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Abstract 12 

 13 

Neural computation, which relies on the active storage and sharing of information, 14 

occurs within large neuron networks in the highly dynamic context of varying 15 

brain states. Whether such functions are performed by specific subsets of neurons 16 

and whether they occur in specific dynamical regimes remains poorly understood. 17 

Using high density recordings in the hippocampus, medial entorhinal and medial 18 

prefrontal cortex of the rat, we identify computing substates, or discrete epochs, 19 

in which specific computing hub neurons perform well defined storage and 20 

sharing operations in a brain state-dependent manner. We retrieve a multiplicity 21 

of distinct computing substates within each global brain state, such as REM and 22 

nonREM sleep. Half of recorded neurons act as computing hubs in at least one 23 

substate, suggesting that functional roles are not firmly hardwired but 24 
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 2 

dynamically reassigned at the second timescale. We identify sequences of substates 25 

whose temporal organization is dynamic and stands between order and disorder. 26 

We propose that global brain states constrain the language of neuronal 27 

computations by regulating the syntactic complexity of these substate sequences. 28 

 29 

Information processing in the brain can be approached on three different levels: 30 

biophysical, algorithmic and behavioral (1). The algorithmic level, which remains the 31 

least understood, describes the way in which emergent functional computations can be 32 

decomposed into simpler processing steps, with architectures mixing serial and 33 

massively parallel aspects (2). At the lowest level of individual system components - 34 

here, in single neurons, such building blocks of distributed information processing can 35 

be modeled as primitive operations of storing, transferring, or non-linearly integrating 36 

information streams (3). 37 

In resting state conditions, both BOLD and EEG signals are characterized by discrete 38 

epochs of functional connectivity or topographical stability, defined as resting state 39 

networks and microstates, respectively (4-5). The transitions between these large-scale 40 

epochs are neither periodic nor random but occur through a not yet understood syntax, 41 

which is fractal and complex (5). Does such organization at the macroscopic scale 42 

(whole brain and networks of networks for resting state networks and microstates, 43 

respectively) also exist at the microscopic scale? Said differently, is neuronal activity 44 

at the microcircuit level organized in discrete epochs associated to different “styles” of 45 

information processing? Our first goal is to determine whether information processing 46 

at the local neuronal circuit level is structured into discrete sequences of substates, and 47 

whether such sequences have an observable syntax, whose complexity could be a 48 

hallmark of computation. Here we focus on low-level computing operations, performed 49 

by individual neurons such as basic information storage and sharing (6-7). To reduce 50 
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external perturbations, such as sensory inputs, and to establish if primitive processing 51 

operations and their temporal sequences are brain state-dependent, we study two 52 

conditions: anesthesia and natural sleep, which are characterized by alternating stable 53 

brains states, theta (THE)/slow oscillations (SO) and rapid eye movement 54 

(REM)/nonREM sleep, respectively. We consider the CA1 region of the hippocampus, 55 

the medial entorhinal cortex (mEC) and the medial prefrontal cortex (mPFC) to 56 

determine whether algorithmic properties are shared between regions with different 57 

cytoarchitectures. 58 

The second goal is to determine whether primitive processing operations are 59 

localized, or on the contrary, distributed within the microcircuit as proposed for 60 

attractor neural networks (8) and liquid state machines (9). This raises two key 61 

questions: Are certain operations driven by a few key neurons, similar to hub cells in a 62 

rich club architecture (10)? and Do neurons have pre-determined computing roles, such 63 

as ‘sharer’ or ‘storer’ of information’, as well as rigidly prescribed partners in their 64 

functional interactions? Said differently - is information routed through a hardwired 65 

‘neuronal switchboard system’ like in early days of telephony? Or dynamically via 66 

different addressable nodes like in decentralized peer-to-peer services? 67 

Here we demonstrate the existence of a multiplicity of distinct computing substates 68 

at the microcircuit level within each of the probed global brain states in both anesthesia 69 

and natural sleep. The low-level algorithmic roles played by individual neurons change 70 

from one substate to the other and appear largely independent from the underlying 71 

cytoarchitecture, with roughly half of the recorded neurons acting as transient 72 

computing hubs. Furthermore, we reveal complexity not only at the level of information 73 

processing within each substate but also at the level of how substates are organized into 74 

temporal sequences, which are neither regularly predictable nor fully random. Substate 75 
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sequences display an elaborate syntax in all the probed anatomical regions, whose 76 

complexity is systematically modulated by changes in global brain states. 77 

Taken together, our findings suggest a more distributed and less hierarchical style of 78 

information processing in neuronal microcircuits, more akin to emergent liquid state 79 

computation than to pre-programmed processing pipelines.  80 

 81 

RESULTS 82 

Analysis design 83 

Neurons were recorded simultaneously from the CA1 region of the hippocampus 84 

and the medial entorhinal cortex (mEC) under anesthesia (18 recordings from 16 rats), 85 

and from the CA1 region and the medial prefrontal cortex (mPFC) during natural sleep 86 

(6 recordings from 3 rats, see Figures 1A, S1 and S2 for more details on recordings). 87 

We focus on two elementary processing functions: information storage, i.e. how much 88 

information a neuron buffers over time that it has previously conveyed, as measured by 89 

the active information storage (3); and information sharing, i.e. how much a neuron’s 90 

activity information content is made available to other neurons, as measured by mutual 91 

information (see e.g. in 7). We use the term feature to discuss the metrics we use; i.e. 92 

firing, information storage or sharing (Figure 1B-C). We use the same analysis design 93 

for all features. The FeatureVector(ta) contains the values for the descriptive 94 

features as measured in window ta (Figure 1B). For example, for firing features, if 20 95 

cells are recorded, FeatureVector(ta) contains 20 values, representing the firing 96 

density of each neuron during window ta. We first correlate feature vectors for a given 97 

window pair (ta, tb). Here, a high correlation value means that the two feature vectors 98 

are very similar to one another, i.e. that the features measured at ta are also found at tb. 99 

After, we build a feature similarity matrix, a collection of correlation values between 100 

feature vectors for all window pairs, organized in time (Figure 1D). A block along the 101 
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diagonal indicates a stable state for a given feature, e.g., a period over which units fire, 102 

store or share information in a consistently preserved pattern. The axes of the similarity 103 

matrix represent time, and repetitions of a block structure along a horizontal or vertical 104 

line mean that a stable state for a given feature is reoccurring over time. We then use a 105 

simple clustering technique to extract different stable states, which we call substates, 106 

and display their switching behavior during the recording session (Figure 1D). Finally, 107 

we define computing hubs as neurons that more heavily participate to the buffering 108 

(storage hubs) or the funneling (sharing hubs) of information streams (Figure 1D, see 109 

Material and Methods). This notion of computing hub generalizes previously 110 

introduced notions of “hubness” (25, 26) beyond the ability to synchronize firing 111 

toward more general types of influence on information processing. 112 

 113 

Identification of brain global states 114 

Unsupervised cluster analysis of the spectral features of the fields recorded in the 115 

various brain regions allowed a clear identification of typical global oscillatory patterns 116 

(Figure S3), which we call global brain states. In the following, all brain states are 117 

identified by the clustering analysis of field recordings performed in the CA1 region 118 

(stratum oriens to stratum lacunosum moleculare). Unsupervised clustering identified 119 

two states for anesthesia corresponding to epochs dominated by slow (SO state) and 120 

theta (THE state) oscillations; and two states during sleep corresponding to REM vs 121 

nonREM episodes.  122 

 123 

Brain state-dependent firing substates 124 

As subsets of cells tend to fire spontaneously together in stereotypical patterns (11-125 

12), we first analyzed neuronal firing assemblies. Figure S4 shows that the firing rate, 126 

the burst index and entrainment by the phase of the ongoing oscillations were brain 127 
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region- and brain state-dependent as previously reported (13-14). A simple visual 128 

inspection of firing behavior revealed the probable existence of different firing sets, as 129 

some neurons tended to fire together during certain epochs; with these epochs repeating 130 

themselves over time (Figure S5). To quantify this observation, we constructed the 131 

feature vectors Firing(ta), whose entries are given by the average firing rate of each 132 

neuron within the window of analysis ta. The complex block structure of the similarity 133 

matrix revealed a repertoire of state transitions much richer than the one associated to 134 

global brain states (Figure 2). In this example, unsupervised clustering revealed a total 135 

of six firing substates in mEC (Figure 2A) and five in mPFC (Figure 2D) during THE 136 

and REM, respectively, for the two animals. Figure 2B demonstrates that a given brain 137 

state was characterized by the switching between different firing substates. Figure 2E 138 

shows that a subset of firing substates was shared between brain states, and importantly 139 

that the switch from one firing substate state to another did not necessarily coincide 140 

with a change in the brain global state (and vice versa). Quantification over all 141 

recordings revealed that firing substates occurred 87% of the time during either one of 142 

the possible global brain states (Figures 2C and 2F). Substates were found in the mEC, 143 

CA1 and mPFC and we found an average of ~5 substates for all brain regions and brain 144 

states (Table 1). These results reveal that, although field recordings show stereotyped 145 

oscillatory behavior during a given brain state, the firing behavior of neurons display a 146 

richer dynamic repertoire. Their activity is compartmentalized in a small number of 147 

firing substates, with discrete switching events from one substate to another. The firing 148 

substates are brain state and brain region specific, and they are not strictly entrained by 149 

the global oscillatory state. 150 

 151 

 152 

 153 
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Storage of information is dynamic within a brain state 154 

At any given time, neuronal activity conveys an amount of information that can be 155 

measured by Shannon entropy. We first focused on active information storage, which 156 

measures the fraction of information carried by a neuron i at a time t that was present 157 

in the past activity history of i itself (Figure S6A). For storage features, we extract 158 

several substates (6 for the mEC in the animal shown in Figure 3A, and 7 for CA1 in 159 

the animal shown in Figure 3D), with an average of ~4 states across all animals (Table 160 

1). As before, there was no strict alignment between brain state transitions and storage 161 

substate transitions (Figures 3A, B and C, E). Yet, brain state specificity of storage 162 

states was 80% for all regions (Figures 3C and F and Table 1). 163 

Under anesthesia, the absolute storage values were stronger in mEC than in CA1, 164 

particularly in layers 3 and 5 of mEC (Figure S7). During natural sleep, however, 165 

storage values for CA1 were two orders of magnitude larger than during anesthesia and 166 

were as strong as in mPFC (Figure S7). Storage tended to be weaker for all probed 167 

regions and layers in THE with respect to SO during anesthesia, but not during natural 168 

sleep (Figure S7). Therefore, information storage is dynamically distributed in discrete 169 

substates and is brain state- and region-dependent. In particular, the involvement in 170 

storage of a neuron could vary substantially along time without being necessarily 171 

paralleled by a comparable change in firing rate (Figures 3B and 3E). 172 

 173 

Information sharing is dynamic within a brain state 174 

A primitive processing operation complementary to information storage is 175 

information sharing, providing a pseudo-directed metric of functional connectivity 176 

between any two circuit units (7). For each neuron i we quantified both “shared-in” (i 177 

acts as a sharing target, with information shared from j neurons’ past activity, Figure 178 

S6B) and “shared-out” information (i acts as a sharing source and information is shared 179 
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 8 

to j neurons’ future activity). We first constructed the feature vector Sharing(ta) 180 

containing the total amount of information funneled through each given neuron 181 

(integrated in- and out-sharing strengths, represented by big arrows in Figure 4A), 182 

irrespective of whom the information was being shared with. Since in- and out-sharing 183 

strengths were strongly correlated (average Pearson correlation >0.9), we ignored the 184 

distinction between in- and out-sharing and speak generically of sharing substates. 185 

Representative sharing similarity matrices and state sequences are shown in Figure 4B 186 

