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1 Abstract

Mass spectrometry based proteomics is the method of choice for quantifying genome-wide differential

changes of proteins in a wide range of biological and biomedical applications. Protein changes need to

be reliably derived from a large number of measured peptide intensities and their corresponding fold

changes. These fold changes vary considerably for a given protein.

Numerous instrumental setups aim to reduce this variability, while current computational methods only

implicitly account for this problem. We introduce a new method, MS-EmpiRe (github.com/zimmerlab/MS-

EmpiRe), which explicitly accounts for the noise underlying peptide fold changes. We derive dataset-

specific, intensity-dependent empirical error distributions, which are used for individual weighing of

peptide fold changes to detect differentially abundant proteins. The method requires only peptide in-

tensities mapped to proteins and, thus, can be applied to any common quantitative proteomics setup.

In a recently published proteome-wide benchmarking dataset, MS-EmpiRe doubles the number of cor-

rectly identified changing proteins at a correctly estimated FDR cutoff in comparison to state-of-the-art

tools. We confirm the superior performance of MS-EmpiRe on simulated data. MS-EmpiRe provides

rapid processing (< 2 min) and is an easy to use, general-purpose tool.
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2 Introduction

A major fraction of current Mass Spectrometry (MS) based proteomics experiments is quantitative

in nature and aims at the detection and quantification of differentially expressed proteins between

biological conditions [1]. As MS measurements are subject to substantial noise, researchers have to rely

on statistical tests which detect changing proteins at a given false discovery rate (FDR). The de-facto

value of a quantitative proteomics experiment could hence be defined by the overall sensitivity (i.e.

the fraction of all changing proteins, which is actually detected by a statistical test) at a reasonable

FDR. Huge instrumental efforts are being undertaken to increase the overall sensitivity [2, 3, 4, 5, 6],

nevertheless, protein quantification remains a challenging task. In general, protein level intensities have

to be inferred from peptide level intensities. This is complicated by the fact, that two peptides of

the same protein - even though they are equally abundant in the sample - can be orders of magnitude

different from each other in their measured intensities, for example due to differing ionization efficiencies

[7] of the peptides. Additionally, ions with similar mass can interfere with the quantified peptides and

distort the signal [1]. As many more low intensity than high intensity signals are present in a sample,

interference of low intensity signals is common. A further challenge is due to missing values in the data.

This denotes peptides that are only identified in some of the samples and missing in the other samples.

Several setups are available for quantitative proteomics. In label free quantification (LFQ), each sample

is measured in an individual liquid chromatography tandem mass spectrometry (LS-MS/MS) run and the

peptide intensities are compared between the runs. In the most widely used setup, peptide intensities

are derived from the full (MS1) scans [8]. The sets of peptides identified in each run are often not

identical and, therefore, lead to missing values. This problem can be adressed by matching the MS1

peaks in the neighboring runs, but this solves the problem only to a limited extend.

A quantification approach that is less computationally challenging is chemical labeling via tandem mass

tags (TMT) [9]. For TMT, up to 11 samples are isobarically labeled on the peptide level and mixed
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before submission to LC-MS/MS. The labels have reporter ions of distinct masses, which are detected in

the fragmentation spectrum. Depending on the machine type, the fragmentation spectrum for reporter

ion quantification can be a classical MS2 spectrum, or an intensity reduced MS3 spectrum, which is

generated by further fragmentation of MS2 fragments [3].

In general, the challenges of protein inference, differing ionization, noisy peptide data and missing values

are expressed to a certain degree in all quantitative MS setups and computational approaches have to

deal with them appropriately.

A common approach for differential expression analysis is to derive protein level fold changes from

the peptide fold changes and to apply statistical tests such as the t-test to assign a significance to it.

This approach is for example implemented in the Perseus pipeline [10]. Peptide level models have been

proposed [11, 12] and have recently been shown to offer superior performance compared to protein level

approaches [13, 14, 15]. A recent implementation is given in the MSqRob package [14]. The majority

of peptide level models are based on linear regression, which can be problematic for data with strong

distortion, outliers, or small peptide numbers. We propose an orthogonal approach, consisting of the

direct assessment of peptide level noise, which we term Mass Spectrometry analysis using Empirical

and Replicate based statistics (MS-EmpiRe). We introduce empirically generated, intensity dependent

error fold change distributions and utilize this for between-sample normalization and to derive differential

expression probabilities for each peptide. We then show that these probabilities can be combined to

the protein level via a modified Stouffer method [16]. The data for MS-EmpiRe can be measured with

a variety of quantitative proteomics setups, as we need only peptide intensities grouped to proteins as

input. We test the performance of the method on a recently published proteome wide benchmarking

dataset of O’Connel, Gygi and coworkers [17], containing LFQ as well as TMT-MS3 data. With MS-

EmpiRe we observe up to 121% more sensitivity in comparison to the approach reported in O’Connell

et al. We additionally compare our approach with the peptide level tool MSqRob and see similar
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performance increases. On simulated differential expression changes, we see similar performance results

as on the benchmarking set and demonstrate MS-EmpiRes superior classification abilities.

