so.

3.8.1 The three-step mechanism is equivalent
to a classical one-step mechanism

Mass action law applied to equilibria corresponding to
equations 25 indicates that the ratios R1/C1 and R2/C2

are equal respectively to Kd1/L and Kd2/L with L
(for ligand) the concentration of free TPP. Taking now
in consideration the preequilibrium between the two
species R1 and R2 (equation 24) yields R2 = KR1 and,
considering the former ratios, the following proportion-
ality relationship C2 = β C1 with β = KKd1/Kd2 is
obtained. (It is important to note for the following that
such a proportionality obviously does not exist if R1 and
R2 are not engaged in this preequilibrium). It can thus
be derived:

R1 +R2 = (1 +K)R1 = (1 + 1/K)R2

C1 + C2 = (1 + β)C1 = (1 + 1/β)C2

(26)

If one considers the �rst equalities in equations 26, one
obtains :

R1 +R2

C1 + C2
=

1 +K

1 + β

R1

C1
=

1 +K

1 + β

Kd1

L
(27)

It thus appears that the ratio of the two concentration
sums R1 +R2 and C1 +C2 is of the form Kd(global)/L,
exactly as the ratios R1/C1 and R2/C2 are of the form
Kd1/L and Kd2/L, respectively. Therefore, everything
happens as if there were binding of the ligand to a sin-
gle species of RNA of concentration R1 + R2 to form
a single complex of concentration C1 + C2. The global
dissociation constant can be expressed under the two
following alternative forms depending on whether Kd1

or Kd2 is taken as the reference:

Kd(global) =
1 +K

1 + β
Kd1 =

1 + 1/K

1 + 1/β
Kd2 (28)

Taking into account β = KKd1/Kd2 this can be
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Figure 8: "Atypical" titration curves obtained at di�erent temperatures for the binding of thiamine pyrophosphate (TPP)
to the TPP riboswitch from Arabidobsis thaliana (the conditions are those described in [21]). The continuous lines �t the
experimental points with a model involving two RNA species (section 3.8). The parameter values are indicated in each �gure.
The �tting was performed with a "global thermodynamic treatment" to constrain Kd2, ∆H2 of the major species to respect
the van't Ho� equation (as described in [11]), whereas Kd1, ∆H1 of the minor species could not be constrained. f1 and 1−f1
are the fractions of the minor and major species, respectively. It was observed that imposing f1 = Kd1/Kd2 yielded a very
good �t of the data, which likely is the mark of some unexplained feature of the TPP/riboswitch interaction. Therefore, the
model in use allows to illustrate the methodological aspects of this work but, despite the quality of the �ts, may not be the
best model on a mechanistic point of view.

reduced to the following form (symmetric in Ka1 and
Ka2 through the transformation K −→ 1/K as it
should):

Ka(global) =
Ka1 +KKa2

1 +K
(29)

As far as the concentrations are concerned, the complex
mechanism involving three equilibria is thus equivalent
to the simple mechanism characterized by a single
association/dissociation equilibrium (equation 1). This
result has already been obtained with a completely
di�erent method based on the binding polynomials
approach (equation 113 in [32]). Since the shape
of a TC for such a simple mechanism is uniquely
determined by the initial concentrations and the
equilibrium constant (its amplitude being proportional
to the enthalpy variation), one understands why all
attempts at obtaining non classical TCs failed. It
is now clear that the interconversion step implying
the proportionnality R2 = KR1 is responsible for

this situation and that its suppression may lead to a
TC departing from a sigmoid shape. It remains (i) to
determine what is the value of the global enthalpic term
∆H(global) attached to Ka(global) and (ii), to check
that these two parameters alone account rigorously
for the complex system involving three equilibria with
three independent pairs of parameters (K, ∆H), (Ka1,
∆H1) and (Ka2, ∆H2).

3.8.2 Determination of ∆H(global)

The determination of ∆H(global) can be obtained
in two di�erent ways. The �rst method makes use of
equation 10 to evaluate Q0 = Q(s → 0) and then of
equation 21 to derive ∆H from Q0. This allows us
illustrating how equation 10 should be used when a
product in one step is also a reactant in (an)other
step(s). Being based on a speci�c technique, this
method may not seem of general validity. However, the
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3.9 Other example: competition of di�erent modes of binding on a unique site 13

universally valid van't Ho� equation also allows us to
obtain a result independent of any technique. That the
two results obtained by completely independent routes
prove to be identical may be viewed as a proof that
equations 10, 21 are exact.

