
“output” — 2019/9/24 — 18:46 — page 1 — #1i
i

i
i

i
i

i
i

Published online Nucleic Acids Research, , Vol. , No. – 1–11

ELECTOR: Evaluator for long reads correction methods
Camille Marchet 1,3†,, Pierre Morisse 2†,, Lolita Lecompte 1, Arnaud Lefebvre 2, Thierry Lecroq 2, Pierre
Peterlongo 1 and Antoine Limasset 3

1Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France.
2Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France.
3Department of Computer Science, Research Center in Computer Science, Signal and Automatic Control of Lille
(CRIStAL), Lille, France. National Centre of the Scientific Research (CNRS), Lille, France.
†these authors contributed equally to this work

ABSTRACT

The error rates of third-generation sequencing data have
been capped above 5%, mainly containing insertions and
deletions. Thereby, an increasing number of diverse long
reads correction methods have been proposed. The quality of
the correction has huge impacts on downstream processes.
Therefore, developing methods allowing to evaluate error
correction tools with precise and reliable statistics is a
crucial need. These evaluation methods rely on costly
alignments to evaluate the quality of the corrected reads.
Thus, key features must allow the fast comparison of
different tools, and scale to the increasing length of the
long reads. Our tool, ELECTOR, evaluates long reads
correction and is directly compatible with a wide range of
error correction tools. As it is based on multiple sequence
alignment, we introduce a new algorithmic strategy for
alignment segmentation, which enables us to scale to large
instances using reasonable resources. To our knowledge,
we provide the unique method that allows producing
reproducible correction benchmarks on the latest ultra-
long reads (longer than 100k bases). It is also faster
than the current state-of-the-art on other datasets and
provides a wider set of metrics to assess the read quality
improvement after correction. ELECTOR is available on
GitHub (https://github.com/kamimrcht/ELECTOR) and
Bioconda.

INTRODUCTION

Motivations
Pacific Biosciences (PB) and Oxford Nanopore Technologies
(ONT) long reads, despite their high error rates and complex
error profiles, were rapidly adopted for various applications.
An increasing number of projects, especially for assembly (1),
long-distance haplotyping or structural variant calling (2),
indeed benefits from the long-range information these reads
provide. These reads display high error rates (from 5%-12%,
according to technologies and libraries, to as much as 30%
for the oldest datasets), that largely surpass those of Illumina
reads. Given these high error rates, the first step of many
applications is error correction. However, this stage can be a
time bottleneck (2).

Moreover, contrary to Illumina, where the majority of
errors are substitutions, long reads mainly contain insertions

and deletions (indels) (ONT reads are more deletion-
prone, whereas PB reads contain more insertions). This
combination of issues requires novel and specific algorithmic
developments. To this extent, dozens of error correction
methods directly targeting these long reads emerged in the
last five years. The first range of error correction tools, called
“hybrid correctors”, uses both short and long reads to perform
error correction, relying on the deep coverage and low error
rate of the short reads to enhance long reads sequences. The
second group of methods, called “self-correctors”, intends
to correct long reads with the sole information contained in
their sequences (see (3) for a review of correctors). Both
paradigms include quite diverse algorithmic solutions, which
makes it difficult to globally compare the correction results
(in terms of corrected bases, quality, and performances)
without a proper benchmark. Besides, the quality of the
error correction has considerable impacts on downstream
processes. Hence, it is interesting to know beforehand which
corrector is best suited for a particular dataset (according to
its coverage, its error rate, the sequenced genome, or the
sequencing technology, for instance). Developing methods
allowing to evaluate error correction tools with precise and
reliable statistics is, therefore, a crucial need.

Methods for evaluating correctors should allow tracking the
novelties of the methods. Indeed, since long read technologies
still evolve, current correctors implementations are prone
to many changes. Methods for evaluating correctors must
be usable on datasets of various complexity (from bacteria
to eukaryotes) to reproduce a wide variety of possible
scenarios. They also should be fast and lightweight, and
should not be orders of magnitude more resource and time
consuming than the actual correction methods they evaluate.
This aspect is particularly critical, since correction evaluators
also stand in the perspective of new correction methods
developments, as they can help to provide accurate and quick
comparisons to the state-of-the-art. For developers as well as
users, correction evaluators should describe with precision the
correction method’s behavior (i.e., the number of corrected
bases, introduced errors or read breakups) to identify its
potential pitfalls.

Previous works
Works introducing novel correction methods usually evaluate
the quality of their tools based on how well the corrected long
reads realign to the reference.

c© 2019 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 2 — #2i
i

i
i

i
i

i
i

2 Nucleic Acids Research, , Vol. , No. –

Figure 1. Overview of ELECTOR. Inputs are the sequences at different stages: without errors (from the reference genome), with errors (simulated or real
uncorrected reads) and corrected (after running a correction method). We compute a multiple sequence alignment of the three versions of each sequence and
analyze the results to provide correction quality measures. In order to provide additional information, reads are assembled using Minimap2 (4) and Miniasm (5)
and both the reads and the contigs are aligned to the reference genome. A text summary, plots, and a pdf summary are output.

Despite being useful, this information remains incomplete.
In particular, it is likely not to mention poor quality reads, or
regions to which it is difficult to align.

In (6), La et al. introduced a new way to obtain metrics
describing the quality of the error correction that does not
solely present the similarities between the aligned corrected
reads and the reference genome. Relying on simulated data,
they proposed the idea of a three-way alignment between the
reference genome, the uncorrected reads, and the corrected
reads. They presented results on PB data for hybrid error
correction tools, by introducing LRCstats, an evaluation tool
aiming at answering to the problematics above.

With its three-way alignment scheme, LRCstats provides
reads’ error rate before and after correction, as well as the
detailed count of every type of error. However, only studying
the reads’ error rate after correction is not a satisfying
indication of the corrector’s behavior. For instance, there is
no clue about the putative insertions of new errors by the
corrector. To perform such analysis of the method’s pros and
cons, we need additional metrics such as precision (relevant
corrected bases among all bases modified by the corrector) and
recall (correct bases that have been retrieved by the corrector
among all bases to be corrected). Such metrics have already
been proposed in earlier works dedicated to short reads, such
as the error correction evaluation toolkit introduced in (7).
However, this contribution is out of the scope of this work.
Indeed, algorithms to process short reads are different from
those at stake in our case, due to the length, the high error
rates, and the complex error profiles of the long reads.

Moreover, LRCstats relies on a multiple alignment scheme
which suffers from high resource needs when processing
large numbers of reads, i.e., when coverage or genome sizes
are large. For the same reason, LRCstats alignment scheme
becomes limited when sequences to process grow. However,
the sequencing depth and the length of the long reads keep
on increasing, especially with so-called ONT ultra-long reads
(up to 1M bases) starting to appear in recent works for larger
genomes (8). Moreover, deep coverages are expected to help
the correction of very long sequences (2). Thus, novel methods
must be proposed in order to evaluate the correction of such
datasets in a reasonable amount of time.

Contribution
To cope with the identified limits of LRCstats, we propose
ELECTOR, a new evaluation tool for long read error
correction methods. ELECTOR can evaluate the correction
of simulated as well as real long read datasets, provided a
reference genome is available for the sequenced species. It
takes as input a reference genome in FASTA format, a set
of corrected reads in FASTA format, and the corresponding

uncorrected reads, either via a FASTA format file in the case
of real data or via the suite of files provided by the simulator
in case of simulated data. In its output, ELECTOR provides
a broader range of metrics than LRCstats, which evaluates
the actual quality of the correction. In particular, it measures
recall, precision, and error rate for each read. ELECTOR
also informs about typical difficulties long read correctors can
encounter, such as homopolymers, and reads that have been
trimmed, split or extended during the correction. Finally, it
also provides reads remapping and assembly metrics.