MS-EmpiRe is available as a R package on GitHub (github.com/zimmerlab/MS-EmpiRe).
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3 Methods

3.1 MS-EmpiRe compared to state-of-the-art approaches

We compare our method with two current methods, MaxLFQ with Perseus [8, 10] and MSqRob [13, 14],

which have different strategies of solving the challenges associated with MS based protein quantification

(Tab. 1). For the comparison, we focus on the principle steps of differential quantification: Normaliza-

tion between different experimental samples, the statistical test applied, derivation of the corresponding

test statistic (which represents the protein level change), estimation of the variance parameter(s) of the

statistical test and outlier correction. In MaxLFQ, normalization is carried out by minimizing the sum of

peptide level fold changes with run specific normalization factors. The sum is taken over all runs, also

between conditions, with the underlying assumption that most of the proteins do not change. Several

statistical tests can be applied to MaxLFQ data, where the t-test shows best performance [8]. The test

statistic used in the t-test is the difference between the mean protein level LFQ intensities per condition.

The LFQ intensities are pseudo-intensities derived from the median of the peptide level fold changes.

The variance of the t-test is derived from the variance of the LFQ intensities between replicates. Outliers

are implicitly taken care of by taking the median of the peptide level fold changes as a reference for the

LFQ intensity.

The MSqRob method relies on a linear model, similar to the limma method for microarray data [18].

The linear model describes each peptide intensity as a composition of 4 different effects: The effect of

the technical replicate, the effect of the biological replicate, the effect of the peptide specific ioniza-

tion and the effect of protein level regulation. The normalization step is hence included in the linear

model estimation. MSqRob uses the t-test as a statistical test. The test statistic is derived from the

protein level regulation effect. Ridge regression and an empirical bayes appraoch are used to stabilize

the intensity estimates and the protein level variance, respectively. To reduce the effects of outliers,
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M-Estimation with Huber weights is used, which shrinks the effect of high-residual observations [14].

MS-EmpiRe carries out normalization based on peptide level fold change distributions. Between-replicate

distributions are used, which ensures that the fold change distribution should be centered around zero.

The statistical test applied is a slightly modified version of the Stouffer method. This way, individual

peptide level probabilities for regulation can contribute to the test statistic. The peptide level probabili-

ties are derived from the peptide fold changes in the context of empirical, dataset-specific and intensity

dependent background distributions. The variance estimation is hence carried out via these distribu-

tions. This allows a refined weighing of the influence of peptide noise on a given fold change. Outlier

detection is carried out by explicitly modeling the influence of outlier signals and downscaling of outlier

peptides.

MS-EmpiRe MaxLFQ MSqRob

Normalization Median/Mode of peptide fold change dis-

tributions (only replicate samples)

Minimization of peptide fold changes (all

samples)

Estimation of sample specific contribution

via linear model

Fold change estimation Maximum likelihood estimation from pep-

tide fold change distribution

Fold change of MaxLFQ protein intensities Estimation of condition specific contribu-

tions via linear model

Variance estimation Empirical and Replicate based peptide dis-

tributions

Protein-level sample variance Empirical Bayes Estimation

Outlier detection Signal scoring based on outlier distribution,

downscaling of outlier peptides

Median of peptide fold changes M-Estimation with Huber weights

Statistical test Modified Stouffer’s method t-test Moderated t-test

Test statistic Sum of Z-transformed, background normal-

ized peptide fold changes

Difference of MaxLFQ protein intensities Estimation of condition specific contribu-

tions via linear model

Table 1: The two state-of-the-art differential quantification methods MaxLFQ (with t-test) and MSqRob com-

pared against MS-EmpiRe.
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Figure 1: Single linkage clustering for signal normalization. 1) We start with one cluster containing two samples

(green) and three clusters of size one. We identify the two nearest clusters (grey and blue) and merged them to

one new cluster by shifting the signals of the grey sample according to the median log2 fold change to the blue

sample. 2) We merge the green and blue cluster. Since they both consist of multiple samples, we determine

the shift parameter by computing signal fold changes between any possible inter-cluster sample pair. 3) The last

cluster merge step 4) The algorithm results in one cluster containing all samples. 5) The two final clusters of

different conditions are merged (blue and red). The resulting distribution of all inter-cluster fold changes is shown

below.

3.2 Normalization

Mass spectrometry data suffer from sample specific effects, i.e. systematic perturbations which affect

whole samples. For instance, the total amount of protein which is processed per run has a significant

effect on the signal measured per peptide. Raw signals originating from two different samples are

therefore hardly comparable. To correct for sample specific effects, all signals of a sample are typically

multiplied by a scaling factor. In the context of RNA sequencing data, which are subject to sample
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specific effects as well, procedures to detect appropriate scaling factors are introduced e.g. by DESeq

and edgeR [19, 20, 21]. While DESeq finds scaling factors by comparison of every sample to a virtual

sample, edgeR computes all pairwise scaling factors. Both methods use the median of many gene level

fold changes as an estimate for the scaling factor. MaxLFQ [8] is a normalization procedure for mass

spectrometry data. Instead of relying on the median, MaxLFQ solves a system of linear equations to

identify scaling factors such that the change of peptide signals between any two samples (and fractions)

is minimized.