∆H(global) determination by the ITC-based method.
Using of equation 10 requires great care since the
thermogenesis resulting from the interconversion step
(equation 24) is not simply related to R2(v) because
the concentration variation of R2 is also in�uenced
by the third step (second equation 25). Instead,
one can show that R2(v) should be replaced with
1/2 [(R2 + C2)− (R1 + C1)] (see section A.2 in Sup-
plementary information). Taking this in consideration,
along with R2 = KR1, C2 = β C1 and C1 = C2 = 0 at
v = 0, it may be shown:

Q0 = Q(s→ 0) =
1

L0

[
∆H1 C

′
1(0) + ∆H2 C

′
2(0) +

∆H

2

(
K − 1

K + 1
R0 + (K − 1)R′1(0) + (β − 1)C ′1(0)

)]
(30)

with L0 the concentration of the TPP ligand in the
syringe and R0 the initial RNA concentration in the
cell. The terms C ′1(0), C ′2(0) and R′1(0) are the deriva-
tives dC1/dv, dC2/dv and dR1/dv at v = 0 and can be
calculated without explicit knowledge of the functions
themselves (see section A.3 in Supplementary informa-
tion). Finally, with ∆H(global) = Q0 (1 + 1/c) from
equation 21, it may be obtained after simpli�cation:

∆H(global) =
∆H1 + β∆H2 + β−K

1+K ∆H

1 + β
(31)

As expected, this is a symmetric form in ∆H1, ∆H2

since these terms appear in a weighted sum with
coe�cients 1/(1 + β) and β/(1 + β) that are exchanged
through the transformation β −→ 1/β (recall that
β = KKd1/Kd2). Also, this symmetric form is analo-
gous to that obtained for Ka(global) with K replacing
β in equation 29.

∆H(global) determination by the van't Ho� equation.
The van't Ho� equation applied to Ka(global) yields:

∆H(global)

RT 2
=
∂TKa(global)

Ka(global)
(32)

By replacing Ka(global) from equation 29 and calculat-
ing the derivative, it is obtained:

∆H(global)

RT 2
=
∂TLnKa1 + β ∂TLnKa2 + β−K

1+K ∂TLnK

1 + β
(33)

which is e�ectively equivalent to equation 31 when con-
sidering the van't Ho� equation applied to the three
equilibrium constants Ka1, Ka2 and K. The method
used here in a particular case has already been expressed
in general terms (equations 106 and 107 in [32]).

We have thus obtained the sought after global ∆H
term taking into account the three independent pairs
of parameters (K, ∆H), (Ka1, ∆H1) and (Ka2, ∆H2).
Repeated numerical calculations of TCs by consider-
ing either the three-step mechanism with any values for
these six terms, or the single-step mechanism with the
resulting terms Ka(global) and ∆H(global), con�rmed
that they coincide exactly.

3.9 Other example: competition of di�erent modes of
binding on a unique site

The same kind of reasoning can be made with a n-
step mechanism corresponding to the competition of n
modes of binding on a unique site. This may happen
with a large (�exible) ligand that can make more than
one contact with its target and that sterically prevents
the binding of another ligand as soon as one is bound
in any possible way. Such a mechanism excludes any
negative or positive cooperativity between the di�er-
ent binding modes. Although this situation has already
been examined [33, 34], it is mentioned here as another
illustration of the present considerations. We thus con-
sider the n equilibria:

A + B� Ci (i = 1, n) (34)

with the obvious notations Ka i,Kd i,∆Hi for the
respective thermodynamic parameters. The results are
given without proof. The term Ka(global) is here just
the sum of the a�nities of all modes of binding :

Ka(global) =
n∑
i=1

Ka i (35)

With the same van't Ho�-based method that led to
equation 32, one obtains for ∆H(global) the following
weighted sum of the ∆Hi s of all modes of binding:

∆H(global) =

∑
iKa i ∆Hi∑

iKa i

=

∑
i ∆Hi/Kd i∑
i 1/Kd i

(36)

(Therefore, not only Ka, but Ka ∆H too is additive
with this simple competition mechanism, which means
that Ka(global) ∆H(global) =

∑
iKa i ∆Hi). Here also,

the ITC-based method using equation 10 gives the same
result (which was veri�ed for n = 2). It was also veri�ed
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14 4 CONCLUSION

that the TCs obtained by considering either a two-
step mechanism with any values for Ka1,Ka2,∆H1 and
∆H2, or the single-step mechanism with the resulting
terms Ka(global) and ∆H(global), coincide exactly.

3.9.1 Consequences of the equivalence of the
composite and simple mechanisms

It has thus been rigorously proved that, thermo-
dynamically, the three-step mechanism (equations
24, 25), or the n-step mechanism (equations 34) are
strictly equivalent to the classical single-step mecha-
nism (equation 1) and that the parameters describing
each composite mechanism allow to compute the exact
global parameters Ka(global) and ∆H(global). One can
thus de�nitely exclude the possibility of invoking such
composite mechanisms to account for any atypical TCs
as shown in Fig. 8. Of course, the invoked equivalence
only holds as far as thermodynamics is concerned since,
kinetically, the composite and simple mechanisms can-
not be equivalent. This will be highlighted in a rather
unexpected way (see section A.5 in supplementary
information).

Reciprocally, there is another consequence of this
strict thermodynamic equivalence: observing a typical
monotonous TC and explaining it perfectly with the
usual single-step mechanism will, alone, never exclude
the possibility that it could correspond to one of the
two composite mechanisms (or to others to be identi-
�ed). However, if one is willing to explain a classical
monotonous TC by invoking, for example the three-step
mechanism (equations 24,25), one would need to prove
(i) the existence of the alternative conformations R1

and R2 and (ii) that these can interconvert following
equation 24. The latter requirement is fundamental
because the existence of two non-interconvertible

forms R1 and R2 allows to explain atypical TCs as
shown with their �t with such a model in Fig. 8,
whereas the same TCs cannot be explained if the
interconversion step in equation 24 is active.

3.9.2 Number of degrees of freedom for the
composite mechanisms

It is clear that there is no one-to-one correspondence
between a given pair of parameters (Ka(global),
∆H(global)) and a single set of values for the
thermodynamic parameters of each equivalent com-
posite mechanism. For example, given (Ka(global),
∆H(global)), there are in�nitely many solutions to
equations 29 and 31 giving (K,∆H), (Ka1, ∆H1)
and (Ka2, ∆H2). First, equation 29 shows that two
equilibrium constants among K, Ka1 and Ka2 can

be chosen freely (within the limits of positive values)
to obtain a given value of Ka(global). Second, K
and β being known, equation 31 shows that two
enthalpic terms among ∆H, ∆H1 and ∆H2 can be
chosen freely to obtain a given value of ∆H(global).
In such a case, therefore, the composite mechanism
has four degrees of freedom, whereas the equivalent
simple mechanism has zero degree of freedom since only
one pair (Kd(global), ∆H(global)) can explain the data.

Analogously, it is easy to verify that equations 35
and 36 give rise to 2 (n − 1) degrees of freedom since
(n − 1) association constants Ka i (within the limits of
positive values) and (n − 1) enthalpic terms ∆Hi can
be chosen freely. Altogether, one may express these
observations with the following Gibbs-like phase rule:
the number of degrees of freedom, or the variance
in Gibbs' terminology, is equal to 2 (n − 1) where n
is the number of equilibria in the simple (n = 1) or
composite mechanisms (n > 1) being considered. These
results lead to a tentative link with the concept of gauge
invariance in physics (see section A.5 in Supplementary
information)