(top) for mEC during anesthesia and mPFC during sleep and in Figure S8 for CA1. 187 

Here, we studied only information sharing within regions, because the number of pairs 188 

of simultaneous units in different regions that showed significant sharing was too small 189 

to reach robust conclusions. We found ~4 sharing substates on average across animals. 190 

Sharing states displayed an 86% specificity for a given brain state (Figure 4D, Table 191 

1). 192 

During anesthesia, we measured a stronger absolute sharing values in CA1 than in 193 

mEC, a pattern reversed with respect to storage values, particularly in stratum radiatum 194 

(SR) and stratum pyramidale (SP) of CA1, even though mEC layer 5 had a sharing 195 

strength comparable to CA1s SR and SP (Figure S9). During natural sleep, the 196 

participation to information sharing of SO in CA1 increased by an order of magnitude 197 

and was as large as the one of mPFC, notably layer 4 (Figure S9). As for storage, the 198 

involvement of a neuron in sharing could vary along time even without corresponding 199 

variations of its firing rate (Figures S8B and S8E). 200 

 201 

Sharing assemblies are “liquid”  202 

The previous analysis is focused on sharing strengths at the single cell level. We then 203 

determined with which neurons sharing cells were exchanging information, i.e. the 204 

detailed network neighborhood of sharing, or sharing assembly (cartoon networks in 205 
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Figure 4A). Two striking features were apparent. First, both the block structure of the 206 

sharing assemblies and the state transition sequences are nearly matching the sharing 207 

strength ones (Figure 4B), as evidenced by a relative mutual information value of 98% 208 

on average. Second, in contrast to sharing strengths, the blocks in the sharing assembly 209 

similarity matrix were of a light blue color, indicating a strong variability of sharing 210 

assemblies within a given substate. This phenomenon was quantified by liquidity 211 

analysis, with liquidity being a measure bounded between 0 and 1, where a value of 0 212 

represents an absence of internal variability within a substate and a value of 1 213 

representing completely random variability (see Materials and Methods). The liquidity 214 

values of sharing assemblies for all sharing substates throughout all recordings lied 215 

below the diagonal (Figure 4C). This result can be better understood considering the 216 

toy examples of Figure 4A. The cartoons represent snapshots at three different, non-217 

sequential times of a given hub neuron in its sharing network environment. The three 218 

considered time frames all fall within the same substate, therefore the overall in- and 219 

out-sharing strengths, represented by the orange and grey arrows respectively, are 220 

constant (meaning stability). However, the sources and targets of the funneled 221 

information can widely vary in time (meaning instability). Although the sum of in-222 

going and out-going information remained overall constant within each sharing 223 

substate, information was shared over different cell assemblies from one time period to 224 

the next. All three brain regions displayed remarkable liquidity in sharing assemblies 225 

through all brain states, and liquidity was brain region- and brain state-specific (Figure 226 

4C). As reported in Table 2, the largest liquidity was observed for mPFC sharing 227 

assemblies during natural sleep (~94%). CA1 displayed a substantial reduction in the 228 

liquidity of sharing assemblies when moving from anesthesia to sleep (dropping from 229 

~86% in anesthesia to ~57% in sleep). Finally, as for the other features, information 230 

sharing substates were brain state specific (Figure 4D). 231 
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 232 

Loose coordination of substate transitions between brain regions 233 

Single units were recorded simultaneously in two regions (CA1 and mEC; CA1 and 234 

mPFC). We thus assessed whether substate transition events in one region matched the 235 

transition in the other region. We computed the relative mutual information between 236 

substate sequences of a given type (e.g. firing, storage or sharing) observed in one 237 

region and the other. We did not find significant differences for these measures across 238 

the three features (firing, storage, sharing) and therefore pooled them together. The 239 

median relative mutual information between substate transitions in the probed cortical 240 

and hippocampal regions was 18% during anesthesia (between mEC and CA1) and 42% 241 

during natural sleep (between mPFC and CA1). These levels of coordination between 242 

substate sequences denoted a lack of perfect parallelism between transitions in the 243 

different regions, but they were still well above chance level (Figure S10). Thus, 244 

substate dynamics display some coordination between CA1 and mPFC during sleep 245 

(Table 3), which is in keeping with the fact that information exchange occurs between 246 

the two regions during sleep (15). The weak coordination under anesthesia suggests that 247 

circuits may operate more independently from one another in this condition (but still 248 

not completely). 249 

 250 

A large fraction of cells can act as computing hubs 251 

Functional, effective, and anatomical hub neurons (mostly GABAergic) have been 252 

identified in the brain (16). We complement the concept, introducing storage and 253 

sharing hubs, i.e. neurons displaying an elevated storage or sharing values, respectively 254 

(see Methods). In contrast to the sparsity of functional, effective, and anatomical hubs, 255 

a large fraction of cells acted as a computing hub in at least one substate, as illustrated 256 

in Figure 5A. Computing hubs could be recruited across all probed regions and layer 257 
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locations (Figure 5B and C). As summarized in Figure 5B, the probability of serving as 258 

computing hub – storage or sharing confounded – was of 40% or more on average for 259 

almost all layers, apart from the, possibly under-sampled, stratum lacunosum 260 

moleculare and stratum radiatum in CA1. We observed a general tendency for 261 

inhibitory interneurons to have a larger probability to serve as computing hubs than for 262 

excitatory cells. This tendency was particularly strong for cortical regions and was 263 

notably significant in layer 5 of mEC (during anesthesia) and layer 3 of mPFC (during 264 

sleep), for which the probabilities of inhibitory interneurons serving as computing hub 265 

in at least one substate approached 70%. The probability of serving as a computing hub 266 

at least once was relatively similar when evaluated separately for storage or sharing. In 267 

particular, 43% of the neurons serving as a storage hub in a substate could serve as a 268 

sharing hub in another substate, but in general, not simultaneously as only 12% of the 269 

neurons were “multi-function” hubs. 270 

Despite this large flexibility in the dynamic assignment of hub roles, the notion of 271 

hub continued to make sense within each individual substate. Within a substate, on 272 

average only ~9% of cells acted as hub (storage or sharing pooled), so still a strict “elite” 273 

(although not a permanent one but appointed just within the associated state). The set 274 

of recruited hubs constituted thus at each time a characteristic fingerprint of the active 275 

substates (with only 4% of the substates being “hubless”).   276 

We also studied the probability that a computing hub emerged in a given layer 277 

(Figure 5C). During anesthesia, all probed layers of CA1 and mEC showed a ~20% 278 

uniform probability for a storage and sharing computing hub to emerge. Natural sleep 279 

was associated to an enhanced recruitment of computing hubs. The probabilities of hub 280 

emergence exceeded ~40% for storage hubs in layer 5 of mPFC and in SP of CA1. The 281 

analysis of deep or superficial CA1 SP principal neurons, which are involved in 282 

different microcircuits (17-18), did not reveal an intra-layer distribution of computing 283 
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hubs (not shown). These results suggest that the probability that a neuron serves as 284 

computing hub is not correlated to its anatomical region or layer location. 285 

Finally, we tested whether computing hubs were characterized by high firing rates. 286 

Using the same procedure utilized to extract computing hubs, we found that 62% of the 287 

cells were high-firing at least in one firing substate with 70% being putative 288 

interneurons. Remarkably, there was a poor overlap between computing hubs and high 289 

firing rate cells. Table 3 already shows that storage and sharing substate sequences are 290 

only loosely coordinated with firing substate sequences (cf. as well firing rate 291 

information in Figures 3B-E and S8B-E). Furthermore, being a high firing rate cell does 292 

not guarantee that this cell will also be a computational hub (or the other way around). 293 

This is also shown in Figure 5C, where the yellow levels over the histogram bars 294 

indicate the fraction of storage and sharing hubs which also happen to be high firing 295 

cells. We conclude that a storage hub can have a normal or even smaller than average 296 

firing rate . 297 

 298 

 299 

The syntax of substate sequences is complex and brain state-dependent 300 

Collectively, our results demonstrate the existence of substate sequences in three 301 

different brain regions during anesthesia and natural sleep. Using a linguistics analogy 302 

(Figure S11A), we assign a letter to each identified substate (represented by a color in 303 

the figures). The temporal sequence of substates thus translates into a stream of letters. 304 

However, if we consider the three features simultaneously, we obtain a stream of 3 letter 305 

words (Figure S11B). All combinations of possible letters from our 3 features define 306 

the dictionary of words that can be expressed. We represent a stream of words as a 307 

switching table (Figure 6A). This allows us to explore two aspects of the “neuronal 308 

language”: the statistics of the words and the statistics of the transitions between the 309 
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words (the syntax). We found that the words were mostly (85%) brain state-specific, as 310 

expected since the substates letters are already brain state-specific (cf. Figures 3C and 311 

F, 4D). Although the syntactic rules structuring the production of words are unknown, 312 

we can quantify their complexity. Algorithmic information theory (19), the minimum 313 

description length framework (20) and the Lempel-Ziv method (21) link complexity to 314 

the notion of compressibility. As illustrated in Figure 6B, an ordered, regular switching 315 

table requires a short description, as a small list of instructions can be written to 316 

reproduce the table (e.g. word D 100 times, followed by word B 88 times, etc.). At the 317 

opposite extreme, a completely random switching table would need a lengthy 318 

exhaustive description -as many instructions as the length of the table itself. A complex 319 

switching table stands between regularity and randomness and requires a description 320 

that is compressed, longer than a regular table but shorter than a random table. 321 

Figure 6C shows that the syntax was complex (between 0 and 1) for all brain regions 322 

and brain states and that THE/REM states were more complex than SO/nonREM states.  323 

We added two recordings from mPFC under anesthesia for comparison. Figure 6D 324 

shows that the measured complexity was significantly larger than the upper threshold 325 

for regularity and significantly smaller than the lower threshold for randomness 326 

(p<0.05, Bonferroni Corrected, direct c.i. comparison). 327 

Finally, we assessed whether switching from SO to THE or from nonREM to REM 328 

increased the complexity. As shown in Figure 6E, the tendency was toward an increase 329 

of complexity in all cases, from +30% for mEC during anesthesia and mPFC during 330 

anesthesia or sleep to roughly +10% for CA1 during anesthesia or sleep. This relative 331 

increase was always significant (p<0.05, Bonferroni Corrected, c.i. comparison) apart 332 

from CA1, for which two recordings displayed increased complexity during nonREM 333 

sleep. We conclude that the syntax is complex and brain state-dependent. 334 

 335 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2019. ; https://doi.org/10.1101/513424doi: bioRxiv preprint 

https://doi.org/10.1101/513424
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

What determines complexity? 336 

We then investigated which factors contribute to complexity. Different durations of 337 

words may account for variations in complexity. Although word dwell times were 338 

different by one order of magnitude between anesthesia and sleep with median ~18 min 339 

(~10 min 1st quartile, ~28 min 3rd quartile) during anesthesia and ~1.4 min (~1 min 1st 340 

quartile, ~2.1 min 3rd quartile) during sleep, complexity values for anesthesia and 341 

natural sleep were similar.  342 

We also evaluated the burstiness coefficient, B (22), of the stream of words. This 343 

coefficient ranged between -1 ≤ B ≤ 1, with B = -1 corresponding to a perfectly periodic 344 

stream of words, B = 0 to a Poisson train and B = 1 to a maximally bursting stream. We 345 

found a positive correlation between burstiness and complexity (Figure S11A, p<0.01, 346 