All previously mentioned normalization procedures rely on the assumption that most of the signals

do not change between any two samples, even when samples from different experimental conditions are

compared. We propose to reduce this assumption to samples from the same experimental condition (i.e.

replicate samples) and use a different factor to normalize between conditions.

Normalization within a condition in MS-EmpiRe is done by single linkage clustering as described in

Fig. 1. Each cluster contains either one or multiple samples. We start with as many clusters as we

have replicates and successively merge the two most similar clusters until we end up with one cluster

that contains all samples. Similarity between any two clusters is defined as follows: For two samples, we

compute a fold change distribution. We build every possible sample pair between the two clusters and

compute the fold change for every peptide which was detected in both samples of a pair. The variance

of this distribution is used to determine the similarity between clusters while the median is used as an

estimate for a systematic signal shift. To merge two clusters c1 and c2 we scale all signals of samples in

c2 by the median. This step yields a new cluster that contains all samples from c1 and c2 and in which

all samples are shifted onto each other.

Single linkage clustering is applied to each condition separately. Samples from two different condi-

tions are then shifted in a similar way, the difference is the selection of the shift parameter. Since we

can no longer assume that none of the peptides changes, we propose to use the most probable fold
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changed from the distribution instead of the median. This choice similar to the idea of centralization

proposed by Zien et al. [22]. Instead of enforcing a minimal change between all peptides, this shift

only targets the majority of peptides. and is still in accordance with the assumption that most proteins

do not change. The shift parameter can also be defined by the user using prior knowledge for certain

subsets of proteins for example.

After the normalization, signals for the same peptide between any two samples are comparable.
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Figure 2: Schematic of the MS-EmpiRe workflow. 1) All identified peptides from a proteomics run are sorted by

their mean intensities. 2) The peptides are the split into subgroups based on their intensity. For each subgroup,

the error fold changes of the individual peptides are calculated. An error fold change simply denotes the log2

fold change of a peptide between two replicate conditions. All error fold changes within a subgroup form an

empirical error distribution. Distributions corresponding to lower intensity peptides show a larger variance than

for high intensity peptides. 3) When a protein is tested for differential quantification, each peptide gets assigned

an empirical error distribution. Peptides of similar intensities can get the same distribution assigned. 4) For each

peptide fold change, the probability that this fold change happened by chance (e.g. the p-value) is assessed

from the empirical distribution. This means that the same fold change will get a much lower p-value when

the distribution is wide as compared to when it is narrow. To make this value manageable, the p-value is then

transformed to a Z-value, by transferring the mass of the empirical probability distribution to a standard normal

distribution. 5) The Z-values for each peptide are corrected for outliers. For this, the probability is estimated

that a high Z-value on the peptide level has happened by chance due to individual outliers. 6) The corrected

Z-values can directly be summed to the protein level and the corresponding protein-level FDR can be obtained

after multiple testing correction.
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3.3 Empirical error distributions

Our goal is to detect differentially abundant proteins between different conditions. However, only peptide

level measurements are available from current standard MS experiments and protein level changes have

to be inferred. We argue, that each peptide level change should be assessed in context of the noise

associated with the measurement. MS-EmpiRe is therefore centered around replicate based empirical

error distributions (Fig. 2.1 and 2.2). The empirical error distribution is fully based on the data and

derived as follows: We compute the log2 fold change of every peptide signal between any two replicate

pairs in each condition. As the log2 fold change between replicate samples should be zero, each

deviation from zero can be seen as an error. This results in one large collection of errors, approximately

C × N(N−1)
2 × P for C conditions with N replicates each and P detected peptides. Since we observed

that the variance of peptide measurements depends on signal strength (Fig. 3 e) we decided to split the

complete distribution into intensity dependent sub-distributions. Each of the resulting sub-distributions

contains just a subset of all peptide fold changes. For the construction we sort the peptides ascending to

their mean signal strength. We slide a window over the sorted list of peptides to determine the relevant

subset for each distribution. The window size and how far it is shifted in each step are parameters that

can be controlled by the user. Adjusting it can increase the resolution of the sub-distributions at the cost

of computational time. The default window size is 10% of the total number of peptide measurements

with a maximum of 1200. The size of the shift is set to 1
8 of the actual window size. Note that each

peptide may appear in multiple sub distributions if the shift is smaller than the window size. To assign

each peptide to only one sub-distribution, we save the mean signal of the first and last element of each

distribution. We then calculate the distance of the mean signal to the start and end of each distribution

for every peptide. Each peptide is then assigned to a distribution such that the minimum of those two

distances is maximized, i.e.

max
sub

(min(|substart − s|, |subend − s|)) (1)
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After this step we have a collection of empirical error distributions that describe the observed measure-

ment errors in relation to signals.

Any observed peptide fold change can now be put into context of the background noise. This

allows to determine the probability of the peptide fold change under the corresponding empirical error

distribution. We denote this probability as the empirical p-value.

3.4 Merging scores over replicates

We can now determine the empirical p-value for every peptide between any two samples. What we rather

want, however, is the same information for whole proteins between two conditions including replicate

data. This means we have to express the empirical p-value in terms of a score that we can combine over

replicates as well as peptides. Furthermore the score should be able to distinguish between negative

and positive fold changes. This way we can identify groups of peptides that consistently show the same

direction of change between multiple replicate pairs. One score fulfilling these criteria is the Z-value,

i.e. a score that follows a standard normal distribution. We can transform an observed fold change into

the corresponding Z-score as follows:

Zfc = φ−1(pemp) (2)

where φ−1 is the inverse of the cumulative distribution function of the standard normal distribution and

pemp is the empirical p-value. This is analogous to Stouffer’s method [16] for combined probability tests.