4 CONCLUSION

The results exposed in this work represent a signif-
icant improvement on commonly used methods in
ITC. At a theoretical level, self-consistent equations
were derived, particularly concerning the asymptotic
behavior of the measured heat for large s values. At
a practical level, the results should allow obtaining
more accurate results, particularly with important
dilution. The work necessary for their introduction
in existing programs is limited for the usual simple
mechanism A+B 
 C. For more complex mechanisms
it will be necessary to take great care of using correctly
equation 10. At the time of writing the new equations
for the simple mechanism have been implemented in
a special version of AFFINImeter for Windows [35]
(https://www.a�nimeter.com/site/download/a�nimeter-
itc-windows/). They are also available with the Excel
�le accessible on line as supplementary material.
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A Supplementary information

A.1 Using the Excel solver with the usual one-step
mechanism

The �tting of a titration curve with equation 17 is made
available to everyone by using the solver functionality in
Microsoft R© Excel. An example is furnished (�le ITC-
Processing.xslx). All necessary explanations are given
in the Excel �le (sheet "Explanations").

A.2 Evaluation of Q with several reactions

When several reactions are simultaneously active one
has to take into account several sources of thermoge-
nesis. It was obtained (equation 10 in the main text):

Q(v) =

Nc∑
k=1

∆Hk

B0

[
Ck(v) +

dCk
dv

]
(37)

It is then very important to evaluate correctly the terms
Ck(v) which may di�er from the concentration of the kth

product. The problem is illustrated with the following
examples. Consider �rst the set of reactions (where L,
for ligand, corresponds to compound B in the syringe):

R1 + L� C1 R2 + L� C2 (38)

characterized by ∆H1 and ∆H2 for the production of
one mole of each product C1 and C2, respectively. In
such a case, there is no di�culty since neither product
appears in the other reaction and the thermogenesis is
given by:

Q(v) =
∆H1

L0

[
C1(v) +

dC1

dv

]
+

∆H2

L0

[
C2(v) +

dC2

dv

]
(39)

where C1(v) and C2(v) are indeed the concentrations of
the two products C1 and C2, respectively. Consider now
again the three-step reaction that was invoked about the
TPP riboswitch:

R1 � R2

R1 + L� C1

R2 + L� C2

(40)

each step being characterized by ∆H, ∆H1 and ∆H2 for
the production of one mole of each product R2, C1 and
C2, respectively. The variation δR2 of R2 due to the �rst
reaction, being accompanied by an opposite variation of
R1, is equal to 1/2 δ(R2−R1). Now, the situation is less
simple since R1 in the �rst reaction also appears as a
reactant in the second reaction and R2 as a reactant in
the third reaction. Thus, one cannot ascribe the varia-
tion of 1/2 (R2−R1) to the �rst reaction only. Therefore,
to evaluate the thermogenesis due speci�cally to the
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�rst reaction, one has to �nd a linear combination of
the concentrations representing speci�cally the varia-
tion of 1/2 (R2 −R1) in the �rst reaction. The solution
is S = 1/2 [(R2 +C2)− (R1 +C1)] for the following rea-
sons. First, (R2 +C2) cannot be a�ected by the second
reaction where neither R2 nor C2 appear and, second,
(R2 +C2) does not vary in the third reaction where R2

and C2 have opposite variations. Therefore the variation
of (R2 + C2) can only be ascribed to the �rst reaction.
The same kind of arguments applies for (R1+C1), which
implies that the variation of S can only result from the
�rst reaction and the correct application of equation 37
leads to:

Q(v) =
∆H

L0

[
S(v) +

dS

dv

]
+

∆H1

L0

[
C1(v) +

dC1

dv

]
+

∆H2

L0

[
C2(v) +

dC2

dv

]
(41)

In conclusion, if the algebraic equations of mass action
law and of conservation lead for the di�erent concen-
trations to explicit functions of v, this exact formal-
ism also allows to obtain the titration-curve function
in closed form by use of equation 37. Note that this
is the case for both the 2-step and 3-step mechanisms
just considered. If the di�erent concentrations can only
be obtained numerically, the same equation allows to
obtain an 'exact' numerical solution.