In order for ELECTOR to provide these additional metrics,
we propose a novel multiple sequence alignment (MSA)
strategy. This new algorithmic approach is designed to allow
the MSA computation to scale to ultra-long reads and to large
datasets of several billions of base-pairs. It compares in a
fast way three different versions of each read: the corrected
version, the uncorrected version and the reference version,
which is a substring of the reference genome. For each read,
we perform a MSA of its triplet. A key idea of this strategy
is a divide-and-conquer approach that divides the reads into
smaller sequences with an anchoring process, and thus allows
to compute several smaller MSAs. These multiple, smaller
MSAs, are then combined to obtain the final MSA, of the
whole length of the sequences. The anchoring process is
designed to work with erroneous sequences and takes into
account gapped alignment due to truncated corrected reads.
We believe that the interests of this novelty are not limited to
the ELECTOR framework. Indeed, it may be a useful strategy
for any domain requiring MSAs of long and highly erroneous
sequences.

For simulated reads, ELECTOR is compatible with state-
of-the-art long reads simulation tools, such as NanoSim (9)
or SimLoRD (10), on which introduced errors are precisely
known. Moreover, it is meant to be a user-friendly tool,
that delivers its results through different output formats, such
as graphics that can be directly integrated into the users’
projects. This tool was designed to be directly compatible
with a wide range of state-of-the-art error correction tools
without requiring any pre-processing by the user. In particular,
ELECTOR is compatible with the latest self-correction
methods, and we thus present novel results on such tools, that
were not tackled by LRCstats.

MATERIAL AND METHODS

Input sequences
ELECTOR is compatible with long reads simulators
SimLoRD and NanoSim, and real read sequences (see
Figure 1 for an overview of ELECTOR). When using
long reads simulated with one of these tools, the reference

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 3 — #3i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 3

Figure 2. Segmentation strategy to compute a multiple sequence alignment for a triplet of reference, uncorrected and corrected versions of a read. Instead
of computing a MSA on the whole length of the sequences, we rather divide this problem into smaller instances. As each version is different, to decide where to
start and end the alignments, we look for seed k-mers (in black) that are exact local matches between the three sequences. We then compute individual, separate
MSAs, for subsequences bordered by seeds (or located at the extremities of the sequences). These multiple MSAs are finally concatenated, along with the seed
k-mers, to obtain a single, full MSA, of the whole length of the sequences.

sequences are directly retrieved by ELECTOR, by parsing the
files generated during the simulation. When using these state-
of-the-art long reads simulation tools, we ensure to take as
input sequences that closely simulate the actual characteristics
of the long reads. However, it is possible to use other long
reads simulation tools. In this case, the user must provide
the reference sequences itself. The genome used for the
simulation, the files generated by the simulator, and the
corrected reads, output by the desired correction method,
are then provided as an input. ELECTOR then compares
three different versions of each read: the uncorrected version,
as provided by the sequencing experiment or by the read
simulator, the corrected version, as provided by the error
correction method, and the reference version, which is a
portion of the reference genome, representing a perfect version
of the original read, without any error. For real data, the
reference sequences are retrieved by aligning the uncorrected
reads to the reference genome, using Minimap2. Only the
best hit for each read is kept and used to determine the
corresponding reference sequence. In the case a read cannot
align to the reference genome, and thus cannot produce a
reference sequence, the read is excluded from the analysis.

Scalable triplet multiple alignment
With real or simulated reads, the core of the algorithmic
novelty is to propose the comparison of the three different
versions of each read (reference, uncorrected, and corrected)
in a triplet multiple alignment. These three versions of each
read undergo a multiple sequence alignment, to collect their
differences and similarities at each position of the alignment.

Principle With the three versions of each read, our triplet
multiple alignment strategy computes a MSA, using a partial
order alignment algorithm. The MSA is initialized with
the reference sequence, and the corrected and uncorrected
sequences are then sequentially added. This step yields a
multiple alignment matrix that is output in pseudo FASTA
(PIR) format for each triplet. The triplet multiple alignments
are computed using an implementation of partial order
alignment graphs (11). Partial order alignment graphs are
used as structures containing the information of the multiple
aligned sequences. To this extent, a directed acyclic graph
(DAG) contains the previous multiple sequence alignment
result. The vertices store consecutive nucleotides from the

sequences. Each new sequence is aligned to this DAG in a
generalization of the Needleman-Wunsch algorithm. Paths in
the DAG represent the successive alignments.

However, such a procedure can be time-consuming when
applied to noisy long reads (see Table 2). Thus, we propose
a novel multiple sequence alignment heuristic. We recall
the values of all the parameters mentioned in the following
paragraphs in Supplementary Table S1.

Segmentation strategy for the MSA To reduce the computation
time of our approach, we propose a segmentation strategy,
as sketched in Figure 2. It consists of dividing the global
multiple alignment into several smaller instances. Drawing
inspiration from MUMmer’s (12) and Minimap’s (5)
longest increasing subsequence approaches, we select a
sequence of seeds S1,...SN that can be found (in the given
order) within the three sequences. From this sequence of
seeds, we extract the N+1 substrings (W0,W1,...,WN )
delimited by the seeds in the three versions of the read.
We thus extract str[0 :position S1],str[position S1+
length S1 :position S2],..., str[position Si+length Si :
position Si+1],..., str[position SN :str size], with str
being the sequence of the reference, corrected or
uncorrected version, and call these substrings windows.
We, therefore, compute independent MSAs for each window
triplet (Wi reference,Wi corrected,Wi uncorrected),
and then reconstitute the global multiple alignment by
concatenation. We now describe the procedure more in detail.
For each triplet, we compute the k-mers that will be used
as seeds (called seed k-mers) so that they comply with the
following properties:

1. They appear in each of the three versions of the
sequence.

2. They are not repeated across any of the versions of the
sequence.

3. They are not overlapping in any of the versions of the
sequence.

Using dynamic programming, the longest increasing
subsequence of seed k-mers, S1,...SN , is computed. Pairs
of successive seed k-mers, Si,Si+1 delineate windows. The
size of these seed k-mers is adapted according to the current

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 4 — #4i
i

i
i

i
i

i
i

4 Nucleic Acids Research, , Vol. , No. –

Figure 3. Segmentation strategy when the corrected read is smaller. As in Figure 2, R,U,C stand for the reference, uncorrected and corrected read triplet.
Here, the corrected read is shortened on its right end. To avoid passing subsequences starting from seed 2 to the end of each sequence to the MSA, which would
be costly to compute, we perform a second segmentation strategy. This strategy allows us to retrieve a new set of seeds (gray seeds 3 and 4). This new set of seeds
divides the remaining subsequences (suffixes in this case) in reference and uncorrected into windows on which we compute MSA separately. The full MSA is
reconstructed by concatenation, and dots are added to complete the corrected MSA line.

observed error rates (5, 13), and ranges between 9 and 15
nucleotides. As it is difficult to a priori select a k-mer size, we
designed a quick iterative strategy that tries several values of
k, to choose the most suitable for a given triplet. Starting from
k=kmax (set to 15 by default), we keep on decreasing k until
the size of the largest window no longer decreases. Whenever
the largest window’s size no longer decreases, or kmin (set
to 9 by default) is reached, the process stops. Minimizing the
size of the largest window as such allows us to ensure that we
compute MSAs on the smallest possible windows, in order to
reduce the computational costs as much as possible.

Once windows are computed, we
produce MSAs of each window triplet
(Wi reference,Wi corrected,Wi uncorrected)
independently, as described in the previous paragraph,
using subsequently smaller alignment graphs. Finally, the
multiple small MSAs are concatenated, along with the seed
k-mers, to obtain a single MSA of the whole length of the
read triplet.

If we were able to bound the size of the windows, we could
guarantee an asymptotic time linear to the read length for the
alignment computation. In practice, our implementation can
produce large windows, but we observe a running time almost
linear in the length of the reads, as shown in our experimental
results.