This means we can transform any empirical error distribution to a standard normal distribution (Fig.

2.4). In the following sections we will show how those Z-scores can be transformed to joint probabilities

over replicate data as well as multiple peptides.

To distinguish between background noise and signals, usually not only 2 samples, but N vs M

replicate measurements from two different conditions are compared. Those yield up to N ×M scores

per peptide which are merged to make a protein-level statement between the two conditions. Under the
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null hypothesis of no change, each of the N×M Z-values follows a standard normal distribution. Under

this assumption, we can simply compute the sum of the N ×M standard normally distributed Z-scores

which follows a normal distribution as well. Looking at the sum is reasonable for the following reasons:

It should become extreme only if we have multiple measurements that consistently deviate in the same

direction. Too few too weak deviations are canceled out by the non deviating measurements. The same

is true for strong deviations in different directions. The mean of the resulting normal distribution is zero

as it is the sum over the individual means. In general, the variance of a random variable that is the sum

over multiple random variables is the sum over the full covariance matrix of the variables, i.e.

var

(
N×M∑
i=0

Xi

)
=

N×M∑
i=0

N×M∑
j=0

cov (Xi, Xj) (3)

The means and variances are known for each of the variables since they follow a standard normal

distribution. We are also able to compute the covariances for dependent variables. This is necessary

because some of the possible sample comparison are not independent, in particular any two sample

pairs that share either the first or second sample. It can be shown that the covariance of two Z-scores

random variables that share one of the samples is 0.5 (Supplementary Material, Section 1).

For each peptide, we can now unexpectedness under the previously derived background distribution

over all sample pairs.

3.5 Correcting for outlier measurements

One problem about the sum described in the previous section, is that it is susceptible to single outlier

measurements. A single extreme Z-score can be sufficient to make the resulting sum significant. This

is because of the null hypothesis that each of the sample pair comparisons must not be differential. We

therefore introduce a correction to estimate the probability, that a single outlier shifts the distribution

towards higher values (Fig.2.5). For this correction, we estimate the Z-value of the peptide when it is not

regulated (Znormed)and substract it from the original Z-value (Zorig). Znormed is estimated as follows:
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We compute all possible fold changes of the peptide between two conditions (replicate 1 vs. replicate

1, replicate 1 vs. replicate 2, etc.). This results in a (very small) fold change distribution. Analogous to

section 3.2, we use the median of this distribution as a scaling factor and shift all signals of the second

condition by the median. This minimizes the difference of signals between the two conditions and

simulates a non-regulated peptide. We again compute the summed Z-value for those shifted peptides,

i.e Znormed. If the peptide measurements were differentially regulated previous to the shift, Znormed

would be less extreme than Zorig. If the shift does not change the signal, Zorig and Znormed are more

or less the same. We can hence introduce a new value Zcorrected = Zorig − Znormed, which denotes

the difference between a regulated and a non-regulated shift. We now want to use the distribution of

Zcorrected to estimate, how unlikely an observed Zcorrected value is. The higher abs(Zcorrected) is, the

more extreme the original measurement was.

However there exists no closed form for the distribution of Zcorrected. We therefore sample such a

distribution by simulating a set of non-differential measurements. For each simulated measurement, we

compute Zcorrected. Similar to Eq. 2, we look up the cumulative probability of a measured Zcorrected

in the simulated distribution of Zcorrected and transform its empirical p-value to a Z-value. Whether

this correction is needed may depend on the data. After the correction we end up with a score which is

standard normally distributed under the null hypothesis of no change.

3.6 Correcting for outlier peptides

The previous section shows how to correct for outlier measurements of single intensities. Peptides that

show a much more extreme change over many samples than the remaining peptides of the same protein

have to be accounted for separately. To detect outlier peptides, we compute fold changes for every

peptide and sample pair of the same protein. If the median of a single peptide is more extreme than

the 25%/75% quantile of the whole protein distribution and protein and peptide are shifted in the same
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direction, it is marked as an outlier.

To compute Znormed for an outlier peptide, we shift the signals by the 25%/75% quantile of the

protein distribution instead of the median of the peptide distribution. This modified shift results in a

less extreme Zcorrected for the peptide.

3.7 Combining the peptide scores

What we have so far is a Z-score that expresses how likely it is for a peptide fold changes over all

possible replicate comparisons to occur by chance. Each of those Z-scores follows a standard normal

distribution.

Similar to the first step of merging the peptide scores over all replicate pairs, we can join those scores

for all peptides from the same protein (Fig. 2.6). In contrast to measurements for the same peptide

from different sample pairs, peptide measurements can be regarded as independent measurements for

the same protein. This means that under the null hypothesis that every peptide score is a standard

normal distributed variable, the sum of such peptide scores is distributed

P∑
i=0

Zi ∼ N (0, P ) (4)

with P being the number of different peptides mapped to a certain protein. Using this sum of peptide

score we can now express the probability of a protein under the null hypothesis of no change while

taking into account all replicate measurements. To correct for multiple testing we finally apply the

Benjamini-Hochberg false discovery adjustment.