A.3 Determination of the derivatives of
concentrations at v = 0

One seeks to determine the derivatives dC1/dv, dC2/dv
and dR1/dv at v = 0 appearing in equation 30 for the
determination of ∆Hglobal. The concentrations C1, C2

and R1 are those of the species in equations 40. From
the conservation of species (joined to equation 3) and
mass action law, one derives:

R1 +R2 + C1 + C2 = Rtot = R0 e
−v

C1 + C2 + L = Ltot = L0 (ev − 1)

L = Kd1
C1

R1

(42)

from which one obtains:

R′1(0) +R′2(0) + C ′1(0) + C ′2(0) = −R0

C ′1(0) + C ′2(0) + L′(0) = L0

L′(0) =
Kd1

R1(0)
C ′1(0) =

Kd1 (1 +K)

R0
C ′1(0)

(43)

By inserting the proportionality relationships R2 =

KR1 and C2 = β C1 with β = KKd1/Kd2 (see sec-
tion 3.8.1), a linear system of three equations with three
unknowns is obtained, which leads to:

R′1(0) = − (1 + β) (L0 +R0) + (1 +K)Kd1

(1 +K) [1 + β + (1 +K)Kd1/R0]

C ′1(0) =
L0

1 + β + (1 +K)Kd1/R0

C ′2(0) = β C ′1(0)

(44)

A.4 Continuous titration with SIM

Equations 13 and 14 have been tested with experi-
mental data reported in [12]. In this work, Markova
& Hallen sought to develop the method of continuous
titration (cITC) with SIM and they compared two types
of calorimeter. Type 1 calorimeter was a heat-�ow twin
device with a long response time and type 2 calorimeter
was an instrument close to the VP-ITC from Microcal-
Malvern. Type 1 instrument was not considered here
since it is not a total-�ll over�ow instrument, which does
not �t with the theoretical analysis to be tested. The
experimental data considered here are from the contin-
uous titration of Ba++ with 18-crown-6. The measured
experimental power curves Pm(t) are like that shown
in �gure 9: they start at 0 at t = 0, raise abruptly to a
maximum value and decrease smoothly to 0 for t −→∞.
However, in [12], the curve to be �t was an ideal power
curve Pi(t) = ϕVcellB0Q[s(t)] that would be mea-
sured with an ideal instrument with a null response time
τr. According to equation 13 in the main text Pi(t) is
derived from Pm(t) as follows:

Pi(t) = Pm(t) + τr
Pm(t)

dt
(45)

Comparison of the two curves shows that the abrupt
rise of Pm(t) at t = 0 has disappeared in favor of a
slow variation (�gure 9). This results from the previous
transformation Pm(t) −→ Pi(t) being equivalent to the
convolution:

Pi(t) = [Pm ∗ Eτr ] (t)

with Eτr (t < 0) = 0 , Eτr (t ≥ 0) =
1

τr
e−t/τr

(46)

A convolution is essentially a local averaging (here of
Pm(t)), hence a contractant transformation, which tends
to smooth any sharp amplitude variations. (This could
be expressed quantitatively with Laplace transform con-
siderations, but �gure 9 is su�cient to illustrate the
problem). Any experimental information conveyed by
such sharp variations is thus a�ected by a convolution.
It is therefore not equivalent to �t the measured power
curve corresponding to Pm(t), or the ideal power curve
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Figure 9: Comparison of the measured and ideal power
curves Pm(t) and Pi(t) to illustrate the disappearance in
Pi(t) of the abrupt rise of power in Pm(t). The curves were
calculated with the parameters of the titration of Ba++ with
18-crown-6 (section 3.4).

corresponding to Pi(t), because a part of the infor-
mation content in Pm(t) has disappeared in Pi(t). In
conclusion, �tting the measured power curve with Pm(t)
highlights, instead of masking, any disagreement. This
appeared well with the black curve in �gure 2 of the
main text that cannot be accepted as a good �t. In
comparison, the �t of the ideal power curve in [12] did
not reveal any such disagreement (�gure 3 in [12]) and
yet, led to less accurate values of the parameters (inset
of �gure 2 in the main text).