To avoid computing metrics on poorly corrected reads, we
filter out corrected reads length is below a given parameter
(see Supplementary Table S1 for its default value) and triplets
for which no seed k-mers can be found. These two types of
filtered reads are tagged and reported apart in ELECTOR’s
outputs to inform the user about their numbers.

Handle reads of different sizes in the segmentation strategy
In the case of a truncated corrected read (trimmed/split),
the corrected version is shortened in comparison to the
two other versions. A part of the reference and uncorrected
sequences is thus missing in the corrected sequence. A prefix,
a suffix, or both, can be missing depending on the case.
Trimmed and split scenarios are outlined in Figure 4. As
we only use anchors shared among the three sequences,
in the case of a missing prefix in the corrected version,
W0 reference and W0 uncorrected will, therefore, be
larger than W0 corrected (see an example of a missing
suffix in Figure 3). Computing a MSA between those three
sequences would thus be irrelevant. Furthermore computing
a MSA on two possibly long sequences (as a large sequence
may be missing) is pricey. As corrected reads can be truncated

at the beginning, at the end, or both, the symmetrical scenario
can occur for suffixes.

To cope with this problem, we detect such cases by
checking the length of the first windows. If W0 reference
and W0 uncorrected are large (≥1000 nucleotide) and at
least 2 time larger than W0 corrected, we use a segmentation
scheme only with k-mers from reference and uncorrected, and
only align their two prefixes.

This way, we can efficiently compute a MSA when the
corrected reads do not cover the whole genome region
they originally come from, avoiding to run a MSA on
large/unrelated sequences. The procedure is symmetrical for
suffixes.

This procedure is essential for correctors that output
numerous split reads, which would induce extremely long
run-time due to large sequence MSA computations described
before.

Figure 4. Three scenarios of corrected read categories in MSA results.
Trimmed reads have a corrected version with a missing prefix and/or suffix
(grey region). Split reads have been fragmented into several parts during the
correction, and subsequences can be missing between consecutive fragments
(grey regions). Extended corrected reads have a corrected version with an
additional prefix and/or suffix which is (are) not present in the two other
versions (missing regions in grey). Soft-clipped reads have a reference version
with a missing prefix and/or suffix (grey region).

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 5 — #5i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 5

Inference of quality evaluation metrics from MSA
Classification of corrected reads ELECTOR reports different
categories of corrected reads: regular reads, trimmed/split
reads, extended reads, soft-clipped reads, bad quality reads
and short reads. Figure 4 shows how we deduce the trimmed,
split and extended categories from the MSA result.
Regular reads are neither trimmed, split, extended nor soft-
clipped.
Trimmed reads are reads that lack a part of their prefix, suffix,
or both (first scenario in Figure 4).
Split reads are reads composed of several fragments that come
from a single original read, that could only be corrected on
several distinct parts (second scenario in Figure 4). Split reads
are aligned as trimmed reads are. However, in the case of split
reads, we gather all fragments that come from a single initial
read, in order to build a single MSA from the several, distinct
MSAs induced by the different fragments. Supplementary
Figure S1 illustrates this process.

We thus report how many reads were trimmed or split
during the correction. Moreover, for each trimmed or split
corrected read, we report the total uncorrected length of its
associated reference read (i.e., the length that is not covered
by any fragment).
Extended reads are reads that have a prefix and/or a suffix
that was not present in the reference sequence (third scenario
in Figure 4). These reads can be chimeras from the correction
step, and can, for instance, come from chimeric connections
between unrelated parts of the graph (14) or the assembly of
unrelated short reads (15).

However, they can also be reads that were over-corrected
by a graph-based correction method, that kept on traversing
the graph after reaching the uncorrected reads’ extremities.
We do not compute quality evaluation metrics on the extended
regions, but we report the number of extended reads, as well as
their mean extension size, with respect to the reference reads.

We define a split/trimmed/extended region as the prefix
or suffix (or both) of the MSA in which no corrected
nucleotide appears (for split and trimmed), or no uncorrected
and reference nucleotide appear (for extended). These regions
are represented in grey in Figure 4.
Soft-clipped reads are reads for which the extremities were
soft clipped during the alignment to the reference genome
(last scenario in Figure 4). This category only arises in real
data mode, as we only retrieve reference reads by aligning the
uncorrected reads to the reference genome in this case. For
such reads, we do not compute quality evaluation metrics on
the soft clipped regions, as they could not be appropriately
aligned to the reference genome, and were therefore not used
to determine the reference read.
Bad quality reads are low-quality reads that were removed
before the MSA step, to avoid computing metrics on poorly
corrected reads. As mentioned previously, these are the
reads for which no seed k-mers were found during the
segmentation process. These reads are tagged and reported
apart in ELECTOR’s output, to inform the user about their
number. We only report their number as no metric can be
computed since they are not aligned.
Short reads are reads which are shorter than `% of the
reference sequence length (` being a parameter set to 10 by

default). As for the bad quality reads, these reads are also
removed before the MSA step, and only the number of such
reads is reported.

Recall, precision, error rate Once the MSA is computed,
we have access to information about the differences and
similarities in nucleotide content for each position of the
three versions of a sequence. Insertions and deletions are
represented by a “.” in the deleted parts, and by the
corresponding nucleotide (A,C,T or G) in the inserted parts.
Let us denote, respectively, by nt(R,pi),nt(C,pi),nt(U,pi)
the characters of reference, corrected and uncorrected
versions in {A,C,G,T,.}, at position pi (0≤ i<N ), in a
MSA of size N . Figure 5 shows how recall and precision are
computed. The set P of positions to correct is composed of
positions pi such as nt(R,pi) 6=nt(U,pi). The set E of existing
positions in the corrected version is defined by including
any position px from the corrected version that is not
counted in a trimmed/split/extended/soft-clipped region. The
processed positions set C is defined as P∪{pj/nt(C,pj) 6=
nt(R,pj)}∩E . The correct positions set Co is defined as
C∩{pj/nt(C,pj)=nt(R,pj)}. The recall, precision and error
rate are computed as follows:

Recall=
card(C∩P)
card(P)

(1)

Precision=
card(Co∩C)
card(C)

(2)

Errorrate=1− card(Co)
c−1∑
i=0

i

(3)

with c the length of the corrected read.

Figure 5. Computation of recall and precision using triple base-wise
comparison at each MSA’s position. nt(R) (respectively nt(U),nt(C))
represents the character in reference (respectively uncorrected, corrected) line
of the MSA at a given position.

Additional metrics ELECTOR provides the number of
trimmed or split corrected reads, and the mean missing size of
these reads, as well as the number of extended reads, and the
mean extension size of these reads. The size distribution of the
sequences, before and after correction, is reported graphically.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 6 — #6i
i

i
i

i
i

i
i

6 Nucleic Acids Research, , Vol. , No. –

In the case of split reads, we report the length of each
fragment in the distribution. The %GC of the corrected and
reference reads is also output, as well as the total number
of insertions, deletion, and substitution, in the uncorrected
and corrected reads. ONT reads are known to be more error-
prone than PB reads in homopolymers. Thus, we propose
metrics to examine these particular regions We show the
ratio of homopolymer sizes in the corrected version over
the reference version. The closer it is to one, the better the
corrector overcame possible systematic errors in ONT reads.

More details on the computation of the insertions, deletions,
substitutions counts, and on the ratio of homopolymer sizes
are shown, respectively, in Supplementary Figure S2 and S3.

Remapping of corrected reads In addition to all previously
presented metric computations, we also take advantage of the
presence of the reference genome to evaluate corrected reads
quality. We perform remapping of the corrected reads to the
reference genome using Minimap2. We report the number of
corrected reads, the total number of bases, the average length
of the reads, the percentage of aligned reads, the mean identity
of the alignments, as well as the genome coverage, i.e., the
percentage of bases of the reference genome to which at least
a nucleotide aligned.