Bootstrap c.i). Burstiness was greater during THE/REM (0.15) than during 347 

SO/nonREM (0.09 p = 0.03, Kruskal-Wallis test), which may contribute to the 348 

increased complexity found during THE/REM.   349 

The richness of the dictionary also affects complexity (21). We therefore evaluated 350 

the Used Dictionary Fraction, i.e. the ratio between the number of observed words and 351 

the maximum theoretical number of words, i.e. the dictionary. We find a significant 352 

positive correlation between the Used Dictionary Fraction and complexity (Figure 353 

S12B, p<0.05, Bootstrap c.i). The richness of the dictionary was greater during 354 

THE/REM (21%) than during SO/nonREM (14%, p = 0.032, Kruskal-Wallis test), 355 

which may also contribute to the increased complexity found during THE/REM. 356 

A bivariate linear regression of complexity over burstiness and Used Dictionary 357 

Fraction revealed a correlation of 0.62 (p<0.05, Bootstrap c.i) between predicted and 358 

observed complexity, demonstrating that complexity is largely explained by burstiness 359 

and the Used Dictionary Fraction. 360 
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Finally, we verified that our results did not depend on the measure of complexity. 361 

Redoing analyses using Lempel-Ziv complexity (21), which was previously used to 362 

analyze neural activity (23-24), lead to qualitatively equivalent results. Lempel-Ziv 363 

complexity also strongly correlated with our measure of complexity (Figure S11C 364 

Pearson correlation 0.84, p<0.001, bootstrap c.i.). 365 

 366 

Discussion 367 

Here we demonstrate two levels of organization of brain activity. At the single cell 368 

level, we find that a large proportion of recorded neurons act as computing hubs during 369 

discrete time epochs (substates) within a given stable brain state (e.g. REM and 370 

nonREM). At the microcircuit level, we find a rich repertoire of computational substates 371 

characterized by temporally structured sequences, whose complexity was modulated by 372 

the global brain oscillatory state. Such type of organization was shared between three 373 

anatomical different brain regions: the hippocampus, the medial entorhinal cortex and 374 

the medial prefrontal cortex. 375 

 376 

The “hubness” of a neuron may be determined by fixed features, e.g. an exceptional 377 

extension of axonal arborizations (25); a suitable location in the circuit wiring diagram 378 

facilitating the control of synchronization (26); or yet, some developmental “droit 379 

d’aînesse” (16). During natural sleep and anesthesia, however, we find that >40% of 380 

the recorded neurons act as a computational hub during at least one substate, meaning 381 

that computing hubs form a rather open and not so elitist club. The computational 382 

hubness is dynamic - a neuron acting as a hub in a given substate may not be a hub in 383 

a different substate or may swap its nature (e.g. converting from a storage to a sharing 384 

hub). The stronger tendency for putative inhibitory cells to serve as hubs (>70%) is in 385 

keeping with the known role of GABAergic cells in orchestrating network activity (16, 386 
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25-26). Furthermore, because our analysis was limited to few brain states, the 387 

proportion of putative principal and GABA neurons acting as computational hubs may 388 

even be an underestimate. Perhaps all neurons act as computational hubs during specific 389 

brain states (including exploration and quiet awakening). 390 

 391 

That hubs share information with ever changing source and target neurons is in 392 

apparent contradiction with the existence of sequential firing of cell assemblies in 393 

cortical and hippocampal circuits, including during nonREM sleep (11,16, 27-37). Our 394 

information-theoretical analyses require the use of at least 5 s long sliding windows, 395 

which is not sufficient to detect fast sequences of activation, as replay events occur 396 

within 500 ms (38). Interestingly, replay sequences are not strictly stable as they 397 

demonstrate inter-cycle variability (39), which may reflect liquidity. The liquid nature 398 

of information sharing suggests that neuronal activity is not frozen at fixed-point 399 

attractors as in classic artificial neural networks (40) but may be sampling the broad 400 

basin of attraction of shallow attractors (8) or higher-dimensional manifolds “at the 401 

edge of chaos”, as found in reservoir computing schemes (41-43). In this case, 402 

information is shared across extremely volatile assemblies within a given substate. The 403 

assembly dynamics are thus “liquid” – i.e. neither frozen into crystallized patterns, nor 404 

fully random as in a gas – and are only mildly constrained to robustly maintain the 405 

computational role of sharing hubs while preserving entropy of firing patterns, and 406 

therefore bandwidth for local computations (44). This preservation of hub function in a 407 

heterogeneous and reconfiguring circuit can be seen as a form of homeostasis of the 408 

computing role, generalizing the concept of homeostasis of circuit behavior evidenced 409 

in invertebrate systems (45-46). While this latter homeostasis preserves the functional 410 

level, in our case homeostasis would extend down to the algorithmic level, referring to 411 

the three-level hierarchy proposed by Marr & Poggio (1).  412 
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 413 

During a “stable” behavior such as resting state, analysis of BOLD and EEG signals 414 

consistently revealed the presence of temporal sequences of resting state networks and 415 

topographical microstates, respectively (4-5). Here, we find that an analogous switching 416 

between discrete states occurs at a completely different scale of microcircuits. During 417 

a “stable” oscillatory regime (e.g. theta rhythm), neuronal computation is indeed 418 

organized in temporal sequences of computational substates. Interestingly, while field 419 

oscillations constrain neuronal firing and neuronal firing produces field oscillations 420 

(47), we find only a loose match between the switch from one oscillatory mode to the 421 

other and the switch from one substate to the other. Transitions between global states –422 

related to the scale of mesoscale collective dynamics– sometimes anticipate and 423 

sometimes follow transitions between firing, storage or sharing substates –related to the 424 

scale of microscopic firing dynamics–, as if dynamic changes occurring at either one of 425 

the scales had destabilizing effects on the dynamics at the other scale (in both directions, 426 

meso- to micro-scale and micro-to meso-scale). The behavior of CA1 cells may reflect 427 

specific internal dynamics, not tightly controlled by the CA1 local field which mostly 428 

reflects synaptic inputs originating from outside the CA1 region. Importantly, the 429 

repertoire of computing substates is brain state specific. Beyond proposals that 430 

oscillations are central for the routing of information between regions (47-48), we thus 431 

suggest here that global oscillatory states could also organize information processing 432 

within local regions by enforcing the use of their own state-specific “languages” 433 

(expressed in terms of combinations of alternative intrinsic substates). 434 

 435 

Signatures of computation can be identified even if the function and meaning of the 436 

computation are unknown and even when system states are sampled partially, as it is 437 

the case for the present study. This allowed us to extract a symbolic representation of 438 
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substates (letters) for a given feature, which make words when considering several 439 

features. The syntax of the substate word sequences is complex, standing between order 440 

and randomness (as it was already the case for the sharing dynamics within each 441 

substate). The capacity to generate complex sequences of patterns is a hallmark of self-442 

organizing systems and has been associated to their emergent potential to perform 443 

universal computations (70).  Moreover, dynamics at the “edge of chaos” confer 444 

advantages for information processing (41-43). 445 

 446 

Importantly, we find that the syntactic complexity of substate sequences is brain 447 

state-dependent as it was the case for the substate dictionaries, and more complex 448 

during theta oscillations/REM sleep than during slow oscillations/nonREM sleep, 449 

suggesting an increased load of computation in the former brain state. Remarkably, the 450 

temporal complexity of activation sequences was also shown to be modulated by brain 451 

states at the macro-scale level of whole-brain dynamics (49). In keeping with the view 452 

that slow/theta oscillations measured during anesthesia share general properties with 453 

nonREM/REM sleep (50-52), we found similar rules of organization in terms of 454 

substate sequences and their complexity, despite the fact that the word dwell times in 455 

anesthesia are one order of magnitude greater than during natural sleep. We speculate 456 

that the nature of the undergoing oscillation (slow vs theta) constrains the repertoire of 457 

words used and their syntax, modulating the type of computation performed by the 458 

recruitment of varying computing hubs. Sleep, oscillatory patterns, and neuronal firing 459 

are altered in numerous neurological disorders, including epilepsy (18, 53-56) and 460 

therefore it will be important to assess whether the repertoire of substates and the syntax 461 

are likewise affected.  462 

 463 
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In conclusion, our results reveal a rich algorithmic-level organization of brain 464 

computations during natural sleep and anesthesia, which combines a complex 465 

combinatorics of discrete states with the flexibility provided by liquidly reconfiguring 466 

assemblies. While we cannot yet prove that this substate dynamics is functionally 467 

relevant, it has the potential to serve as a substrate for previously undisclosed 468 

computations. The next aim will be to perform the similar analysis during specific 469 

behavioral tasks, such as goal-driven maze navigation. Words and/or their sequence 470 

may sign specific cognitive processes. The fact that the algorithmic instructions and 471 

primitive processing operations are similar in three brain regions with different 472 

architectural organizations suggests the existence of a basic architecture for low-level 473 

computations shared by diverse neuronal circuits. 474 
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 672 

Tables 673 

Table 1 – Number of states and their oscillatory mode specificity 674 

 675 

State type Oscillatory mode specificity Median # states 

Global spectral states 1.0 2 

Firing substates 0.88 (0.78, 0.95) 5 

Storage substates 0.80 (0.69, 0.88) 4 

Sharing substates 0.86 (0.78, 0.95) 4 

Median (1st, 3rd quartile), all regions and conditions 676 

 677 

Table 2 – Sharing assembly liquidity across regions and conditions 678 

 679 

Region and state Liquidity sharing strengths Liquidity sharing assemblies 

mEC (anesthesia) 0.31 (0.22, 0.45) 0.84 (0.72, 0.89) 

CA1 (anesthesia) 0.39 (0.36, 0.47) 0.86 (0.77, 0.89) 

CA1 (sleep) 0.04 (0.03, 0.05) 0.57 (0.50, 0.68) 

mPFC (sleep) 0.18 (0.11, 0.26) 0.94 (0.89, 0.96) 

Median (1st, 3rd quartile), SO/THE and non-REM/REM states confounded 680 

 681 
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Table 3 – Matching between substate sequences of different types across 682 

conditions and regions 683 

 684 

Type of substate matching Relative mutual information 

Anesthesia (all regions confounded) 

Firing substates with Storage substates 0.38 (0.32, 0.53) 

Sharing substates 0.47 (0.36, 0.61) 

Storage substates with Sharing substates 0.38 (0.31, 0.49) 

mEC substates with HPC substates (all types) 0.18 (0.10, 0.23) 

Natural sleep (all regions confounded) 

Firing substates with Storage substates 0.50 (0.46, 0.59) 

 Sharing substates 0.45 (0.38, 0.66) 

Storage substates with Storage substates 0.42 (0.35, 0.57) 

HPC substates with mPFC substates (all types) 0.42 (0.26, 0.58) 

Median (1st, 3rd quartile), SO/THE and non-REM/REM states confounded 685 

  686 
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Materials and Methods 687 

Data information. We use in this work a portion of the data (13 out of 18 688 

experiments) initially published by Quilichini et al. (2010), which includes local field 689 

potentials (LFPs) and single-unit recordings obtained from the dorsomedial entorhinal 690 

cortex (mEC) of anesthetized rats. We also use a portion of the data (2 out of 16 691 

experiments) initially published by Ferraris et al. (2018), which includes LFPs and 692 

single-units recorded in the medial prefrontal cortex (mPFC) under anesthesia. Seven 693 

recordings are original data in both mEC and dorsal hippocampus (HPC) under 694 

anesthesia, and 10 recordings in 4 animals during natural sleep in HPC and mPFC. See 695 

Figures S1 and S2 for details on recordings, number of cells, and layers recorded.   696 

Animal surgery. We performed all experiments in accordance with experimental 697 

guidelines approved by the Rutgers University and Aix-Marseille University Animal 698 

Care and Use Committee. We performed experiments on 13 male Sprague Dawley rats 699 

(250–400 g; Hilltop Laboratory Animals), 8 male Wistar Han IGS rats (250-400g; 700 