A.5 Tentative link with the concept of gauge
invariance in physics

Here, unusual considerations are developed. It was
shown that certain composite mechanisms are strictly
equivalent to a simple association/dissociation mech-
anism. It appeared that, in such situations, the ther-
modynamic parameters characterizing the composite
mechanism can be chosen freely among an in�nite num-
ber of possible values to represent the simple equiva-
lent mechanism characterized by a single set of values
Ka(global) and ∆H(global). Such a situation is reminis-
cent of 'gauge invariance' in physics which, historically,
appeared �rst with the fact that a mechanical or elec-
tric potential is de�ned to within an arbitrary constant.
Later, it was recognized that an electromagnetic �eld,
characterized by the measurable (hence, uniquely deter-
mined) electric and magnetic vector �elds E and H,
can be indi�erently described by anyone of in�nitely
many scalar and vector potentials V and A through
the Maxwell equations (p. 51 in [36]):

E = −gradV − 1

c

∂ A

∂t
H = curlA

(47)

All possible potentials V and A yielding the same
vector �elds E and H derive from the so-called gauge
transformations V → V − ∂f/∂t and A→ A + gradf ,
where f is any arbitrary derivable function of space
and time (p. 52 in [36]). In the frame of our com-
parison, the pair of experimentally measurable terms
Ka(global) and ∆H(global) stands for the pair of
measurable electric and magnetic �elds E and H,
and the in�nitely many possible values of the ther-
modynamic parameters given by equations 29, 31 or
35, 36 stand for the in�nitely many possible functions f .

It is interesting to pursue the comparison by not-
ing that, in classical electromagnetism, the potentials
V and A may be seen as purely auxiliary quantities
without real physical signi�cance since applying any
arbitrary gauge transformation to them will not change
the really observable quantities E and H. The same
is true in our case since, considering the �rst exam-
ined composite mechanism (equations 24, 25), any
legitimate set of values of the six quantities K,∆H,
Ka1, ∆H1 and Ka2, ∆H2 will yield the same values of
the parameters (Ka(global), ∆H(global)) allowing to
interpret an observed TC. Therefore, in the frame of
our problem, the six former parameters may be seen
as purely auxiliary and devoid of physical signi�cance,
whereas only Ka(global) and ∆H(global) would be
physically meaningful. The same kind of conclusions
would be reached with the other composite mechanism
(equation 34). This interpretation is correct, but only
as far as thermodynamics is concerned since, as
already mentioned, a composite multi-step mechanism
could have a speci�c kinetic signature (visible in the
shapes of the injection curves) di�erent from that of
the thermodynamically equivalent one-step mechanism.

One could therefore think that the invoked com-
parison is imperfect since the 'gauge invariance' seen
in electromagnetism would not apply strictly in our
problem as a distinction should be made between
thermodynamic and kinetic considerations. It turns
out, however, that the same duality exists in physics
when considering quantum and classical electromag-
netism. The typical example of the need of considering
a quantum description in electromagnetism is the
so-called Ahranov-Bohm e�ect that was predited the-
oretically [37]. This e�ect consists in the interference
phenomenon that can be observed with a split electron
beam that followed two paths on opposite sides of a
solenoid, exactly as light interference can be observed
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with a split light beam that followed two paths of
di�erent lengths. Remarkably, the interference pattern
depends on the current in the solenoid and, in turn,
on the magnetic �eld inside the solenoid. The crux of
the interpretation for the Ahranov-Bohm e�ect is that
E and H, the only real quantities in classical physics,
are null along the electron-beam path outside the
solenoid and cannot be invoked to explain the observed
dependence on the current intensity. Therefore, only
the potentials V and A, which are non null outside the
solenoid, can be considered, which imposes to consider
them as physically meaningful in the frame of quantum
electromagnetism [37].
The proposed comparison is thus fully consistent
with the kinetic/thermodynamic opposition in our
problem being equivalent to the quantum/classical
opposition in electromagnetism. In other words, the
potentials V and A, which may be seen as dummy
in classical electromagnetism, become physically
meaningful and necessary to account for quantum
e�ects and, analogously, the parameters describing
the composite mechanism (e.g. K,∆H, Ka1, ∆H1

and Ka2, ∆H2), which may be seen as dummy in
the strict frame of thermodynamics, may also become
physically meaningful and necessary to account for
kinetic aspects. This suggests to consider quantum
electromagnetism as a more informative "kinetic facet"
of a "thermodynamic-like" classical electromagnetism.
Whether these considerations are of real heuristic
interest, or merely suggestive, requires to be examined
in more details.
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