3.8 Re-processing of the proteome wide benchmarking dataset

We downloaded the raw data of the study of OConnell et al. [17] from the PRIDE repository PXD007683

and processed the TMT as well as the LFQ dataset with MaxQuant [23] version 1.6.0.16 with stan-

dard settings and the respective quantification set (11 plex TMT-MS3 and LFQ). Each set contained
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three conditions: 10% yeast spike-in, 5% yeast spike-in, 3.3% yeast spike-in. For 10% yeast spike-in,

three replicates were measured, for 5% and 3.3%, four replicates were measured. The datasets were

searched against a combined yeast (7904 entries) and human (20317 entries) database downloaded from

Uniprot (04/2018, reviewed). Specific digestion was set for trypsin with two missed cleavages allowed.

Carbamidomethylation of Cysteine was set as a fixed modification and Oxidation of Methionine and

N-terminus Acetlyation were set as variable modifications. 20ppm mass tolerance were set for precursor

ions und 0.5m/z were set for fragment ions. Results were filtered to 1% FDR at the peptide-spectrum-

match (PSM) and protein level. For the LFQ data, the match between runs option was set (default

configuration). We compared the number of identified proteins with the results reported from O’Connell

et al. and observed only slight differences, possibly due to different databases and MaxQuant versions

(-2% for TMT and -1% for LFQ for our protein). Hence the numbers are a bit different but should not

influence the overall outcome. We found around 400 proteins after filtering in the Perseus/MaxLFQ

setup, which agrees well with O’Connell et al. As we used MaxQuant instead of SEQUEST [24] for

the TMT analysis, we had a noticeably lower identification rate (around 100 proteins less compared to

the SEQUEST results presented in the main text of O’Connell et al.). This is similar to the number of

MaxQuant results for TMT, reported in the supplement of O’Connell et al.

3.9 Filtering of the benchmarking dataset

Between the different tools, we noticed large differences in the number of proteins that are actually

submitted to statistical testing. MaxLFQ with Perseus showed the most conservative filtering, while

MSqRob was most permissive. Most impact on the filtering had the decision, whether to also accept

proteins with only one quantified peptide value. With only one peptide per protein, a misidentified pep-

tide can immediately lead to a false classification. As in MS-EmpiRe, a peptide needs to be consistently

quantified over multiple replicates to gain significance, the probability for such an event decreases and we
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hence decided to also use a less conservative filtering of only one peptide per protein. We also compared

the one-peptide with the two-peptide approach and saw no significant effects on the FDR (see supple-

mental Fig. 5). This underlines that MS-EmpiRe is designed appropriately deal with sparse peptide

evidence caused by many missing values. For filtering of MS-EmpiRe the following peptides/proteins

were excluded: reverse peptides and contaminants, peptides mapping to yeast as well as to human and

proteins quantified in only one replicate.

3.10 In silico benchmarking

The HeLa background proteins from the study of O’Connell et al. were normalized via MS-EmpiRe and

each sample was considered a replicate measurment. This resulted in 11 quasi-replicate runs, out ouf

which 6 were randomly chosen. The 6 replicate measurements were split into two sets with 3 replicates

each. One of the sets was chosen for in silico expression changes. For the selected set, a subset of

the proteome was chosen and was artificially ”regulated”. For each protein in the subset, an expression

change factor was drawn from a distribution. The peptide level changes for the protein change were then

sampled around this factor. The changed and the unchanged subset were then compared as two separate

experiments with MS-EmpiRe. As in the benchmark it was known which proteins were regulated, the

differential quantification performance (sensitivity, specificity etc.) could be assessed.
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4 Results and Discussion

4.1 Fold change based normalization reveals structure of the benchmarking dataset

We used the benchmarking dataset from the study of O’Connell et al. [17], where yeast is spiked into

human cell lysate at different concentrations (10%, 5% and 3.3%) (figure 3a). Hence, when comparing

the abundance of yeast proteins e.g. in the 10% sample with the 5% sample, one expects a fold change

of 2 for each yeast protein. The two other combinations 5% vs. 3.3% and 10% vs. 3.3% give a fold

change of 1.5 and 3, respectively. When applying a differential quantification algorithm, the changing

proteins are known (e.g. the yeast proteins) and, thus, measures like specificity and sensitivity can be

assessed. The samples were measured twice, once using a TMT-MS3 approach and once using label

free quantification (LFQ). To visualize the normalization procedure employed by MS-EmpiRe, we used

the LFQ dataset. Between every sample pair, we calculated the log2 fold change for each individual

peptide. This resulted in a distribution of fold changes for each sample pair, which was either a between

replicate, or a between sample distribution. For the between replicate distribution, we would only

expect deviations from 0 due to measurement errors or biological variation and, therefore, we call this

distribution the empirical error distribution. For the between sample distribution, we would only expect

systematic deviations from 0 for the regulated proteins. In Fig. 3b, the between sample distributions are

displayed before normalization. For clarity, human proteins (which should not change at all) and yeast

proteins (which have systematic changes applied to them) are displayed separately. We can already see

some trends in the distributions, which underlines the fact that the fold change based view is an intuitive

measure for quantitative datasets. When applying subsequent between-replicate and between-sample

normalization, as described in the methods section, we obtain the visibly clustered distributions displayed

in Fig. 3c. The human peptides (around 90% of peptides) are not shifted and distributed around 0.