Charles Rivers) and 3 male Long Evans rats (350-400g; Charles River). We performed 701 

acute (anesthesia) experiments on the Sprague Dawley and 7 of the Wistar rats, which 702 

were anesthetized with urethane (1.5 g/kg, i.p.) and ketamine/xylazine (20 and 2 mg/kg, 703 

i.m.), additional doses of ketamine/xylazine (2 and 0.2 mg/kg) being supplemented 704 

during the electrophysiological recordings. We performed chronic (natural sleep) 705 

experiments on one Wistar and the Long Evans rats, which were anesthetized using 706 

isoflurane 2% in 1l/min of O2 for the surgery procedure. In both cases, the body 707 

temperature was monitored and kept constant with a heating pad. The head was secured 708 

in a stereotaxic frame (Kopf) and the skull was exposed and cleaned. Two miniature 709 

stainless-steel screws, driven into the skull, served as ground and reference electrodes. 710 

To reach the mEC, we performed one craniotomy from bregma: -7.0 mm AP and +4.0 711 

mm ML; to reach the CA1 area of HPC, we performed one craniotomy from bregma: -712 
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3.0 mm AP and +2.5 mm ML in the case of HPC coupled to mEC recordings, and from 713 

bregma: -5.6 mm AP and +4.3 mm ML-3.0 mm in the case of HPC coupled to mPFC 714 

recordings; to reach the mPFC, we performed one craniotomy from bregma: +3 mm AP 715 

and +0.8 mm ML. We chose these coordinates to respect known anatomical and 716 

functional connectivity in the cortico-hippocampal circuitry (51, 57-59). We used 717 

different types of silicon probes to record the extracellular signals. In acute experiments, 718 

the probes were mounted on a stereotaxic arm. We recorded the dorso-medial portion 719 

of the mEC activity using a NeuroNexus CM32-4x8-5mm-Buzsaki32-200-177 probe 720 

(in 8 experiments), a 10-mm long Acreo single-shank silicon probe with 32 sites (50 721 

µm spacing) arranged linearly (in 5 experiments), or a NeuroNexus H32-10mm-50-177 722 

probe (in 5 experiments), which was lowered in  of the EC at 5.0-5.2 mm from the brain 723 

surface with a 20° angle. We recorded HPC CA1 activity using a H32-4x8-5mm-50-724 

200-177 probe (NeuroNexus Technologies) lowered at 2.5 mm from the brain surface 725 

with a 20° angle (in 4 experiments), a NeuroNexus H16-6mm-50-177 probe lowered at 726 

2.5 mm from the brain surface with a 20° angle (in 2 experiments) and a E32-1shank-727 

40µm-177 probe (Cambridge Neurotech) lowered at 2.5 mm from the brain surface 728 

with a 20° angle (in 1 experiment). We recorded mPFC activity using NeuroNexus 729 

H32-6mm-50-177 lowered in the layer 5 at 3 mm perpendicularly from the brain surface 730 

(in 2 experiments). In chronic experiments, the probes were mounted on a movable 731 

micro-drive (Cambridge Neurotech) fixed on the skull and secured in a copper-mesh 732 

hat. We recorded HPC CA1 activity (probes lowered perpendicularly at 2.5 mm from 733 

the brain surface) using a Neuronexus H32-Poly2-5mm-50-177 probe (in 2 734 

experiments), a Cambridge Neurotech E32-2shanks-40µm-177 probe (in 1 experiment) 735 

and a NeuroNexus H32-4x8-5mm-50-200-177 probe (in 1 experiment). We recorded 736 

mPFC activity (probes lowered perpendicularly at 3.0 mm from the brain surface) using 737 

a NeuroNexus H32-4x8-5mm-50-200-177 probe (in 2 experiments), and a Neuronexus 738 
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H32-Poly2-5mm-50-177 probe (in 1 experiment). The on-line positioning of the probes 739 

was assisted by: the presence of unit activity in cell body layers and the reversal of theta 740 

([3 6] Hz in anesthesia, [6 11] Hz in natural sleep) oscillations when passing from L2 741 

to L1 for the mEC probe, and the presence in stratum pyramidale either of unit activity 742 

and ripples (80-150 Hz) for the HPC probe, and the DV depth value and the presence 743 

of intense unit activity for the mPFC.  744 

At the end of the recording, the animals were injected with a lethal dose of 745 

Pentobarbital Na (150mk/kg, i.p.) and perfused intracardially with 4% 746 

paraformaldehyde solution. We confirmed the position of the electrodes (DiI was 747 

applied on the back of the probe before insertion) histologically on Nissl-stained 40 µm 748 

section as reported previously in detail (60). We used only experiments with appropriate 749 

position of the probe for analysis. The numbers of recorded single units in different 750 

anatomical locations for the different retained recordings are summarized in Figure S2. 751 

 752 

Data collection and spike sorting. Extracellular signal recorded from the silicon 753 

probes was amplified (1000x), bandpass filtered (1 Hz to 5 kHz) and acquired 754 

continuously at 20 kHz with a 64-channel DataMax System; RC Electronics or a 258-755 

channel Amplipex, or at 32 kHz with a 64-channel DigitalLynx; NeuraLynx at 16-bit 756 

resolution. We preprocessed raw data using a custom-developed suite of programs (61). 757 

After recording, the signals were downsampled to 1250 Hz for the local field potential 758 

(LFP) analysis. Spike sorting was performed automatically, using KLUSTAKWIK 759 

(http://klustakwik.sourceforge.net (62)), followed by manual adjustment of the clusters, 760 

with the help of auto-correlogram, cross-correlogram and spike waveform similarity 761 

matrix (KLUSTERS software package, http://klusters.source-forge.net (63)). After 762 

spike sorting, we plotted the spike features of units as a function of time, and we 763 

discarded the units with signs of significant drift over the period of recording. 764 
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Moreover, we included in the analyses only units with clear refractory periods and well-765 

defined clusters. Recording sessions were divided into brain states of theta and slow 766 

oscillation periods. The epochs of stable theta (THE in anesthesia experiments, REM 767 

in natural sleep experiments or slow oscillations (SO in anesthesia experiments, non-768 

REM in natural sleep experiments) periods were visually selected from the ratios of the 769 

whitened power in the theta band ([3 6] Hz in anesthesia, [6 11] Hz in natural sleep) 770 

and the power of the neighboring bands ([1 3] Hz and [7 14] Hz in anesthesia, [12 20] 771 

Hz in natural sleep) of EC layer 3 LFP, which was a layer present in all the 18 anesthesia 772 

recordings, or layer 5 mPFC recordings in natural sleep recordings, and assisted by 773 

visual inspection of the raw traces (60) (Figure S3). We then used band-averaged 774 

powers over the same frequency ranges of interest as features for the automated 775 

extraction of spectral states via unsupervised clustering, which confirmed our manual 776 

classification.  777 

We determined the layer assignment of the neurons from the approximate location 778 

of their somata relative to the recording sites (with the largest- amplitude unit 779 

corresponding to the putative location of the soma), the known distances between the 780 

recording sites, and the histological reconstruction of the recording electrode tracks. 781 

 782 

Characterizations of single unit activity. We calculated pairwise cross-783 

correlograms (CCGs) between spike trains of these cells during each brain state 784 

separately (60, 64-65). We determined the statistical significance of putative inhibition 785 

or excitation (trough or peak in the [+2 5] ms interval, respectively) using the 786 

nonparametric test and criterion used for identifying monosynaptic excitations or 787 

inhibitions (60, 64-65), in which each spike of each neuron was jittered randomly and 788 

independently on a uniform interval of [-5 5] ms a 1000 times to form 1000 surrogate 789 

data sets and from which the global maximum and minimum bands at 99% acceptance 790 
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levels were constructed. Inspection of CCGs thus allowed to identify single units as 791 

putatively excitatory or inhibitory, an information which we used to perform the 792 

computing hub characterizations in Figure 5B.  793 

To perform the analyses of Figure S4 we then computed the burst index and the 794 

phase modulation of units. Burst index denotes the propensity of neurons to discharge 795 

in bursts. We estimated the amplitude of the burst spike auto-correlogram (1 ms bin 796 

size) by subtracting the mean value between 40 and 50 ms (baseline) from the peak 797 

measured between 0 and 10 ms. Positive burst amplitudes were normalized to the peak 798 

and negative amplitudes were normalized to the baseline to obtain indexes ranging from 799 

-1 to 1. Neurons displaying a value of 0.6 were considered bursting. 800 

To establish the phase modulation of units, we concatenated different epochs of slow 801 

or theta oscillations, and estimated the instantaneous phase of the ongoing oscillation 802 

by Hilbert transform of the [0.5 2] Hz or [3 6] Hz in anesthesia and [6 11] Hz in natural 803 

sleep filtered signal, for slow or theta oscillations respectively. Using linear 804 

interpolation, we assigned a value of phase to each action potential. We determined the 805 

modulation of unit firing by Rayleigh circular statistics; p < 0.05 was considered 806 

significant. We first assessed circular uniformity of the data with a test for symmetry 807 

around the median (66) and we performed group comparison tests of circular variables 808 

using circular ANOVA for uniformly distributed data and using a nonparametric multi-809 

sample test for equal medians “CM-test”, similar to a Kruskal–Wallis test, for non-810 

uniformly distributed data (Berens, 2009; 811 

https://philippberens.wordpress.com/code/circstats), and p < 0.05 was considered 812 

significant. 813 

 814 

Feature-based state extraction. We performed a sliding-window analysis of the 815 

recorded LFP time-series and single unit spike trains, extracting in a time-resolved 816 
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manner a variety of different descriptive features. For all the considered features (see 817 

specific descriptions in later sub-sections), we use similar window sizes and overlap for 818 

the sake of a better comparison. For anesthesia recordings, we adopted a long window 819 

duration of 10 s – demanded by the estimation needs for the most “data-hungry” 820 

information-theoretical features – with an overlap of 9 s. For natural sleep recordings, 821 

we adopted a window duration of 10 s with an overlap of 9 s. 822 

We computed each set of descriptive features and compiled them into multi-entry 823 

vectors FeatureVector(t) for every time-window centered on different times t. 824 

We then compute a similarity matrix Msim, to visualize the variability over time of 825 

the probed feature set. The entries Msim(ta, tb) are given by the Pearson correlation 826 

coefficient between the entries in the vectors FeatureVector(ta) and 827 

FeatureVector(tb), treated as ordered sequences, and are thus bounded between -1 828 

and +1. Blocks of internally elevated correlation along the similarity matrix diagonal 829 

denote epochs of stable feature configurations. Similar configurations are detected by 830 

the presence of off-diagonal highly-internally correlated blocks and the existence of 831 

multiple possible configurations by the poor correlation between distinct blocks.  832 

We then extracted feature-based states using a standard iterative K-means algorithm 833 

(67) to cluster the different vectors FeatureVector(t), based on the correlation 834 

distance matrix defined by 1- Msim. We defined the substates of different types as the 835 

different clusters obtained for different feature types. We chose the number of clusters 836 

K by clustering using K = 2, 3, … 20 and first guessing K using a maximal silhouette 837 

criterion (68) across all Ks. We also inspected dendrograms from single-linkage 838 

clustering as a cross-criterion. Using both pieces of information the K was manually 839 

adjusted case-by-case (up to ±2 clusters with respect to the unsupervised silhouette 840 

criterion) to best match the visually apparent block structure of the similarity matrix 841 

Msim, which results in an optimized K selection for each recording.  842 
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 843 