Post-correction assembly metrics Again, in addition to
metrics obtained thanks to our MSA strategy, we assess the
correction quality through its consequences on the assembly
quality of the corrected reads. We perform the assembly of
the corrected reads using Miniasm (5), as we mainly seek to
develop a pipeline providing fast results. We acknowledge that
assemblers such as Smartdenovo (16) or Canu (17) are more
sensitive, but as they display much larger runtimes, Miniasm
provides a satisfying compromise.

As for the metrics of the assembly, we output the overall
number of contigs, the number of contigs that could be
aligned, the number of breakpoints of the aligned contigs, the
NGA50 and NGA75 sizes of the aligned contigs, as well as
the genome coverage. Using the assemblies that we provide,
further analyses can be performed using dedicated software
such as QUAST-LG (18).

We also perform the alignment of the contigs with
Minimap2. The computation of the different metrics, for
remapping and assembly assessment, is then performed by
parsing the generated SAM file.

RESULTS

Validation of the segmentation strategy for MSA
To validate our segmentation strategy for MSA, we show
to which extent its results differ from the classical MSA
approach. In particular, we expect that recall, precision, and
error rate hardly differs, thus showing that both behaviors
produce very similar results. Conversely, we expect a decisive
gain in time with our segmentation strategy compared to
the original algorithm. We thus compared multiple alignment
results obtained with our strategy to results obtained with the
regular implementation of partial order alignment graphs on
multiple datasets of different read lengths, which affects the
run-time of the alignments. Results are presented in Table 2.

Dataset E. coli S. cerevisiae C. elegans H. sapiens
Reference organism
Strain K-12 substr. MG1655 W303 Bristol N2 GRCh38
Reference sequence NC 0009131 scf7180000000{084-13}2 GCA 000002985.33 NC 000001.114
Genome size 4.6 Mbp 12.2 Mbp 100 Mbp 249 Mbp
Simulated Pacific Biosciences data
Number of reads 11,306 30,132 244,277 -
Average length (bases) 8,226 8,204 8,204 -
Number of bases (M bases) 93 247 2,004 -
Coverage 20x 20x 20x -
Error rate (%) 18.6 18.6 18.6 -
Real Oxford Nanopore data
Accession - - - PRJEB230275
Number of reads - - - 1,075,867
Average length (bases) - - - 6,744
Number of bases (M bases) - - - 7,256
Coverage - - - 29x
Error rate (%) - - - 17.60

Table 1. Description of the datasets used in our experiments.
1 https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
2 www.genoscope.cns.fr/externe/nas/references/yeast/
W303_pacbio_assembly.fa.gz 3 https://www.ebi.ac.uk/
ena/data/view/GCA_000002985.3 4 Only chromosome 1 was
used. https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.
11 5 Only reads from chromosome 1 were used.

We observe that while the two strategies provide very similar
metrics, the segmentation strategy can reduce the runtime
by orders of magnitude compared to the regular approach,
especially when the reads grow longer.

Validation on synthetic datasets
In this section, we present the results of ELECTOR and
LRCstats on several simulated datasets from different species.
Further details about these datasets are given in Table 1. The
choice of synthetic data was motivated by the need to know
the reference sequences (which are portions of the reference
genome, representing perfect versions of the original reads,
on which no error would have been introduced) to precisely
control the results brought by the assessed correction method.

ELECTOR sample output As previously mentioned,
ELECTOR computes general metrics: recall, precision,
error rate, among other metrics, and provides a graphic
representation of their distributions.

A subset of the metrics produced by ELECTOR using
reads corrected by the following tools: HALC (19), HG-
CoLoR (20), LoRDEC (21), Canu (17), Daccord (Tischler,
G., & Myers, E. W. (2017). Non hybrid long read consensus
using local de Bruijn graph assembly. bioRxiv, 106252.) and
MECAT (22) is presented in Table 3. These metrics are
consistent with the results presented in the respective tools’
publications. The whole set of metrics, including remapping
and assembly assessment, are presented in Supplementary
Table S3 and S4.

Comparison to state-of-the-art Recently, several benchmark
analysis were proposed for long reads (comparison of hybrid
correction methods (23), comparison of hybrid and self-
correction methods (Zhang, H. et al. (2019). A comprehensive
evaluation of long read error correction methods. BioRxiv,
519330.), analysis of long read correction on transcriptomic
reads (24)). In this work, we focus on the methodological
basis allowing to efficiently perform and reproduce such
benchmarks, rather than highlighting the pros and cons
of available correction methods. The presented correction
performances are thus showed for validation purposes and

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
www.genoscope.cns.fr/externe/nas/references/yeast/W303_pacbio_assembly.fa.gz
https://www.ebi.ac.uk/ena/data/view/GCA_000002985.3 
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11
https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
www.genoscope.cns.fr/externe/nas/references/yeast/W303_pacbio_assembly.fa.gz
www.genoscope.cns.fr/externe/nas/references/yeast/W303_pacbio_assembly.fa.gz
https://www.ebi.ac.uk/ena/data/view/GCA_000002985.3
https://www.ebi.ac.uk/ena/data/view/GCA_000002985.3
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11
https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 7 — #7i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 7

Experiment Recall (%) Precision (%) Error rate (%) Time
”1k” MSA 99.712 98.996 1,02 2h 05 min
”1k” segmentation +MSA 99.769 98.992 1,021 28 min
”10k” MSA 99.921 99.781 0,206 20 h 50 min
”10k” segmentation + MSA 99.921 99.795 0,207 29 min
”100k” MSA 99.913 99.925 0,044 8 days 18 h 38 min
”100k” segmentation +MSA 99.924 99.903 0,098 1 h 11 min

Table 2. Comparison of the two multiple alignment strategies on simulated E. coli datasets. Three datasets were simulated, with a 10% error rate, a coverage
of 100x, and a fixed read length of 1k bases, 10k bases and 100k bases, respectively. The reads were corrected using Canu with default parameters.

are not intended to be a benchmark of existing correction
methods. In the rest of the result section, we report
comparisons to the only other automated evaluation tool for
long reads correction: LRCstats.

In Table 4, we compare the metrics displayed by ELECTOR
and LRCstats. Correction of the S. cerevisiae dataset by
HALC (a hybrid correction method) and Canu (self-correction
method), are evaluated and reported as an example output.
The complete results provided by LCRstats and ELECTOR,
for each correction tool, and on each dataset, are presented in
Supplementary Tables S2 and S3.

Both LRCstats and ELECTOR compute metrics on
corrected reads and the corresponding uncorrected sequences
of those reads (reported respectively as corrected and
uncorrected).

The first result to notice in Table 4 is that the error rates and
the amount of processed bases announced in the uncorrected
reads can differ from one correction method to the other,
both for ELECTOR and LRCstats. Such differences can be
explained by the fact that HALC and Canu do not correct the
same set of reads, which leads to different set of uncorrected
reads to evaluate.

As ELECTOR and LRCstats rely on different rules to
exclude reads from the analysis, and do not align split reads
in the same way, we observe that they do not process the same
quantity of reads.

LRCstats concatenates the different parts of a split read
before aligning the concatenation, even if a missing region
can exist between two consecutive fragments. This behavior
can complicate the alignment task and introduce a bias in
the output metrics. On the contrary, ELECTOR processes the
different fragments separately before reconstituting the whole
alignment and thus takes into account missing regions. These
differences thus have an impact on the metrics displayed for
corrected reads. ELECTOR processes slightly more bases than
LRCstats on the two studied datasets. However, reads falling
into particular categories (very short reads and low-quality
reads) are not taken into account in ELECTOR’s counts, and
are reported apart, while they are absent from LRCstats’s
output.

Different alignment strategies in both tools also have
impacts on the results, which explains the differences seen
in indels and substitutions counts. However, ELECTOR and
LRCstats globally report the same trends of two successful
corrections that decreased the error rates.