The yeast proteins are aligned around the shift that was experimentally applied to them (i.e. the log2
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transformation of 1.5, 2 or 3). If too much or too little yeast had been applied to one of the samples,

this would reflect in a stronger deviation in a subset of the replicate distributions. This is not the case

in our dataset and we see with slight deviations- an alignment around the desired value (dashed lines).

In a real life example, we would not expect systematic changes around one fold change in one direction,

but larger spread deviations in both directions. The example, however, visualizes that a fold change

based approach on quantitative data sets is an effective procedure to normalize datasets without altering

the structure of the underlying data. In general, the distributions reveal a ubiquitous problem in MS

based proteomics data. The data is so noisy, that a lot of the measured yeast peptides do not even

show regulation. This is most striking for the 1.5 set, where around one quarter of the peptides show

no regulation, or even regulation into the wrong direction. Hence and there is no way to classify these

peptides correctly by themselves. Since usually, multiple replicates and peptides exist for a protein, the

quantification of a protein can be seen as multiple drawings from such a distribution. This underlines

that peptide fold changes should always be analyzed in the context of the dataset specific noise.
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Figure 3: Experimental setup and fold change based metrics. a) Benchmarking setup for quantitative assessment

of fold changes taken from OConnell et al.[17]. Different amounts of yeast lysate are spiked into human cell lysate.

The three groups contain 10%, 5% and 3.3% yeast lysate, respectively. b) Peptide level fold change distribution

between all conditions, before normalization. c) The distribution after fold change based normalization. e)

Intensity dependent peptide fold changes between two replicates of the LFQ data (error fold changes), displayed

as smoothed density scatter plot. f) Error fold changes for 10 intensity regions displayed as box plots. Each box

contains the same number of data points. The quantiles correspond to the fractions 0.05, 0.15, 0.50, 0.85, 0.95.
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4.2 Assessment of empirical error distributions underlines the importance of context

dependent fold changes

As already described in the methods section, one of the key features of the MS-EmpiRe algorithm is the

quantitative assessment (and subsequent utilization) of fold change consistency. For this we make use of

the fact that the log fold change between replicate measurements should be 0, which allows us to derive

empirical error distributions containing the fold changes of peptides between replicate measurements.

These distributions have already been discussed in the previous section and the human peptides displayed

in Fig. 3c are a good example. However, when looking at the empirical error distributions over a whole

dataset, as in the previous section, we neglect the well-known fact that low-intensity peptides are

subject to significantly more variation than high intensity peptides. An intuitive way to visualize this

is by plotting the error fold changes against the mean intensities of the peptides, as displayed in Fig.

3d). In this density scatter plot, we see that the majority of peptides is actually of low intensity and

in the low intensity region a large spread of the fold changes is visible. Furthermore, we see global

dependence of the error fold changes on the intensity and high intensity peptides are much less prone

to deviate strongly from 0. Nevertheless, outliers exist for all intensities, which underlines the need for

a more quantitative assessment. This is depicted in Fig. 3e), where empirical error distributions are

given for distinct intensity bins. The original fold change distribution is split into 10 boxes and each box

contains equal amounts of data points. We see that the lowest intensity box is particularly noisy, with

around 40% of the data above a fold change of 1.5 (log2 fold change of around 0.6). Hence, if a low

intensity peptide has a 50% intensity increase from one condition to the other, the likelihood that it is

an actually irrelevant change is at around 40%. When we consider the highest intensity box, this value

drops from 40% to around 5%. Identical fold changes hence have a very different meaning, depending

on the context. The MS-EmpiRe approach transforms an observed fold change in the context of its

corresponding empirical error distribution and, therefore, quantitatively accounts for this phenomenon.
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Especially, as every datasets carries its own noise, and e.g. TMT-MS3 data shows significantly reduced

noise (see supplemental Fig. 4) the empirical assessment for each dataset is crucial.

4.3 MS-EmpiRe shows up to 121% sensitivity increase compared to state of the art

approaches

The key question addressed in the setup of O’Connell et al. [17] is, how many proteins can be detected as

differentially expressed in a proteome wide benchmarking setup. Analogous to their paper, we assessed

how many of the experimentally shifted yeast proteins we were able to detect via MaxLFQ coupled

to the Perseus pipeline. We then compared this approach with our MS-EmpiRe approach and the

recently published tool MSqRob. Perseus was executed analogous to the settings given in O’Connell et

al. (reverse and contaminant filtering, at least two replicate measurements per protein and two sided

homeoscedatic t-test with Benjamini-Hochberg correction) and MSqRob was executed with default

settings. A FDR of 5% was set for all approaches. In Fig. 4a) and 4b), we show the results of the

benchmark for the more challenging LFQ setup. The number of peptides available for testing differs

markedly, depending on how conservative the corresponding tool is in filtering peptides for quantification

(see also methods section). MS-EmpiRe clearly outperforms Perseus in terms of sensitivity, with up to