Feature Robustness. To compute the robustness of the feature computation, the 844 

original spiking times were randomly shuffled 1000 times and the features recomputed 845 

for each instance for 2 files, one in anesthesia and one in natural sleep. To compare it 846 

to the original features computed, the k for each recording and each feature was kept 847 

the same. The information retained after shuffling was computed by dividing the mutual 848 

information between the shuffled features and the original by the entropy of the new 849 

feature set. We found a significant difference for both anesthesia and in natural sleep 850 

across all features, and the results have been quantified in Table S1.  851 

 852 

Global oscillatory states. We defined eight different unequally-sized frequency 853 

ranges, which were manually adjusted recording-by-recording to be better centered on 854 

the recording-specific positions of the slow-wave and theta peaks and of their 855 

harmonics (e.g., 0–1.5 Hz, 1.5–2 Hz, 2–3 Hz, 3–5 Hz, 5–7 Hz, 7–10 Hz, 10–23 Hz and 856 

23–50 Hz for the anesthesia spectrogram and the similarity matrix of Figure S3A). We 857 

averaged the spectrograms over all channels within each of the layers in the 858 

simultaneously recorded regions (e.g. EC and CA1 for anesthesia) and then we coarse-859 

grained the frequencies by further averaging over the eight above ranges. We compiled 860 

finally all these layer-averaged and band-averaged power values into time-dependent 861 

vectors Spectra(t), with a number of entries given by eight (number of frequency 862 

bands) times the number of layers probed in the considered recording, i.e. up to eight 863 

(CA1 stratum oriens (SOr), stratum pyramidale (SP), stratum radiatum (SR) and 864 

stratum lacunosum moleculare (SLM); EC layers 2, 3 and 5; and PFC layers 1,2, 3 and 865 

5), yielding at most 64 entries. We then processed these spectral features as described 866 

in the previous section to extract global oscillatory states –as any other substate type– 867 

via unsupervised clustering. 868 
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 869 

Firing sets and firing hubs. Not all neurons are equally active in all temporal 870 

windows. To determine typical patterns of single neuron activation we binned the 871 

spiking data for each unit in 50 ms windows – if a neuron fired within that window the 872 

result was a ‘1’, if it did not fire the result was a ‘0’. We enforced a strictly binary 873 

encoding, i.e. we attributed to a bin a ‘1’ symbol even when more than one spike was 874 

fired within this bin. Our bin size choice however was such to maintain the loss of 875 

information when ignoring multiple firing events within a bin was less that 5%. Note 876 

furthermore that for the majority of spike trains multiple firing events were extremely 877 

rare, i.e. apart from a few cases the information loss was way smaller than 5%. We then 878 

averaged over time this binned spike density, separately for each single unit and within 879 

each time window and compiled these averages into time-dependent vectors 880 

Firing(t), with N entries, where N is the overall number of single units probed within 881 

the considered recording. We constructed separate feature vectors for each of the 882 

simultaneously recorded regions. Firing substate prototypes were given by the centroids 883 

of the clusters extracted from the similarity matrix Msim resulting from the stream of 884 

Firing(t) feature vectors. 885 

We then defined a neuron to be a high-firing cell in a given state if its firing rate in 886 

the state prototype vector was higher than the 95% percentile of all concatenated state 887 

prototype vector entries.  888 

 889 

Active Information Storage. Within each time-window we computed for each 890 

single unit an approximation to the Active Information Storage (AIS). AIS is meant to 891 

quantify how much the activity of a unit is maintaining over time information that it 892 

was conveying already in the past (3, 6). This information-theoretical notion of storage 893 

is distinct from the neurobiological notion of storage in synaptic weights. It is indeed 894 
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an activity-based metric (hence the adjective “active”), able to detect when temporal 895 

patterns in the activity of a single unit can serve the functional role of “memory buffer”. 896 

AIS is strictly defined as: 897 

 898 

AISi = MI[i(t), i(→t)] 899 

 900 

i.e. as shared information between the present activity i(t) of a single unit i and its past 901 

history of activity i(→t) (cf. Figure S6A). Prior to computing mutual information, we 902 

binned all spike trains with method as for determining the Firing(t) descriptive 903 

feature vector. The limited amount of available data within each temporal window 904 

makes necessary to introduce approximations. Therefore, we replaced the full past 905 

history of activity i(→t) with activity at a time in the past i(t-τ) and then summed over 906 

all the possible lags:    907 

   908 

AÎSi = Στ MI[i(t), i(t-τ)] 909 

 910 

where the lag τ was varying in the range 0 ≤ τ ≤ 0.5Tθ, where Tθ is the phase of the theta 911 

cycle. Note that MI values were generally vanishing for longer latencies (cf. Figure 912 

S13A). We evaluated MI terms using a ‘plug-in’ function estimator on binarized spike-913 

trains, which takes the binned spike trains of two neurons for a defined time window 914 

and computes the mutual information and entropy values of the two variables (6). 915 

Concretely speaking, we estimated the probability p that a bin includes a spike and the 916 

complementary probability 1 – p that a bin is silent for each unit, by direct counting of 917 

the frequency of occurrence of “1”s and “0”s in the binned spike trains of each unit. 918 

These counts yielded the probability distributions P(i) and P(j) that two neurons i and j 919 

fire or not. Analogously, we sampled directly from data the histogram P(i,j) of joint 920 
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spike counts for any pair of two units i and j. These histograms were then directly 921 

“plugged in” (hence the name of the used estimator) into the definition of MI itself: 922 

𝑀𝐼(𝑖, 𝑗) =  ∑ ∑ 𝑃(𝑖, 𝑗)log2

𝑃(𝑖, 𝑗)

𝑃(𝑖)𝑃(𝑗)𝑗𝑖
 923 

 We then subtracted from each MI value a significance threshold (95-th percentile of 924 

MI estimated on shuffled binarized trains, 1000 replicas), putting to zero non-925 

significant terms (and thus negative after bias subtraction). Although such corrected 926 

plug-in estimator is very rough, it is sufficient in our application in which we are not 927 

interested in quantitatively exact values of MI but just in relative comparisons of values, 928 

finalized to state clustering over a large amount of observations. We compiled the N 929 

resulting AÎSi values into time-dependent vectors Storage(t), constructing separate 930 

vectors for each of the simultaneously recorded regions. We then constructed storage 931 

substates through unsupervised clustering based on the Msim matrices, as previously 932 

described. We defined a neuron to be a storage hub in a given state if its AÎSi value in 933 

the state prototype vector was higher than the 95% percentile over all entries of 934 

concatenated cluster prototype vectors. Such conservative threshold guarantees that 935 

only neurons with exceptionally high AIS values are labeled as hubs. While we may 936 

have some false negatives –i.e. neurons with values in the right tail of the AIS 937 

distribution not labeled as hubs–, we are thus protected against false positives. 938 

AIS absolute values varied widely between the different recordings. To compare AIS 939 

measures and their relative changes between global oscillatory states across recordings, 940 

we first averaged AIS for all the units within a specific anatomic layer. We then 941 

normalized these average AIS values by dividing them by the average AIS value in the 942 

SO state (in anesthesia) or the nonREM state (in natural sleep) for the specifically 943 

considered recording and layer. The results of this analysis are shown in Figure S7, 944 

where different lines correspond to different recordings. 945 
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 946 

Information sharing networks and strengths. Within each time-window we 947 

computed time-lagged Mutual Information MI[i(t), j(t-τ)] between all pairs of spike 948 

density time-series for different single units i and j (evaluated via the same binning 949 

method for determining the Firing(t) descriptive feature vector). Although MI is not 950 

a directed measure, a pseudo-direction of sharing is introduced by the positive time-lag, 951 

supposing that information cannot be causally shared from the future. Thus, for every 952 

directed pair of single units i and j (including auto-interactions, with i = j), we defined 953 

pseudo-directed information sharing as: 954 

 955 

Ishared (j → i)  = Στ MI[i(t), j(t-τ)] 956 

 957 

where the lag τ was varying in the range 0 ≤ τ ≤ 0.5Tθ , where Tθ is the phase of the 958 

theta cycle. Once again, we estimated MI terms via direct plug-in estimators on 959 

binarized spike trains, as with storage, subtracting a significance threshold (95-th 960 

percentile of MI estimated on shuffled binarized trains, 400 replicas) and zeroing not 961 

significant terms. All these Ishared (j → i)  entries were interpreted as weights in the 962 

adjacency matrix of an information sharing directed functional network, and we defined 963 

as sharing assembly formed by a neuron i the star-subgraph of the information sharing 964 

network composed of i and all its immediate neighbors. We compiled all the overall N2 965 

different values of Ishared (j → i) into time-dependent feature vectors Sharing_A(t), 966 

describing thus all the possible sharing assemblies at a given time. We then also 967 

computed information sharing strengths by integrating the total amounts of information 968 

that each single unit was sharing with the past activity of other units in the network 969 

(“sharing-in”): 970 

 971 
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Ishared (→ i) = Σj Ishared (j → i) 972 

 973 

or with the future activity of other units in the network (“sharing-out”): 974 

 975 

Ishared (i →) = Σj Ishared (i → j) 976 

 977 

In other words, the integrated amount of shared information was given by the in-978 

strength and the out-strength of a node in the information sharing network with 979 

individual link weights Ishared (j → i). We compiled the N incoming Ishared (→ i) and N 980 

outgoing Ishared (i →) values into time-dependent vectors Sharing_S(t). We computed 981 

separate Sharing_A(t) and Sharing_S(t) for each of the simultaneously recorded 982 

regions. We then performed as before unsupervised clustering based on the associated 983 

Msim matrices to extract sharing substates. Since the block structure displayed by thee 984 

Msim matrices for sharing assemblies and strengths are nearly perfectly overlapping we 985 

conducted all substate analyses based on Sharing_S(t) vectors only. We defined a 986 

neuron to be a sharing hub in a given state if its Ishared (* → i) and/or Ishared (i → *) values 987 

in the state prototype vector were higher than the 95% percentile of all concatenated 988 

cluster prototypes entries (again protecting against false positive detection). 989 

The relative comparisons of information sharing between SO and THE (REM and 990 

nonREM) epochs for different recordings shown in Figure S9, are based, as in the case 991 

of AIS in Figure S7, on averaged and scaled values. We first averaged the total Ishared 992 

(i.e. sharing in plus sharing out) over all the units within a specific anatomic layer. We 993 

then normalized these average total Ishared values by dividing them by the average total 994 

Ishared value in the SO state (in anesthesia) or the nonREM state (in natural sleep) for 995 

the specifically considered recording and layer. 996 
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Liquidity of sharing. The Mrec matrices for Sharing Assemblies display light blue 997 

(low internal correlation) blocks while the Mrec matrices for Sharing Strengths have 998 

similar blocks but red-hued (higher internal correlation). We quantify this visual 999 

impression by evaluating liquidity of sharing strength and sharing assembly substates. 1000 

For a given recording and a given associated Mrec matrix (e.g. the one for the 1001 

Sharing_A or the Sharing_S features), we define Tα as the set of times t for which 1002 

the system is in a given substate α relative to the considered feature of interest. We then 1003 

evaluate the liquidity Λ(𝛼) of this substate α as: 1004 

Λ(𝛼) =  ∑ ∑ (1 − |𝑀𝑟𝑒𝑐(𝑡, 𝑡′)|)

𝑡′𝜖𝑇𝛼

𝑡′<𝑡

𝑡𝜖𝑇𝛼

𝑡

(
#𝑇𝛼

2
)⁄  1005 

where | ∙ | denotes the absolute value operator and #Tα is the number of elements of the 1006 

set Tα. Liquidity values are thus bounded in the interval 0 ≤ Λ(𝛼) ≤ 1, with 1 indicating 1007 

maximum liquidity (i.e. maximum internal variability) of a substate. 1008 

 1009 

Oscillatory mode specificity and hub distributions. For each substate (firing, 1010 

storage, sharing) we computed the fraction of times that the substate was observed 1011 

during a SO or a THE state (in anesthesia) or a nonREM or REM state (in natural sleep). 1012 