Additional metrics, specific to ELECTOR, point out
noteworthy differences between the two correction methods,
such as the high quantity of trimmed or split reads when using
HALC in comparison to Canu. These metrics are essential
for further steps such as assembly since less advantage is
taken from shortened reads to resolve repeats. They also help
to understand more in-depth the correctors’ behavior. In this

example, Canu corrects with lower recall and precision than
HALC, but this is nuanced because ELECTOR reports it
produces less trimmed/split reads.

Performance comparison
In this section, we compare LRCstats and ELECTOR runtime
and memory consumption on several datasets chosen to
represent different use cases. Results are presented in Table 5
and 6. For the experiments presented in Table 5, both tools
were ran on a 20-core cluster node equipped with 250 GB
of RAM. For the experiments presented in Table 6, we
used a 16-core computer equipped with 64 GB of RAM. In
order to compare similar operations, ELECTOR’s runtime
and memory consumption do not consider the remapping
and assembly steps. We present the metrics and resource
consumption of this module apart, in Supplementary Table S4.

We first assess, in Table 5, the performances of both tools
on several simulated E. coli datasets with different read
lengths, ranging from 1k bases to 1M bases. As expected,
the runtime and memory consumption of both tools grow
with the read length. However, ELECTOR can handle reads
larger than 10k bases better than LRCstats, thanks to its
segmentation strategy. In particular, ELECTOR is several
orders of magnitude faster than LRCstats on the 10k bases
experiment, and can also handle longer reads, up to 1M bases,
using moderate resources. LRCstats was much more memory
consuming and was thus unable to run on reads longer than
10k bases, despite having access to 250 GB of RAM. These
results underline that ELECTOR can scale to extremely long
reads. Considering the ever-growing length of the long reads
and the tremendous impact of such very long sequences, we
believe that this ability is a significant advantage of ELECTOR
obtained thanks to its segmentation technique.

We also observe, in Supplementary Table S5, that the
error rate of the input reads has a negligible impact on the
performances of the tools.

In Table 6, we compare the performances of different
correctors with the time needed to evaluate their outputs,
using ELECTOR and LRCstats. Interestingly, we observe
that LRCstats is mostly slower than the correction step
itself, which is not desirable. ELECTOR is often faster than
or comparable to the corrector itself, except for MECAT
which is distinctly efficient. These reduced runtimes could
be a beneficial gain for benchmark analysis, and could also
be critical for the development of new correction methods.
Another observation from Table 6 is that we can notice
large divergence in ELECTOR runtimes on the same dataset
corrected by different tools. This behavior can be due to two
factors. On the one hand, ELECTOR’s runtime optimization
is prone to be more or less pronounced according to the
read length (segmentation is expected to be easier with

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 8 — #8i
i

i
i

i
i

i
i

8 Nucleic Acids Research, , Vol. , No. –

Metric HALC HG-CoLoR LoRDEC CANU Daccord MECAT
Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

E. coli
Processed bases 91,950,978 81,199,351 93,003,632 84,089,814 89,077,682 77,969,503 91,933,413 86,443,218 92,936,636 83,773,362 80,380,557 58,979,203
Error Rate 0.1415 0.0015 0.1428 0.0007 0.1384 0.0015 0.1432 0.0524 0.1433 0.004 0.1332 0.0052
Recall (%) - 0.9999 - 1.0 - 0.9999 - 0.9495 - 0.9988 - 0.9983
Precision (%) - 0.9985 - 0.9993 - 0.9986 - 0.9476 - 0.9961 - 0.9949
S. cerevisiae
Processed bases 238,309,333 212,266,193 245,700,616 219,744,436 196,676,910 188,228,237 244,560,743 229,555,492 246,455,883 222,050,951 217,284,712 162,057,920
Error Rate 0.1403 0.0042 0.1414 0.003 0.1325 0.0054 0.1425 0.0506 0.1426 0.0054 0.1339 0.0066
Recall (%) - 0.9997 - 0.9999 - 0.9995 - 0.9515 - 0.9986 - 0.998
Precision (%) - 0.9959 - 0.9971 - 0.9947 - 0.9495 - 0.9946 - 0.9936
C.elegans
Processed bases 1,731,103,921 1,588,220,052 1,988,381,391 1,726,223,265 1,299,187,175 1,154,508,245 1,997,798,872 1,873,188,109 - - 1,270,739,795 870,965,775
Error Rate 0.1377 0.0153 0.1397 0.0065 0.1242 0.0126 0.1427 0.0496 - - 0.1199 0.0065
Recall (%) - 0.9989 - 0.9997 - 0.9989 - 0.9527 - - - 0.9982
Precision (%) - 0.985 - 0.9936 - 0.9875 - 0.9505 - - - 0.9936

Table 3. Examples of the main metrics reported by ELECTOR on E. coli, S. Cerevisiae and C. elegans datasets. A dash in the Uncorrected columns
indicates that the metric is not computed for the uncorrected reads. Daccord could not be run on the C. elegans dataset, and reported an error.

Metric Uncorrected Corrected by HALC
ELECTOR LRCstats ELECTOR LRCstats

Processed bases 238,309,333 237,655,341 212,266,193 214,152,119
Error Rate 0.1403 0.1751 0.0042 0.0023
Insertions 28,772,841 32,589,970 100,874 215,507
Deletions 5,235,890 8,991,984 1,035,978 120,743
Substitutions 4,058,953 1,633,123 198,853 221,646
Recall (%) - - 0.9997 6
Precision (%) - - 0.9959 6
Trimmed/split - - 12,043 6
Mean missing size - - 577.5 6
Extended - - 71 6
Mean extension size - - 53.2 6
Low quality reads - - 160 6
Small reads - - 3436 6

Uncorrected Corrected by Canu
ELECTOR LRCstats ELECTOR LRCstats

Processed bases 244,560,743 244,633,066 229,555,492 229,825,812
Error Rate 0.1425 0.1781 0.0506 0.0694
Insertions 30,090,583 34,105,075 12,252,413 12,942,568
Deletions 5,483,119 9,489,618 2,574,320 3,134,365
Substitutions 4,375,017 1,748,302 2,197,172 1,591,650
Recall (%) - - 0.9515 6
Precision (%) - - 0.9495 6
Trimmed/split - - 2,216 6
Mean missing size - - 35.1 6
Extended - - 178 6
Mean extension size - - 30.7 6
Low quality reads - - 43.0 6
Small reads - - 0.0 6

Table 4. Comparison of ELECTOR’s and LRCstats’s outputs. Both tools
were evaluated on the S. cerevisiae dataset, using a hybrid corrector (HALC)
and a self corrector (Canu). A dash in the Uncorrected columns indicates that
the metric is not computed for the uncorrected reads. A cross indicates that
LRCstats does not provide the metric.

larger reads) and quality of the correction (more errors
make it more difficult to find common seeds). On the other,
ELECTOR’s runtime is also related to the number of split
corrected reads output by the corrector. Indeed, a larger
number of split reads implies a more significant number of
triplet multiple alignments, and thus an increased runtime.
In particular, in the experiments presented here, the largest
runtimes can be observed for the evaluation of LoRDEC and
HALC on the C. elegans dataset. As shown in Supplementary
Table S3, these tools are also those that produced the most
considerable amount of trimmed/split reads on this dataset. A
way to accelerate ELECTOR analysis would be to adapt its
parameters to avoid small read fragments.

Tool Read length (bases) Memory (MB) Elapsed time CPU time
LRCstats 1k 1,803 42 min 8 h 18 min
ELECTOR 1k 1,030 12 min 28 min
LRCstats 10k 13,484 4 h 51 min 70 h 38 min
ELECTOR 10k 3,091 13 min 29 min
LRCstats 100k - - -
ELECTOR 100k 12,231 28 min 1 h 11 min
LRCstats 1M - - -
ELECTOR 1M 24,881 2 h 44 min 11 h 05 min

Table 5. Evolution of ELECTOR and LRCstats runtime and memory
consumption according to the read length. The datasets were simulated
from the E. coli genome, with a 100x coverage, a 10% error rate, and fixed
read length of 1k bases, 10k bases, 100k bases, and 1M bases. The reads were
corrected by Canu, using default parameters.