120% more differential protein detections in the fold change 1.5 setup. When comparing MS-EmpiRe

with MSqRob, it seems that MSqRob is slightly more sensitive. However, for MSqRob the observed

FDR (i.e. the number of human proteins detected) is between 9% to 15% instead of the required 5%

for MSqRob. Perseus and MS-EmpiRe also violate the FDR in the fold change 2 setup, but only by 1

and 2 percentage points, respectively. To make the sensitivity analysis more comparable, we show an

FDR corrected bar for MSqRob, where we set the FDR cutoff of MSqRob to a more stringent value

(see methods section), such that the actual FDR is also at around 5%. In this setup MS-EmpiRe

outperforms MSqRob in terms of sensitivity in all cases and detects more than twice the number of
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proteins of MSqRob in the most challenging fold change 1.5 setup. As MS-EmpiRe and Perseus both

violated the FDR for the fold change 2 dataset, we looked at the corresponding data in more detail. We

saw that many of the misclassified human proteins in the dataset were particularly tough cases, where

many peptides over many replicate conditions show consistent up- or down regulation (see supplemental

table 1). Of course, cases like this are included in the FDR estimation. However, the condition seems

to show over-proportionally many cases of consistent protein up-regulation. We considered tuning the

FDR estimator to be more conservative, but took into account that the FDR violation was only mild and

that neither the other benchmarking conditions, nor the simulations showed further FDR violations. As

slight regulation or systematic distortions might always occur under experimental settings, we decided

to leave the model as is. The setup shown in Fig. 4a contains the input sets after the individual filtering

applied by each method. This corresponds to a real-life application of the methods, but also reduces

the comparability of the classification capabilities. We hence compared each method on the same set of

peptides, which consisted of the intersection of all input peptides. This led to a significant decrease of

the number of proteins detected. Interestingly, the drastic reduction of input peptides strongly increased

the number of detected proteins for MSqRob for the 1.5 set. This implies, that MSqRob is prone to give

an over-optimistic scoring to proteins with sparse peptide evidence and hence more stringent filtering

might be appropriate. In the fold change 1.5 set, MSqRob also does not violate the FDR constraint.

In the two other sets, the peptide filtering does not seem to suffice to control the FDR and also for

MS-EmpiRe the fold change 2 set still violates the FDR slightly. Nevertheless, MS-EmpiRe is the most

sensitive method over all sets. When comparing the methods on the less challenging TMT data set in

Fig. 4c), we see overall high sensitivity, which is also discussed in O’Connell et al. Also here, we see

a substantial increase in sensitivity of around 20% compared to Perseus, when considering the 1.5 fold

change set.
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Figure 4: Assessment of the differential detection performance on the benchmarking setup of OConnell et al.

a) Number of proteins detected in the LFQ data by the Perseus setup, MSqRob and MS-EmpiRe. The light

shades show the numbers of yeast proteins accessible for testing in the setups, which differ for every method.

As MSqRob shows high FDR rates (bottom plot), an FDR-corrected bar is introduced for MSqRob. Perseus

shows low sensitivity at good error rate control similar to MSqRob. Perseus is very conservative for the fold

change 1.5 setup, with no false positives (no bar visible). MS-EmpiRe increases the detection substantially in all

cases with good error rate control. This is most pronounced in the most challenging fold change 1.5 setup. b)

Number of proteins detected when using an intersected input set. Due to this conservative approach the numbers

and differences are lower in general, nevertheless MS-EmpiRe is the best performing method. c) Comparison of

Perseus and MS-EmpiRe on a TMT dataset. MSqRob was excluded as it currently does not support TMT data.

The overall performance is better due to higher depth from sample fractionation, lower noise and fewer missing

values. Quantification on the protein level hence already works well, still MS-Empire shows a significant sensitivity

increase of around 19% for fold change 1.5.
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4.4 In silico benchmarking shows high sensitivity and conservative FDR estimation

The importance of experimental benchmarking setups for quantitative proteomics cannot be overstated.

Without reference standards, it is impossible to estimate the performance of experimental and computa-

tional methods. Unfortunately, performing an experimental benchmarking is cumbersome as it requires

very precise mixing and sample handling. Additionally, only constant fold changes can be applied to

a given setup, which does not reflect an actual regulative scenario. To complement the experimental

benchmarking, we generated an in silico benchmarking set, as described in the methods section. In

short, we used the human background proteins measured in O’Connell et al. as replicate measurements

and we divided six replicate measurements into two groups. We then applied in silico intensity changes

on the protein and peptide level to one of the groups and compared the two groups in a differential

quantification context. As we know which proteins are ”artificially regulated”, we can assess measures

like sensitivity and specificity analogous to the experimental benchmarking setup discussed in the pre-

vious sections. We simulated two setups: one similar to the one in O’Connell et al., where we always

applied the same fold change (with some noise) to a sub-fraction of the proteome, including a 10%

fraction. Additionally, we simulated a more realistic scenario, where the in silico expression changes

were not always the same, but were drawn from a distribution. We designed the distribution to be

bimodal such that up- and down regulation was possible. The results for sensitivity and precision (i.e.