We defined the largest among these fractions as the oscillatory specificity of this 1013 

substate. Oscillatory specificities close to 1 indicate that a substate occurs mostly within 1014 

one of the two possible global states observed in each recording, while specificities 1015 

close to 0.5 indicate that the substate do not occur preferentially in one of the global 1016 

states. 1017 

To evaluate the probability that a hub emerges in a given anatomical layer, we 1018 

computed for every recording the fraction of cells recorded in each layer that were 1019 

labeled as hubs at least in one computing substate (storage or sharing). We computed 1020 

separately these fractions layer-by-layer, for excitatory and inhibitory cells and for 1021 
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anesthesia or sleep. These fractions were equal to unit when all the excitatory (or 1022 

inhibitory) cells in a layer happened to be hubs at least once. We then evaluated the 1023 

general probability that a hub emerges in a layer, which is different from the previous 1024 

one, because it takes in account as well the fact that some cells may be labeled as hubs 1025 

more often than others. We then considered the list of all hubs of a given type (storage 1026 

or sharing) across all substates, including repetitions (if a neuron was hub in more than 1027 

one substate then it appeared multiple times in the list) and evaluated the fraction of 1028 

times in which a hub in this list was belonging to a given layer. We computed separately 1029 

these fractions layer-by-layer, for storage or sharing hubs and for anesthesia or sleep. 1030 

95% confidence intervals for the mean fractions above were evaluated as 2.996 times 1031 

their sample standard deviation over the different recordings for which they could be 1032 

computed. We considered two mean fractions to be different when their 95% 1033 

confidence intervals were fully disjoint.   1034 

 1035 

Coordination between substate transitions.  To compare sequences of substates 1036 

of different types or in different regions we introduced a symbolic description of 1037 

substate switching. Each substate was assigned a letter symbol, i.e. a label s(p) where p 1038 

can stand for firing, information storage or sharing and s(p) is an arbitrary integer label 1039 

different for every substate. We could thus describe the temporal sequences of the 1040 

visited substates of each different type as an ordered list of integers s(p)(t). We quantified 1041 

the degree of coordination between the sequences of substates of different types (e.g. p 1042 

= ‘storage’ vs q = ‘sharing’) or in different regions (e.g. p = ‘storage in EC’ vs q = 1043 

‘storage in CA1’) by evaluating the relative Mutual Information term: 1044 

 1045 

MI[s(p)(t), s(q)(t)] / max[H(s(p)(t)), H(s(p)(t))] 1046 

 1047 
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normalized between 0 –full statistical independence between the two substate 1048 

sequences– and 1 –complete overlap between the two substate sequences–, by dividing 1049 

it by the entropy H of the most entropic among the two symbolic streams. We evaluated 1050 

these MI and H terms using direct plug-in estimators on the joint histograms of substate 1051 

labels. We estimated chance expectations for the level of coordination by repeating the 1052 

same procedure for substate sequences with shuffled substate labels and then finding 1053 

the 99th percentile over 1000 permutation replicas of the computed MI/H.  1054 

 1055 

Mutual Information Measure’s Dependence on Bin Size. The original decision 1056 

for the bin size was chosen such that when discretized, the information content lost by 1057 

counting 2 or 3 spikes on the same neuron within a given bin as a ‘1’ was less than 5%. 1058 

On average, the information content lost was less than 1% across all recordings. To 1059 

analyze the dependence on bin sizes, one example recording was chosen in the PFC 1060 

during natural sleep in different bin sizes, 25 ms, 33 ms and 66 ms and computed 1061 

substates using the same methods described above. To make the comparison focused 1062 

on bin size, the same number of clusters per feature was chosen to reflect the original 1063 

number. We then computed the amount of information about the substate sequences 1064 

computed with the original binsize were retained by corresponding substate sequences 1065 

derived for each different bin size. To do so, we used the same procedure described in 1066 

the previous section to quantify coordination between sequences for different types of 1067 

states or between different regions. Notably we computed mutual information between 1068 

the substate sequences for different bin-sizes (normalized by the entropy of the original 1069 

sequence) and compared this relative mutual information with chance expectation 1070 

(obtained via shuffling substate sequences, as above).  We found that the mutual 1071 

information between corresponding sequences for different bin sizes was two order of 1072 

magnitudes above chance level (Figure S13B), denoting high robustness of our 1073 
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procedure for extracting substates. Correspondingly, we also found that, for matched 1074 

substates between sequences extracted for different bin-sizes, the identification, number 1075 

and anatomical localization of hubs were only marginally altered.    1076 

Complexity of substate sequences. After converting sequences of substates into 1077 

symbolic streams of letters, we defined substate words as the triplets of letters 1078 

corresponding to the firing, the information storage and the information sharing 1079 

substates simultaneously observed at each time t, i.e.:  1080 

 1081 

S(t) = s(firing)(t) s (storage)(t) … s (sharing)(t) 1082 

 1083 

We then constructed a switching table T  in which the temporally ordered columns 1084 

provide the sequence of substate words S(t) along time.  We compiled separate 1085 

switching tables for each recording and for each of the simultaneously recorded regions. 1086 

The total set of substate words effectively found in a specific switching table constitutes 1087 

its associated dictionary of substate combinations. We defined then the used dictionary 1088 

fraction, as the ratio between the number of observed words and the maximum 1089 

theoretically possible number of words that could have been composed given the 1090 

available substate letters (depending on how many firing, storage or sharing substates 1091 

have been effectively extracted). 1092 

We then evaluated the complexity of substate word sequences using a procedure 1093 

inspired from the notion of Kolmogorov-Chaitin complexity (19) and minimum 1094 

description length approaches (MDL; 20). The basic concept is that, for a regular 1095 

symbolic sequence (as our streams of substate words), it will be possible to design a 1096 

tailored “compression language” such the sequence will admit a much shorter 1097 

description when reformulated into this language with respect to the original length in 1098 

terms of number of words. On the contrary, a random symbolic sequence will be poorly 1099 
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compressible, i.e. its descriptions in terms of a generative language will be nearly as 1100 

long as the original list of symbols appearing in the sequence. A complex symbolic 1101 

sequence will stand between these two extremes - still admitting a compressed 1102 

generative description but not as short as for regular sequences. Departing from 1103 

universal compression approaches, as the original MDL formulation (20) or the 1104 

Lempel-Ziv approach (21), we introduce here a “toy language” for generative 1105 

description, specialized to compress state transition tables as the ones of Figure 6A. Our 1106 

choice is conceptually compliant with the MDL approach but – for the sake of 1107 

pedagogy– avoids technical steps as the use of binary prefix coding. 1108 

Let Ω ={S1, S2, …, Sω} be the dictionary of substate words appearing in the switching 1109 

table T  which we want to describe. We first define the exhaustive list description (Dlist) 1110 

of  T  as a string of the following form: 1111 

 1112 

Dlist ≔ S1 t1,1 t1,2… t1,k1 S2 t2,1 t2,2… t2,k2 … Sω tω,1 tω,2… tω,kω 1113 

 1114 

In such a description the symbol of each substate word Sq (counting as one description 1115 

unit) is followed by an exhaustive list of all the kq times tq,1, tq,2, …, tq,kq (each time 1116 

index counting as an extra description unit) at which the recorded system produced the 1117 

matching substate word. If the number of analyzed time windows is K = k1 + k2 +…+ 1118 

kω, then the length of the exhaustive list description will be |Dlist| = K + ω description 1119 

units (K time stamps, plus ω substate word symbols).  1120 

Let then define the block-length description (Dblock) of the stream of substate 1121 

codewords, as a description of the following form: 1122 

 1123 

Dblock ≔ S1 w1,1 l1,1 w1,2 l1,2 … w1,m1 l1,m1 S2 w2,1 l2,1 w2,2 l2,2 … w2,m1 l2,m1 ...  1124 
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Sω wω,1 lω,1 wω,2 lω,2 … wω,mω lω,mω 1125 

 1126 

In such a description the symbol of each word Sq (always counting as one description 1127 

unit) is followed by a list of stepping instructions for a hypothetical “writing head” 1128 

moving along different discrete positions on an idealized tape, similarly to computing 1129 

automata as the Turing Machine (69). At the beginning the machine is initialized with 1130 

the head on the first position on the tape. The integers wq,n  –at odd positions (1st, 3rd, 1131 

etc.) after the word symbol– indicate for how many steps the machine head must shift 1132 

on the tape toward the right without writing, but just skipping positions. The integers 1133 

lq,n  –at even positions (2nd, 4th, etc.) after the word symbol– indicate instead for how 1134 

many steps the machine must also write on the tape the symbolic string Sq before then 1135 

shifting to the next position on the right. Every time that a new symbol Sq is met when 1136 

parsing the step lengths description, the position of the writing head is reset to the 1137 

leftmost starting position on the tape. Such parsing grammar is obviously more complex 1138 

than the one for a simpler “parrot machine”, designed to parse exhaustive list 1139 

descriptions as the ones described above. The length in symbols of this block-length 1140 

description is variable and depends on how regular the word sequence is to compress 1141 

and regenerate. The block-length description segment Sq wq,1 lq,1 … wq,mq lq,mq will be 1142 

shorter than the matching exhaustive list description segment Sq tq,1… tq,kq whenever 1143 

2mp < kp, which can happen if transitions for the different types of substate letters are 1144 

regularly aligned, in such a way that the resulting switching table have long alternating 1145 

blocks with repeated substate words.  1146 

The syntactic complexity of a sequence of substate words can then be evaluated by 1147 

quantifying how much the program to generate the switching table T  via a “smart” 1148 

compressing machine interpreting block-length descriptions is shorter than the program 1149 
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to generate the same table  T via a “dumb” parrot machine interpreting exhaustive length 1150 

descriptions. We define the description length complexity of a switching table T  as: 1151 

 1152 

DLC =  |Dblock(T )| / |Dlist(T )| 1153 

 1154 

To give a toy example, let’s consider the  sequence T = “AAAAAAA BBBB AAAAA 1155 

CCCCC DDD BBBBBB”, built out of four possible collection of  substate words S1 = 1156 

A, S2 = B, S3 = C and S4 = D. The exhaustive list description for this sequence will be: 1157 

 1158 

Dlist (T ) = A 1 2 3 4 5 6 7 12 13 14 15 16 B 8 9 10 11 25 26 27 28 29 30 1159 

C 17 18 19 20 21 D 22 23 24 1160 

 1161 

with length |Dlist(T )| = 34 descriptive units. Its step lengths description will be: 1162 

 1163 

Dblock (T ) = A 0 7 4 5 B 7 4 13 6 C 16 5 D 21 3 1164 

 1165 

with length |Dblock(T )| = 16 descriptive units, i.e. |Dblock(T )| < |Dlist(T )|.  1166 

Given the noisiness of data, we dropped from both the exhaustive list description 1167 

and the step lengths description the segments corresponding to exceedingly rare words 1168 

Sq. In particular, ranking the code words from the least to the rarest, we dropped all the 1169 

words Sr with r ≥ R, such that removing all of their occurrences in the word stream 1170 

reduced the stream’s overall length of no more than 10% (lossy compression).  1171 