Method HALC HG-CoLoR LoRDEC Canu Daccord MECAT
E. coli
Corrector 24min 45min 8min 12min 27min 52sec
LRCstats 4h58 5h02 4h37 4h05 4h20 2h30
ELECTOR 28min 13min 1h17 11min 12min 11min
S. cerevisiae
Corrector 1h19 4h32 28min 31min 1h15 2min
LRCstats 10h56 12h26 12h14 10h46 12h04 6h59
ELECTOR 1h55 1h07 4h59 32min 44min 32min
C. elegans
Corrector 5h59 88h56 6h01 4h33 - 22min
LRCstats 83h29 81h05 70h00 85h08 - -
ELECTOR 32h35 10h30 29h48 4h19 - 3h12

Table 6. Runtimes of ELECTOR and LRCstats on different datasets and
different correction tools. Both ELECTOR and LRCstats were launched
with 9 threads. The different correction methods were launched with 16
threads. The runtimes of the correctors are also included as a matter of
comparison. The fastest evaluation method is shown in bold for each case.
When the evaluation method is also quicker than the correction method itself,
it is underlined. Daccord could not be run on the C. elegans dataset, and
reported an error. LRCstats crashed while assessing the C. elegans dataset
corrected by MECAT.

Simulations for the validation of ELECTOR’s real data
mode
In order to validate ELECTOR’s real data mode, we ran
the following experiment. We used a simulated dataset, and
we assessed its correction using the two different modes
of ELECTOR: simulated and real data. First, we ran it
classically, by providing the simulation files as an input, so
that ELECTOR could retrieve the actual reference reads by
parsing the files. Second, we ran it by only providing the

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 9 — #9i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 9

Metric Uncorrected Corrected by Halc
Simulated Real Simualted Real

Processed bases 238,309,333 238,119,170 212,266,193 212,141,319
Error Rate 0.1403 0.1449 0.0042 0.0104
Recall (%) - - 0.9997 0.9938
Precision (%) - - 0.9959 0.9897
Insertions 28,772,841 26,796,500 100,874 90,737
Deletions 5,235,890 5,042,365 1,035,978 1,490,680
Substitutions 4,058,953 3,682,863 198,853 182,590
Trimmed/split - - 12,043 13,320
Mean missing size - - 577.5 896.0
Extended - - 71.0 39.0
Mean extension size - - 53.2 72.0
Low quality reads - - 160.0 152.0
Small reads - - 3436.0 3438.0

Uncorrected Corrected by Canu
Processed bases 244,560,743 244,402,568 229,555,492 229,403,697
Error Rate 0.1425 0.1442 0.0506 0.052
Recall (%) - - 0.9515 0.9499
Precision (%) - - 0.9495 0.9481
Insertions 30,090,583 28,452,967 12,252,413 10,965,458
Deletions 5,483,119 5,800,286 2,574,320 2,916,564
Substitutions 4,375,017 4,081,445 2,197,172 1,940,888
Trimmed/split - - 2216.0 4943.0
Mean missing size - - 35.1 74.7
Extended - - 178.0 169.0
Mean extension size - - 30.7 31.9
Low quality reads - - 43.0 42.0
Small reads - - 0.0 0.0

Table 7. Comparison of the results output by ELECTOR, using
simulated and real data modes. The two experiments were run on the same
S. cerevisiae dataset, using a hybrid corrector (HALC) and a self corrector
(Canu).

FASTA file of simulated reads as an input, so ELECTOR had
to retrieve the reference reads by aligning the uncorrected long
reads to the reference genome, as if they were not simulated.
We ran this experiment on the S. cerevisiae dataset. To further
validate ELECTOR’s behavior on real data, we assessed the
correction of both a hybrid corrector, HALC, and a self-
corrector, Canu. Results of these experiments are shown in
Table 7.

We observe that ELECTOR’s results are consistent, both
in simulated and real data mode. In particular, recall and
precision are very similar. The two modes display some
differences in the input uncorrected reads (as shown by the
amount of processed bases), that have an impact on the
differences observed between their results.This behavior is
due to the bias induced by the additional alignment step that
the real data mode requires. The main differences that appear
occur on metrics that are highly dependent on the alignment
results, such as the number of trimmed, split and extended
reads, and the sizes of these events; as well as indels and
substitutions counts.

Results on a real human dataset
To demonstrate ELECTOR’s results in a realistic scenario
for large genomes, we evaluate the correction of a real
human dataset. We report results, as well as runtime of the
evaluation, in Table 8. The reads were corrected with MECAT,
using default parameters, before running ELECTOR. Using
20 threads, we were able to obtain the results for the 650,771
corrected reads of the dataset in less than 19 hours. Results
reported by ELECTOR show that MECAT can correct human

reads with a 20% error rate with more than 90% of recall and
precision, which is consistent with the published results.

Uncorrected Corrected with MECAT
Processed bases 5,605,157,590 5,451,767,836
Recall(%) - 92.70
Precision(%) - 91.50
Error rate 0.1974 0.0861
Trimmed/split - 570,635
Mean missing size - 362.0
Extended - 275
Mean extension size - 62.4
Low quality reads - 4,279
Small reads - 356
Insertions 247,953,086 10,144,736
Deletions 746,165,024 473,239,036
Substitutions 162,822,923 7,521,389
Homopolymer ratio - 0.7570
Runtime - 18 h 27 min

Table 8. Evaluation of the correction of a real human dataset with
ELECTOR. The reads were corrected with MECAT, using default
parameters, before the evaluation. ELECTOR evaluated a total of 650,771
reads. Small reads are corrected reads which length is lower than 10% of the
original read. Low quality corrected reads are reads for which an insufficient
number of seeds was found during the segmentation process. Homopolymer
ratio is the ratio of homopolymer sizes in corrected vs reference. We reported
the wallclock time of the run, using 20 threads.

DISCUSSION

In ELECTOR, we propose a novel efficient algorithmic
approach of segmentation strategy for multiple sequence
alignment. We adapted this task for this original and specific
application of long reads comparison. New segmentation
strategies for MSA were recently proposed (Nogales, E.
G. et al. (2018). Fast and accurate large multiple sequence
alignments using root-to-leave regressive computation.
bioRxiv, 490235.). However, these methods are not
specifically designed for noisy long reads. On such data,
both the high error rates and lengths are troublesome
factors for the multiple sequence alignment computation.
In such a perspective, a generalization of our segmentation
strategy, allowing long reads multiple sequence alignments
of more than three sequences would be very interesting.
Such a generalization could indeed be relevant for critical
applications such as assembly, consensus or variant detection.

ELECTOR’s real data mode uses a prior alignment of the
reads to a reference genome, in order to retrieve the reference
versions of the reads. We demonstrated that ELECTOR’s
metrics in its real data mode remain highly similar to what
would be obtained in its simulated mode. However, we can
point out two limitations of ELECTOR. First, even if the
data can come from an actual sequencing experiment, a
reference genome needs to exist for the sequenced species,
in order to retrieve the reference reads, and thus perform the
evaluation. Second, we encourage users to be very cautious
about ELECTOR’s results on real data, especially when
looking at the number of trimmed, split, or extended reads and
at the sizes of such events. Indeed, these metrics are highly
dependent on the result of the alignment of the uncorrected
reads to the reference. These metrics can thus be subject

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 10 — #10i
i

i
i

i
i

i
i

10 Nucleic Acids Research, , Vol. , No. –

to errors, especially when aligning relatively short or highly
erroneous/chimeric reads, or reads coming from repeated
regions.