specificity) for LFQ data are depicted in Fig. 5. The boxes result from changing different fractions of

the proteome (individual simulations where 5%, 10%, ,40% of the proteome are changed). Surprisingly,

we noticed that the fraction of proteome changing significantly influences the sensitivity of the applied

statistical test, especially for the t-test applied with Perseus. For example, when 30% of the proteome

is changing with a fold change of 1.5, this is better detected by a statistical test as when only 5% of the

proteome is changing with a fold change of 1.5. The reason for this is apparently a loss of significance

after multiple testing correction. As multiple testing correction can be seen as a shifting of the p val-
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ues into the direction of a uniform distribution, stronger deviations from the uniform distribution (e.g.

many regulated proteins) are less strongly affected. In supplemental Fig. 6 we see, that the protein

level scoring underlying the t-test does not allow a very distinct discrimination between regulated and

non-regulated proteins as compared to MS-EmpiRe, which explains the losses in sensitivity with Perseus.

The clearer distinction between regulated and non-regulated proteins by the peptide level tools is also

reflected in the fact, that the peptide level tools MS-EmpiRe and MSqRob show less dependence on

the proteome fraction in terms of sensitivity. In general, the results of the in silico simulations in Fig. 5

show a similar picture as compared to the experimental benchmarking setup. MS-EmpiRe and Perseus

show conservative error estimation, which however comes at the cost of drastically reduced sensitivity

for Perseus. MS-EmpiRe is the most sensitive tool and MSqRob detects only slightly less proteins.

However, MSqRob shows problems in terms of error rate control, especially for setups with strong fold

changes. This might be due to an over-optimistic error estimation of MSqRob due to the many clear

classification cases. Comparing the fixed setup with the setup where we generate dynamic noise, we

see that the overall identification rate decreases, whereas the general trends for all three methods are

very similar. Error rate estimation does not decrease and hence all methods show the desired response

towards high noise in the data.
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Figure 5: In silico benchmarking of MS-EmpiRe, Perseus and MSqRob. The x tics represent the median fold

change by which the data is shifted. The boxes contain the sensitivity/specificity results, when different fractions

of the proteome are changed. In particular each box contains eight values corresponding to 5% up to 40% of the

proteome changing in 5% steps. Sensitivity and specificity for different fold changes upon constant (left) as well

as dynamic (right) proteome changes are shown. A clear dependency on the fraction of the proteome changing is

visible. As in the benchmarking set, Perseus shows low sensitivity with good error rate control, MSqRob shows

high sensitivity but often violates the error estimation and MS-EmpiRe shows high sensitivity with good error rate

control.
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5 Conclusion

Current Mass Spectrometry proteomics publications often report the number of quantified proteins

for a given proteomics setup. This number however, can be misleading, as the number of quantified

proteins does not necessarily reflect the number of proteins that can actually be detected in a differential

quantification experiment [17]. This is especially the case for more noise-prone proteomics setups, such

as LFQ. Given the popularity of such setups, it becomes evident that increasing the depth of a proteomics

at the level of differential detection becomes an ever more important aspect. Considering recent studies

[13, 14], it is likely that the future development of differential quantification will go beyond the protein

level, which neglects valuable information. Peptide level tools like MSqRob show significantly improved

sensitivity, though we have shown that FDR control is still difficult in a proteome-wide setup. The

popular MaxLFQ+Perseus pipeline also implements the most conservative approach in the experimental

benchmarking setup. With MS-EmpiRe, we introduce a new peptide level tool that shows high sensitivity

at accurate error rate estimation. While FDR estimation for MS-EmpiRe is almost equal to Perseus in

the experimental setup, it even outperforms Perseus in the in silico simulation. We have shown that

MS-EmpiRe gives up to two fold increase in sensitivity for small fold changes (1.5 fold change), which are

highly relevant for biological applications. Even though a fold change of 1.5 is already very challenging

for a proteomics setup, such a change may already reflect a drastic alteration in a biological system.

The key to the sensitivity of MS-EmpiRe is the direct modeling of errors on the peptide fold change

level. This gives an immediate statistical weight to individual peptide fold changes, which are then

transferred to the protein level via basic statistics and without additional optimizations or parameters.

This simple approach is enabled by the assumption of consistency between replicates and, therefore,

our method heavily relies on replicate measurements. Even though MS-EmpiRe is able to process only

two replicate measurements per condition, ideally three or more replicate samples should be available.

For MS proteomics data, where robust workflows exist and the creation of replicate measurements is a
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standard, we believe that this requirement matches well with the current experimental practices. From

our perspective, the consistency of replicates is a minimalistic and reasonable assumption that can be

made for proper processing of proteomics data. A possible deviation from replicate consistency might

occur, when uncontrolled factors in an biological experiment change between replicates. In our setup,

this might lead to an underestimation of differentially expressed proteins. However, replicate-inconsistent

setups are highly critical and should be handled with care. Based on our analysis, we conclude that

MS-EmpiRe is currently the most sensitive tool for differential protein detection. MS-EmpiRe requires

as inputs only peptide intensities and protein identifications and is therefore applicable to virtually any

modern proteomics measurement. We hope that our tool becomes an easy-to-use option for proteomics

researchers and helps to improve the quality and biological insight gained from MS proteomics studies.
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