We computed confidence intervals for DLC values via a Jacknife construction in 1172 

which we drop one word at random position from the temporal stream S(t) made of K 1173 

symbols, generating up to K Jackknife surrogate streams, each with K-1 symbols. The 1174 
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confidence interval was then given by the 5-th and the 95-th percentile over the 1175 

complexities evaluated from these Jackknife surrogates. 1176 

Appropriate reference criteria were then required to discriminate complex vs ordered 1177 

or random switching tables. We need to compare the empirically observed DLC values 1178 

against two thresholds. Complex switching tables should have indeed a DLC below a 1179 

threshold for randomness testing and above a threshold for regularity testing. Given a 1180 

switching table T, we constructed a randomized version Trand by randomly permuting 1181 

independently the entries of each of its rows. For each recording, we constructed 1000 1182 

instances of Trand and evaluated DLC for all of them, identifying as upper threshold for 1183 

complexity the 5-th percentile DLCrand = q5%[DLC(Trand)]. We then constructed an 1184 

enhanced-regularity version Tregular of each T  by lexicographically sorting entries row-1185 

by-row (to get blocks of homogeneous code-words as long-lasting as possible based on 1186 

exactly the same building bricks). We then arbitrarily defined a lower threshold for 1187 

complexity DLCregular = 2 DLC(Tregular). The thresholds DLCregular and DLCrand varied for 1188 

every switching table. However, the criterion DLCregular < DLC < DLCrand was fulfilled 1189 

for all the considered recordings, whose state transitions sequences could then be 1190 

certified to be complex (in our arbitrary but quantitative and operational sense). 1191 

Importantly, we could restrict the evaluation of complexity to sub-table restricted to 1192 

words occurring during selected different global oscillatory states only. In this way we 1193 

could compare the complexity of sequences occurring within different global states, 1194 

e.g. REM vs nonREM. We plot in Figure 6E relative complexity variations between 1195 

two global states α and β : 1196 

 1197 

∆ (DLC) = (DLCα – DLCβ) / (DLCα + DLCβ) 1198 

 1199 
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We evaluated once again confidence intervals for relative complexity variations via 1200 

one-leave-out Jacknife on global state-restricted switching table columns.   1201 

 1202 

Burstiness of state sequences. We also characterize switching tables in terms of 1203 

their “style” of transitions, looking at two different temporal statistics. First, we 1204 

computed all inter-transition times from a table T, i.e. the number of time-steps 1205 

occurring between one block (continuous time-interval with a same substate word 1206 

maintained in time) to the next. Note that these inter-transition times are precisely the 1207 

lp,n integers appearing in the block-length description Dblock (T ) of the table T. After 1208 

computing the mean 𝜇𝑙  and the standard deviation 𝜎𝑙 of these inter-transition times, we 1209 

then evaluated the burstiness coefficient (22): 1210 

 1211 

𝐵 =  

𝜎𝑙

𝜇𝑙
− 1

𝜎𝑙

𝜇𝑙
+ 1

 1212 

 1213 

Such a coefficient is bound between -1 < B < 1 and is equal to 0 when transitions 1214 

between substate words follow a Poisson statistic, negative when the train of transitions 1215 

is more periodic and positive when more bursty than for a Poisson train. 1216 

  1217 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2019. ; https://doi.org/10.1101/513424doi: bioRxiv preprint 

https://doi.org/10.1101/513424
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

Figures 1218 

 1219 

 1220 

Figure 1. Unsupervised extraction of states and hubs. A. Cartoon representing the 1221 

approximate recording locations (mEC and CA1, mPFC and CA1)  during 2 experiment 1222 

types in anesthesia and sleep. B.  Example LFP trace taken from the 32 channels in 1223 

CA1 (blue) and 32 channels in mEC (orange). Below are examples of isolated unit 1224 

activity taken from the same recording.  For each time window (t), we extract different 1225 

features represented by the FeatureVector(t), which has a feature value for each 1226 

channel or single unit recorded. C. We consider four features: spectral band averaged 1227 

powers (from LFP channels); single unit firing rates; information storage and 1228 

information sharing. D. Left panel: A cartoon representation of Msim. To extract 1229 

substates and their temporal dynamics, we construct a feature similarity matrix Msim in 1230 

which the entry Msim(ta, tb) measures Pearson correlation between the vectors 1231 
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FeatureVector(ta) and FeatureVector(tb). Time flows from the top-left corner 1232 

horizontally to the top-right corner and vertically to the bottom-left corner. A block 1233 

(square) along the diagonal in the resulting image identifies a period of feature stability, 1234 

i.e. a substate. A block appearing several times horizontally or vertically indicates that 1235 

a feature is repeated several times. Middle panel: Unsupervised clustering identifies the 1236 

different substates (indicated by a number) and their temporal dynamics (the vertical 1237 

axis corresponds to that of the similarity matrix). Right panel: We identify computing 1238 

hub cells, i.e. neurons that display exceptionally high values for a given feature, 1239 

associated with given substates. Note that reoccurring states have the same hub cells 1240 

(state 3 in this example).    1241 
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 1243 

 1244 

Figure 2. Firing substates. Examples of similarity matrices Msim obtained from 1245 

Firing(t) at different times in mEC during anesthesia (A) and in mPFC during natural 1246 

sleep (D), measured in two animals. The bar below Msim indicates the transitions 1247 

occurring between THE/REM (dark blue) and SO/nonREM (light blue). Although there 1248 

were only two global brain states, six (A) and five (D) firing substates were identified. 1249 

Panels (B) and (E) show examples of the firing density of three neurons (a, b and c) 1250 

recorded in mEC and mPFC, respectively, with amplitude normalized for visualization. 1251 

Neurons tended to fire in specific substates, indicated here with a color code. These 1252 

examples also illustrate the switching between different firing substates inside a given 1253 
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global oscillatory state, and their overlap across different global oscillatory states. The 1254 

analysis of all recordings revealed that a majority of firing substates tended to occur 1255 

during a preferred global oscillatory state, as indicated by the bimodal histograms 1256 

during anesthesia (C) and natural sleep (F), respectively. 1257 
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 1259 

Figure 3. Information storage substates. Examples of similarity matrices Msim 1260 

obtained from Storage(t) at different times in mEC during anesthesia (A) and CA1 1261 

during natural sleep (D). As for firing substates, we identified more storage substates 1262 

(6 and 7, respectively, in the shown examples) than global oscillatory states. We show 1263 

in panels (B) and (E) that the participation of three individual neurons to information 1264 

storage (indicated in arbitrary units for visualization) was substate-dependent. The 1265 

values reported above the plots correspond to the average firing rate of the neuron b 1266 

(green color) during the corresponding epochs within consistent storage substates. The 1267 

analysis of all recordings showed that storage substates tended to occur during a 1268 
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preferred global oscillatory substate, as indicated by the bimodal histograms for 1269 

anesthesia (C) and for natural sleep (F).  1270 

 1271 

 1272 

Figure 4. Information sharing substates. The cartoon in panel A shows an example 1273 

of sharing assembly for a given sharing hub neuron across 3, non-sequential 1274 

occurrences of the same substate. The total strength of in- and out-going sharing is equal 1275 

(large, external arrows) during ta, tb, and tc while the assembly changes (smaller, internal 1276 

arrows). The changing size of internal arrows represent the sharing strength of that 1277 

particular functional connection between the sharing hub and its source and target 1278 
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neurons. (B) Similarity matrices Msim for sharing strengths Sharing_S(t) (top) and 1279 

sharing assemblies Sharing_A(t) (bottom), in mEC during anesthesia (left) and 1280 

mPFC during natural sleep (right). We identified a multiplicity of substates within each 1281 

global oscillatory state as shown by the colored bars below the feature similarity 1282 

matrices. The similarity matrices for sharing strengths and assemblies have a matching 1283 

block structure. However, sharing strengths were very stable within a substate (red-1284 

hued blocks), while sharing assemblies were highly volatile (light blue-hued blocks). 1285 

This is quantified for each sharing assembly substate by a liquidity coefficient (C). As 1286 

shown in (C), for all observed sharing substates across all regions and global oscillatory 1287 

states in all animals, the liquidity of sharing assemblies was much larger than the one 1288 

of sharing strengths. Finally, (D) demonstrates that most sharing substates occurred 1289 

preferentially during a preferred global oscillatory state for both anesthesia and natural 1290 

sleep combined (see Figure S7 for separated histograms for the two conditions).  1291 
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 1293 

Figure 5. A democracy of computing hubs. (A) Within every computing substate 1294 

some neurons exhibited significantly strong values of information storage or sharing 1295 

(computing hubs). However, these computing hubs did generally change from one 1296 

substate to the other, as shown in this example. Different rows correspond to different 1297 

single units recorded in mEC during anesthesia and different columns correspond to 1298 

different computing substates (left, storage substates 1 to 6; right, sharing substates 1 1299 

to 4). An entry is colored in yellow when the neuron is a computing hub within the 1300 

corresponding substate. In the shown example, while ~9% of neurons on average were 1301 

simultaneously acting as computing hub, over 40% of the recorded units were recruited 1302 

as hubs for at least one substate, when considering all the computing substates together 1303 

(vertical bar on the right). (B-C) The probability that a neuron acted as hub depended 1304 

only loosely on its anatomical localization. Panel B shows that for all regions and layers 1305 

the probability that a neuron act as computing hub at least once was always larger than 1306 

30%. Inhibitory (i) neurons tended to be recruited as hubs more frequently than 1307 

excitatory (e) neurons. Analogously, panel C shows that none of the layers display a 1308 
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specialization in either one of the two processing operations of information storage or 1309 

sharing. Stars denote statistically significant comparisons (lack of overlap between 95% 1310 

confidence intervals for the probability, reported as vertical ranges on top of the 1311 

histogram bar). In panel C a yellow horizontal line indicates the fraction of computing 1312 

hub cells which also happen to simultaneously be high-firing rate cells. Many 1313 

computing hubs have thus average or low firing rate. In panel B-C in CA1 light blue 1314 

represents anesthesia and dark blue represents natural sleep.  1315 
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 1316 

Figure 6. Complexity of substate sequences. State switching found for each feature 1317 

(firing, storage, sharing) did not align in time. This can be visualized by state switching 1318 

tables, whose different rows graphically represent transitions between global brain 1319 

oscillatory states and firing, storage, and sharing substates. Examples of switching 1320 

tables are shown in (A) for mEC during anesthesia (top) and for mPFC during natural 1321 

sleep (bottom, note the different time scales). Switching tables were neither perfectly 1322 

regular (B, top left), nor random (B, top right), but they were “complex”, displaying 1323 

organized patterns escaping simple description (B, bottom). (C) The complexity of the 1324 

switching tables was larger for THE/REM than for SO/nonREM for most recordings. 1325 

We included two recordings from mPFC under anesthesia for comparison. (D) 1326 

Switching tables were complex in all cases. Complexity values were significantly above 1327 
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the upper threshold for regularity and below the lower threshold for randomness. (E) 1328 

The increase of complexity was significant for mEC when transitioning from SO to 1329 

THE and for mPFC from nonREM to REM sleep. This trend in CA1 was not 1330 

statistically significant (significance assessed in terms of lack of intersection between 1331 

95%-confidence intervals and threshold values for both panels D and E; a (*) symbol 1332 

indicates that the number of recordings in this category was not enough to assess 1333 

significance but that the median value lied below or above the considered threshold).   1334 
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Supplementary figures 1335 

 1336 

Figure S1. Recording paradigm. Schematic representation of the (A) simultaneous 1337 

mEC/HPC recording setup and (B) simultaneous mPFC/HPC during anesthesia and 1338 

natural sleep. The Nissl stained sections display the anatomical regions recorded by the 1339 

different silicon probes used (yellow boxes). Arrows represent the anatomical 1340 

connectivity (●: source layer, ➔: target layer) between the dorsal hippocampus CA1 1341 
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region (SOr: stratum oriens; SP: stratum pyramidale; SR: stratum radiatum; SLM: 1342 

stratum lacunosum moleculare) with the dorso-medial entorhinal cortex (mEC, layers I 1343 

to VI) and medial prefrontal cortex (mPFC, layers I to VI). 1344 
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 1346 