A future application is the evaluation of correction methods
directly targeted at RNA long reads sequencing. As shown in a
recent study (24), RNA long reads have specific requirements
that are not met by current methods, which calls for new
correctors in the future. ELECTOR could be coupled with
a reference transcriptome or a RNA long read simulator,
although, currently, such a simulation software does not exist
to our knowledge.

CONCLUSION

We presented ELECTOR, a tool that enables the evaluation
of self and hybrid long reads correction methods, and that
allows evaluating the behavior of a given correction tool
in a controlled situation. ELECTOR provides a wide range
of metrics that include base-wise computation of recall,
precision, error rates of corrected and uncorrected reads as
well as insertions, deletions and substitutions counts, and
homopolymers correction. In particular, we believe that recall
and precision are of prime interest to characterize a correction
tool behavior. Indeed, these metrics allows spotting specific
pitfalls, or undesired effects, that remain unclear when only
looking at the error rates of the corrected reads. ELECTOR
reports a text summary of its different metrics, along with
pdf and png versions, including plots of the key figures.
This allows users to easily integrate ELECTOR’s outputs into
reports.

Even though ELECTOR relies on multiple sequence
alignment techniques that can be very resource-consuming,
we were able to evaluate the behavior of a representative list of
state-of-the-art hybrid and self-correctors, ran on reads from
small bacterial to large mammal genomes. We also showed
that ELECTOR’s performances allow it to scale to very long
reads, displaying lengths up to 1M bases, with moderate
resource needs.

In particular, ELECTOR is typically faster than
most error correction methods. ELECTOR’s ability to
quickly handle real-world datasets with low memory
consumption is preeminently valuable when working on
long read exploitation routines, and represents a significant
improvement in comparison to the state-of-the-art.

The efficiency of ELECTOR relies on an innovative and
promising segmentation algorithm for multiple sequence
alignment of noisy long reads. This procedure drastically
reduces the time footprint of the multiple sequence alignment,
making it able to scale to very long sequences. We believe
this algorithm could be improved and applied to a broad range
of applications implying multiple sequence alignment of long,
noisy sequences.

ACKNOWLEDGEMENTS

We thank Pierre Marijon for his help with the Bioconda
integration. Part of this work was performed using the
computing resources of CRIANN (Normandy, France).

Conflict of interest statement. None declared.

REFERENCES

1. Gordon, D., Huddleston, J., Chaisson, M. J., Hill, C. M., Kronenberg,
Z. N., Munson, K. M., Malig, M., Raja, A., Fiddes, I., Hillier, L. W., et
al. (2016) Long-read sequence assembly of the gorilla genome. Science,
352(6281), aae0344.

2. Sedlazeck, F. J., Lee, H., Darby, C. A., and Schatz, M. C. (2018) Piercing
the dark matter: bioinformatics of long-range sequencing and mapping.
Nature Reviews Genetics, p. 1.

3. Laehnemann, D., Borkhardt, A., and McHardy, A. C. (2015) Denoising
DNA deep sequencing data-high-throughput sequencing errors and their
correction. Briefings in bioinformatics, 17(1), 154–179.

4. Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 1, 7.

5. Li, H. (2016) Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences. Bioinformatics, 32(14), 2103–2110.

6. La, S., Haghshenas, E., and Chauve, C. (2017) LRCstats, a tool for
evaluating long reads correction methods. Bioinformatics, 33(22), 3652–
3654.

7. Yang, X., Chockalingam, S. P., and Aluru, S. (2012) A survey of
error-correction methods for next-generation sequencing. Briefings in
bioinformatics, 14(1), 56–66.

8. Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A.,
Tyson, J. R., Beggs, A. D., Dilthey, A. T., Fiddes, I. T., et al. (2018)
Nanopore sequencing and assembly of a human genome with ultra-long
reads. Nature biotechnology, 36(4), 338.

9. Yang, C., Chu, J., Warren, R. L., and Birol, I. (2017) NanoSim:
nanopore sequence read simulator based on statistical characterization.
GigaScience, 6(4), 1–6.

10. Stöcker, B. K., Köster, J., and Rahmann, S. (2016) Simlord: Simulation
of long read data. Bioinformatics, 32(17), 2704–2706.

11. Lee, C., Grasso, C., and Sharlow, M. F. (2002) Multiple sequence
alignment using partial order graphs. Bioinformatics, 18(3), 452–464.

12. Delcher, A., Salzberg, S., and Phillippy, A. (2003) Using MUMmer to
identify similar regions in large sequence sets. Current Protocols in
Bioinformatics, Chapter 10.

13. Chaisson, M. J. and Tesler, G. (2012) Mapping single molecule
sequencing reads using basic local alignment with successive refinement
(BLASR): application and theory. BMC bioinformatics, 13(1), 238.

14. Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y.,
Audenaert, P., and Fostier, J. (2016) Jabba: hybrid error correction for
long sequencing reads. Algorithms for Molecular Biology, 11, 10.

15. Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti,
A., Lemainque, A., Wincker, P., and Aury, J.-M. (2015) Genome assembly
using Nanopore-guided long and error-free DNA reads. BMC genomics,
16(1), 327.

16. Ruan, J. Smartdenovo: Ultra-fast De Novo Assembler Using Long Noisy
Reads. https://github.com/ruanjue/smartdenovo (2017).

17. Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and
Phillippy, A. M. (2017) Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome research,
pp. gr–215087.

18. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich,
A. (2018) Versatile genome assembly evaluation with QUAST-LG.
Bioinformatics, 34(13), i142–i150.

19. Bao, E. and Lan, L. (2017) HALC: High throughput algorithm for long
read error correction. BMC bioinformatics, 18(1), 204.

20. Morisse, P., Lecroq, T., and Lefebvre, A. (2018) Hybrid correction
of highly noisy long reads using a variable-order de Bruijn graph.
Bioinformatics, 34(24), 4213–4222.

21. Salmela, L. and Rivals, E. (2014) LoRDEC: accurate and efficient long
read error correction. Bioinformatics, 30(24), 3506–3514.

22. Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Han, Y., Luo, F.,
and Xie, Z. (2017) MECAT: fast mapping, error correction, and de novo
assembly for single-molecule sequencing reads. Nature Methods, 14(11),
1072.

23. Fu, S., Wang, A., and Au, K. F. (2019) A comparative evaluation of hybrid
error correction methods for error-prone long reads. Genome Biology,
20(1), 26.

24. Lima, L., Marchet, C., Caboche, S., Da Silva, C., Istace, B., Aury, J.-
M., Touzet, H., and Chikhi, R. (2019) Comparative assessment of long-
read error correction software applied to Nanopore RNA-sequencing data.
Briefings in bioinformatics,.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://github.com/ruanjue/smartdenovo
https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 11 — #11i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 11

Figure 6. In this example, the read is corrected in two distinct parts. After reference and uncorrected sequences duplication, we have two distinct triplets. Large
gaps in the MSA (represented in red boxes), which lengths are over a given threshold, are identified. Only large gaps are considered as non-corrected regions,
in order to conserve smaller gaps that correspond to indels. Remaining regions (underlined in green) are considered as corrected. Then, the different corrected
regions are combined into a single MSA (bottom of the figure), and large gaps are identified once again. Recall, precision and correct base rate are computed on
the final corrected zone. The missing size in the corrected read is computed by counting the number of nucleotides in the reference read that are included in the
red window.

Figure 7. In this example, we show how the numbers of insertions, deletions, and substitutions are computed in the uncorrected and corrected reads. For each
scenario, one example is pictured. For instance, A deletion in the corrected read is shown in filled orange, the reference nucleotide is G and the uncorrected
nucleotide is G. Both the corrected and the uncorrected versions are compared base-to-base to the reference version in order to obtain these counts. Insertions,
deletions, and substitutions are not computed in parts of the MSA that correspond to extended, trimmed, split, or soft-clipped regions.

SUPPLEMENTARY MATERIAL

Dealing with split corrected sequences
In order to compute recall, precision and correct base rates
only on actually corrected parts, even if the correction did
produce some split reads, we designed a particular procedure
(Figure 6).