 1347 

Figure S2. Information about recordings. We analyzed data from 30 different 1348 

recordings performed in 24 different rats. In each recording we identify single units in 1349 

different anatomical locations. (A) Number of recorded single units (color coded on the 1350 

right scalebar) per anatomical layer (rows), for each of the 30 recordings (columns). (B) 1351 

Number of recordings (color coded on the right scalebar) simultaneously targeting pairs 1352 

of two different anatomical layers. 1353 
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 1354 

Figure S3. Global brain oscillatory states. We performed a time-frequency spectral 1355 

analysis of the LFP signals from all channels. Time-frequency spectrograms of LFPs 1356 

are shown in (A) from mEC III and CA1 SLM layers during anesthesia and in (B) for 1357 

mPFC layer V and CA1 SP. A characteristic alternation is visible between epochs 1358 

dominated by SO/THE rhythms and REM/nonREM. Example LFP traces at time points 1359 

corresponding to the dashed vertical lines are magnified and shown below the 1360 

spectrograms. To characterize global oscillatory states in an unsupervised manner 1361 

within each time-window of analysis (Figure 1), we averaged the power across different 1362 

frequency bands and compiled all LFP channels into the feature vector Spectra(t). 1363 

The similarity matrices corresponding to (A) and (B) are shown in (C) and (D), 1364 
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respectively. The alternation between SO and THE epochs in (C) and between nonREM 1365 

and REM epochs in (D) is well visible in the marked block structure of the feature 1366 

similarity matrices. Unsupervised clustering identified 2 states under anesthesia or 1367 

natural sleep. 1368 
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1370 

Figure S4. Effects of global states on unit firing. Transitions between global 1371 

oscillatory states in both anesthesia and sleep significantly modulated the median firing 1372 

rate in mEC, mPFC and CA1 layers (A, top). Burstiness (B, bottom) was significantly 1373 

modulated during natural sleep only. Both firing rate and bursting indices were 1374 

heterogeneous across neurons, as emphasized by long box-plot whiskers. Single units 1375 

in mEC, mPFC and CA1 layers fired preferentially at well-defined phases of the 1376 

ongoing theta (B, top) and slow oscillation (B, bottom) rhythms as visualized by phase-1377 

binned histograms of spike count relative modulation, compared with reference average 1378 

LFP waveform cycles. Note that phase modulations were an order of magnitude 1379 

stronger during anesthesia than natural sleep.  1380 
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 1381 

Figure S5. Firing substates. (A) displays the firing, represented by blue dots, of 67 1382 

neurons recorded in layer 3 in mEC. The solid lines above indicate the global brain 1383 

states (THE and SO) identified using unsupervised clustering of the spectral features of 1384 

the field potential (as described in Figure S3). Unsupervised clustering identified three 1385 

sets of co-firing neurons (indicated by yellow, green and red solid lines), which are 1386 

clearly visible, during the recording time shown here. Note the alternation of the firing 1387 

substates, and the fact that global oscillatory state transitions (THE→SO→THE) do not 1388 

correspond to transitions between firing substates. Below, (B) and (C) represent the 1389 

dynamics of firing sets in mEC and CA1 during the whole recording session, where 1390 

squares across the diagonal represent different firing substates, as in (A).   1391 
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 1392 

Figure S6. Primitive operations in information processing: explanatory cartoons. 1393 

The information conveyed by the activity of a unit at a given time may have different 1394 

sources. A fraction of the total information conveyed at time t by a neuron i may have 1395 

already been present in i's past activity (A). Therefore, we say that this fraction of 1396 

information is being actively stored into neuron i by its activity, implementing a 1397 

“memory buffer”. The involvement of a unit into this primitive information processing 1398 

operation is quantified by its Active Information Storage score (see Figure 3). A 1399 

complementary fraction of the total information conveyed at time t by a neuron i may 1400 

have been present already into the past activity of a different neuron j (B). We say in 1401 

this case that this fraction of information is shared from j toward i, with time-lagged 1402 

mutual information providing a pseudo-directed measure of functional connectivity 1403 

(see Figure 4). 1404 
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 1406 

Figure S7. Information storage is brain state-dependent. (A) Relative variation of 1407 

active information storage values in the different mEC and CA1 layers between SO and 1408 

THE states during anesthesia. Different lines correspond to different rats. All values are 1409 

normalized to SO values for better visualization of the size and direction of effects. The 1410 

absolute values of active information storage during SO are indicated in the lower left 1411 

corner of each subpanel. During anesthesia, mEC layers have larger active information 1412 

storage values than CA1 layers. Generally, switching from SO to THE state tends to 1413 

reduce active information storage values. (B) Same as A but for mPFC and CA1 layers 1414 

during natural sleep. The active information storage has the same order of magnitude 1415 

for mPFC and CA1 but is lower than mEC during anesthesia. Furthermore, during 1416 

natural sleep there is no major general difference between REM and nonREM (as 1417 

opposed to SO/THE in A).   1418 
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 1419 

Figure S8. Substates of information sharing: additional information. We show here 1420 

additional typical feature similarity matrices Msim obtained from sharing strengths 1421 

Sharing_S(t) in CA1 during anesthesia (A) and natural sleep (D) (see also Figure 4). 1422 

As in firing and storage substates, (C) and (E) show that the participation of different 1423 

neurons to the information sharing was varying along time in a switching fashion 1424 

(arbitrary normalized units, smoothed time-series). The values reported above the plots 1425 

correspond to the average firing rate of the neuron b (green color) during the 1426 

corresponding epochs within consistent sharing substates. Sharing substates tended to 1427 
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occur during a preferred global oscillatory substate, as indicated by the bimodal 1428 

histograms in (C) for anesthesia and (F) for natural sleep (see also Figure 4D).   1429 
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 1430 

 1431 

Figure S9. Variations of information sharing as a function of the global brain 1432 

oscillatory states. (A) Relative percent variation of information sharing total strength 1433 

values between SO/THE states during anesthesia, averaged over different layers in 1434 

mEC and CA1. Different lines correspond to different rats and average values of sharing 1435 

strength in SO state are normalized to allow a simpler comparison of the size and 1436 

direction of effects for different layers, but absolute values of sharing strength in the 1437 

SO state, averaged over the different rats, are indicated in the lower left corner of each 1438 

subpanel. (B) Same as above but for different mPFC and CA1 layers during natural 1439 

sleep. We did not observe any systematic direction of change for sharing strengths when 1440 

switching from SO to THE states during anesthesia or from nonREM to REM during 1441 

natural sleep. mEC layers II and III during anesthesia were associated to the weaker 1442 

absolute values of sharing strengths and mPFC layer IV and CA1 SO during natural 1443 

sleep to the stronger values. 1444 
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 1446 

Figure S10. Coordination of substate transitions between brain regions. Sequences 1447 

of firing, storage and sharing substates do not show a perfect match between 1448 

simultaneously recorder regions, as visible from the state transition tables of a 1449 

representative simultaneous CA1/mPFC recording during natural sleep (A, top). To 1450 

quantify the level of interregional coordination between substate transitions we 1451 

evaluated the mutual information between matching substate sequences in the two 1452 

simultaneously probed regions (A, bottom). We also estimated the corresponding 1453 

chance levels of coordination, by repeating the same procedure on shuffled state 1454 

transitions sequences. For all features, we find that the sequences are loosely coupled 1455 

between regions, but still far above chance level (B). Vertical bars denote the 99% 1456 

confidence interval (bootstrap with replacement for original data, permutation-based 1457 

for shuffled data, 1000 replicas in both cases). This specific graph is built using the 1458 

example in (A).  1459 
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 1460 

Figure S11. Calculation of complexity of the state switching table. (A) A given 1461 

recording can be represented by the superposition of 3 sequences of substates for each 1462 

feature (firing, storage, sharing). (B) At any point in time, the triplet of substates can be 1463 

represented as a word made of three substate letters. For simplicity, the letters are color-1464 

coded, and a word is represented by a letter from the alphabet (A, B, C etc.). (C) A state 1465 

switching table T is the temporal sequence of words with one word per analysis window 1466 

tA as defined in Figure 1). There are two ways to represent the sequence of words. 1467 

Dlist(T ) lists the positions at which the words appear (e.g. at window 1, 2, 3, 4, 5, 6, 7, 1468 

12, 13, 14, 15, 16…). This representation is exhaustive, but not compact. Dblock(T ) lists 1469 

how many positions one should skip from the start of the sequence before writing and 1470 

in how many consecutive positions the considered word should be printed. In the 1471 

example shown here, the word “A” occurs at the beginning of the string – zero positions 1472 

skipped – and is then printed seven times. After, 4 positions are skipped, and it is written 1473 

again 5 times, etc. This representation is more compact. Complexity is given by the 1474 

ratio between the lengths of the descriptions Dblock(T ) and Dlist(T ). 1475 
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 1477 

Figure S12. Burstiness and Used Dictionary Fraction explain complexity. 1478 

Complexity linearly increased with burstiness (A) and Used Dictionary Fraction (B). 1479 

(C) Lempel-Ziv (LZ) complexity as a function of our measure of complexity. The two 1480 

complexities were highly linearly correlated, and results of complexity analyses were 1481 

thus qualitatively the same using either one of the two measures. We plot together 1482 

results for complexity analyses restricted to SO/nonREM states (light blue dots), to 1483 

THE/REM states (dark blue dots) or over all states combined (grey dots), as no 1484 

significant differences were observed between the three groups with respect to the 1485 

plotted linear trends. 1486 

 1487 
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1489 

Figure S13. Additional robustness analyses. (A) Lagged mutual information terms 1490 

between spike trains, the building block terms of both storage and sharing features, 1491 

quickly decay as a function of the considered lag τ, justifying our choice to integrate 1492 

MI only for latencies up to an average theta cycle period (~125 – 250 ms depending on 1493 

recordings). The red dashed line refers to a representative individual link, associated to 1494 

a specific pair of units, and show some additional peak. However, these secondary 1495 

peaks are much smaller than the main peak for very short latency and are not aligned 1496 

for different pairs of units so that they are averaged out away when averaging over 1497 
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multiple outgoing links originating from a same unit (solid blue line). (B) Our procedure 1498 

for substate extraction is robust against changes of the bin size. We considered four 1499 

different choices of bin size different from the original choice of 50 ms, extracted 1500 

substate sequences for each of these new bin choices and computed mutual information 1501 

between the newly obtained and the original corresponding substate sequences. Shown 1502 

here are the relative fraction of retained information for different bin sizes and substate 1503 

types (evaluated on a representative recording, mPFC, natural sleep, the same as for 1504 

figure S10). Across all features, the fraction of information retained about the substate 1505 

sequences for the main reference bin size of 50 ms is two orders of magnitude above 1506 

chance levels, with sharing being most effected. Vertical bars denote 99% confidence 1507 

interval (bootstrap with replacement for original data, permutation-based for shuffled 1508 

data, 1000 replicas in both cases).  1509 

 1510 
 1511 

Supplementary tables 1512 

 1513 

Table S1 – Percent of information about substate sequences in empirical 1514 

recordings retained after shuffling 1515 

Substate Anesthesia Natural Sleep 

Spectral 2.55×10-9, 1.58×10-4 1.47×10-8, 5.43×10-4 

Firing 6.13×10-5, 5.71×10-4 9.78×10-5, 5.71×10-4 

Sharing 4.68×10-4, 1.13×10-3 2.66×10-4, 1.42×10-3 

Storage 9.49×10-4, 1.15×10-3 4.15×10-4, 1.61×10-3 

0.1% and 99.9% percentile of MI/H for state sequences. The very low values of these 1516 
amounts of relative information indicate that the observed state sequences strongly 1517 
deviate from a null hypothesis of lack of temporal structure 1518 
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