Metrics details
In Figures 7,8 we give further details on how metrics about
insertions, deletions and substitutions counts, as well as
homopolymers, are computed.

Assembly metrics In Table 12, we display metrics, runtime
and memory consumption for the assessment of the HALC
corrected reads on the S. cerevisiae dataset.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 12 — #12i
i

i
i

i
i

i
i

12 Nucleic Acids Research, , Vol. , No. –

ACTTGTTTGAAAAAA----TTTGTCAGAT

AAAAAAA---TTTGTCTGAT

.AAAAAAAAAAAT-GTCT--T

>T

Figure 8. Homopolymers are detected as mono-nucleic chains longer than a given threshold (6 in practice) in the reference read. In ELECTOR, we display the
ratio of the homopolymers size in the corrected reads over the reference reads. In this example, the ratio would be 6/7.

k size (max/min) 15/9
alignment scores (opening/insertion in gap) 10/51
min % of reference read size under which a corrected read is filtered out 10
min number of seeds under which a corrected read is filtered out 1
min size of the first/last window to start the segmented gap strategy 1000
min gap size to consider a sequence as split, trimmed or extended 20
min homopolymer size 5

Table 9. ELECTOR’s default parameters. 1 the alignment matrix coefficients are the same as those used in LRCstats.

Method HALC HG-CoLoR LoRDEC Canu daccord MECAT
E. coli
Error rate 0.000601 0.000593 0.000669 0.088525 0.004498 0.003833
Throughput 81,326,352 83,446,737 78,477,507 75,669,022 83,772,457 58,979,183
Deletions 17,460 23,767 10,419 1,251,059 72,547 162,261
Insertions 21,877 28,243 31,122 5,418,173 336,686 88,806
Substitutions 17,032 5,167 18,823 605,157 25,643 5,727
S. cerevisiae
Error rate 0.002261 0.002489 0.003188 0.069410 0.005680 0.004789
Throughput (bp) 214,152,119 219,316,138 200,136,164 229,825,812 222,425,242 162,381,984
Deletions 120,743 135,333 131,244 3,134,365 251,020 546,230
Insertions 215,507 330,042 332,031 12,942,568 1,039,957 294,352
Substitutions 221,646 164,871 267,378 1,591,650 165,735 44,178
C. elegans
Error Rate 0.006840 0.004653 0.007103 - - 0.003989
Throughput (bp) 1,661,088,722 1,718,478,426 1,348,377,102 - - 873,849,397
Deletions 2,666,673 2,200,448 2,086,491 - - 2,264,408
Insertions 5,498,619 5,170,424 4,707,673 - - 1,512,299
Substitutions 4,888,754 1,846,374 4,044,649 - - 128,984

Table 10. Statistics of the long reads after correction with the different methods, as reported by LRCstats. Daccord could not be run on the C. elegans dataset,
and reported an error, and LRCstats crashed on the C. elegans dataset corrected by Canu.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 13 — #13i
i

i
i

i
i

i
i

Nucleic Acids Research, , Vol. , No. – 13

Method HALC HG-CoLoR LoRDEC Canu daccord MECAT
E. coli
Throughput (bp) 81,199,351 84,089,814 77,969,503 86,443,218 83,773,362 58,979,203
Error Rate 0.0015 0.0007 0.0015 0.0524 0.0040 0.0052
Recall (%) 0.9999 1.0000 0.9999 0.9495 0.9988 0.9983
Precision (%) 0.9985 0.9993 0.9986 0.9476 0.9961 0.9949
Insertions 15,034 33,409 21,205 4,804,729 321,532 82,121
Deletions 115,973 28,955 128,344 1,011,985 75,627 267,547
Substitutions 13,764 3,147 17,896 841,679 33,860 7,575
Trimmed/split 3,816 498 4,786 764 119 6,304
Mean missing size 547.3 274.5 1,033.9 27.2 369.9 2,114.5
Extended 24 8,180 0 66 0 0
Mean extension size 31.1 71.1 0 27.4 0 0
Low quality reads 2 0 0 0 0 0
Small reads 254 4 737 0 4 0
S. cerevisiae
Throughput (bp) 212,266,193 219,744,436 188,228,237 229,555,492 222,050,951 162,057,920
Error Rate 0.0042 0.0030 0.0054 0.0506 0.0054 0.0066
Recall (%) 0.9997 0.9999 0.9995 0.9515 0.9986 0.9980
Precision (%) 0.9959 0.9971 0.9947 0.9495 0.9946 0.9936
Insertions 100,874 548,419 122,252 12,252,413 977,499 263,724
Deletions 1,035,978 339,174 1,385,989 2,574,320 470,101 975,507
Substitutions 198,853 79,127 229,925 2,197,172 200,541 52,975
Trimmed/split 12,043 4,562 22,470 2,216 991 16,034
Mean missing size 577.5 677.4 857.6 35.1 410.4 2,069.5
Extended 71 19,237 3 178 0 1
Mean extension size 53.2 72.5 1,285.3 30.7 0 23
Low quality reads 160 99 252 43 49 50
Small reads 3,436 496 22,811 0 54 0
C. elegans
Throughput (bp) 1,588,220,052 172,6223,265 1,154,508,245 1,873,188,109 - 870,965,775
Error Rate 0.0153 0.0065 0.0126 0.0496 - 0.0065
Recall (%) 0.9989 0.9997 0.9989 0.9527 - 0.9982
Precision (%) 0.9850 0.9936 0.9875 0.9505 - 0.9936
Insertions 2,520,363 5,156,404 1,584,355 97,517,920 - 1,566,201
Deletions 35,970,722 9,986,160 23,642,857 20,233,048 - 5,379,870
Substitutions 2,919,936 775,253 1,845,645 17,594,481 - 139,668
Trimmed/split 153,855 71,079 210,051 14,407 - 120,325
Mean missing size 777.2 866.3 1,350.9 29.5 - 2,320.8
Extended 772 140,791 30 1,462 - 41
Mean extension size 40.9 72.2 156.9 32.5 - 354.7
Low quality reads 2,582 621 1,966 305 - 583
Small reads 170,934 8,849 474,725 0 - 1

Table 11. Statistics of the long reads after correction with the different methods, as reported by ELECTOR. Daccord could not be run on the C. elegans dataset,
and reported an error.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


“output” — 2019/9/24 — 18:46 — page 14 — #14i
i

i
i

i
i

i
i

14 Nucleic Acids Research, , Vol. , No. –

Remapping
Number of reads 38,926
Number of bases 214,233,733
Average length 5,504
Aligned reads (%) 99.7971
Average identity (%) 99.4886
Genome coverage (%) 98.9989
Assembly
Number of contigs 168
Aligned contigs 168
Number of breakpoints 5
NGA50 94,358
NGA75 55,321
Genome coverage (%) 91.7579
Time 3 min
Memory (MB) 2,646

Table 12. Metrics reported by the remapping and assembly module of ELECTOR, on the S. cerevisiae dataset, corrected with HALC.

Tool Error rate (%) Memory (MB) CPU time
LRCstats 1 13,833 147 h 20 min
ELECTOR 1 3,899 41 min
LRCstats 5 13,109 142 h 12 min
ELECTOR 5 3,433 41 min
LRCstats 10 12,942 140 h 5 min
ELECTOR 10 3,097 43 min
LRCstats 15 12,484 122 h 4 min
ELECTOR 15 2,837 42 min

Table 13. Evolution of ELECTOR’s and LRCstats’ runtime and memory consumption according to the error rate. The datasets were simulated from the E. coli
genome, with a 50x coverage, a fixed read length of 10 kbp and error rates of 1, 5, 10 and 15%. The reads were corrected by MECAT, using default parameters.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/

	ELECTOR: Evaluator for long reads correction methods
	Introduction
	Material and methods
	Results
	DISCUSSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


