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Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase
between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly
different numbers of an mRNA species in isogenic cell populations. Several factors contributing
to “transcriptional bursting” have been identified, usually classified as intrinsic, i.e., local to single
genes, or extrinsic, relating to the macroscopic state of the cell. However, each factor only accounts
partially for the observed phenomenon, and some possible contributors have not been explored yet.
We focussed on processes at the 3’ and 5’ ends of a gene that enable reinitiation of transcription
upon termination. Using Bayesian methodology, we measured the transcriptional bursting in in-
ducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size,
increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag
sequencing (ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are
also reproduced by a generative model that captures major characteristics of the polymerase flux
between a gene and a phase-separated compartment.

In many cellular systems, mRNAs appear to be pro-
duced in burst-like fashion. This is directly observed
in real-time experimental studies [1–3] and also agrees
with theoretical analyses of steady-state mRNA distri-
butions among single cells [4, 5]. Such bursty dynamics
are thought to be the signature of gene regulation and are
often described in terms of transcriptional “noise” [5, 6].
Due to the central role of transcription in cellular func-
tions, it is important to understand the mechanisms from
where the bursting originates [7].

The microscopic dynamics underlying transcription are
not yet well understood. Various factors have been found
to influence transcriptional dynamics, mostly by modu-
lating bursting parameters such as the size or frequency
of bursts [3, 5]. These factors are often classified as
either intrinsic or extrinsic, although this distinction is
blurred in many cases. This classification originally de-
rives from the observation that fluctuations in expression
levels are partially correlated across multiple genes [8],
thus suggesting common, extrinsic causes, while the re-
maining, independent fluctuations are intrinsic to each
gene. Typical major extrinsic noise sources are the cell
cycle [9–11] and cell-size fluctuations [12], the latter par-
tially due to the former. Numerous additional factors
such as neighbouring cells, cell morphology and others
have been found to affect transcription to varying de-
grees [13]. Intrinsic factors include non-linear transcrip-
tion factor interactions [4, 5, 8], changing chromatin sta-
tus [14, 15], promoter architecture [3], transcription fac-
tor diffusion [16], and several others [17–19].
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It is unclear how these phenomena relate to the lo-
cal environment at transcribing genes. These are asso-
ciated to clusters of RNA polymerase II (PolII), which
have been interpreted as “transcription factories” [20]
and suggested to modulate the temporal patterns of tran-
scription [21, 22]. More recently, it has been found that,
in proximity to active genes, the PolIIs are incorporated
in membrane-less droplets, maintained by a liquid-liquid
phase separation (LLPS) from the rest of the nucleus,
with the net effect of locally increasing the concentra-
tion of the factors involved in initiation; when PolII is
liberated from this domain, transcription can be initi-
ated [23–28]. LLPS also provides an explanation for the
hitherto enigmatic action-at-a-distance type of gene reg-
ulation by distal enhancers, as the nuclear condensates
are indeed able to restructure the genome [29].

While a comprehensive description of the interactions
between PolIIs, other factors, and the chromatin within
these niches is missing, several observations suggest that
termination is linked to reinitiation; these include the
presence of factors at both ends of a gene, the reduction
of initiation upon perturbation of 3’ processes, and pro-
tein interactions that would juxtapose the promoter and
the terminator DNA, forming a structure that has been
referred to as a “gene loop” [30, 31]. One of the effects
of such interactions is to favour the reinitiation, thus in-
creasing the mean expression level of the gene, as demon-
strated in [32]. LLPS is highly important in this regard,
as PolII undergoes a sequence of post-translational mod-
ifications on its C-terminal domain during transcription,
while integration into phase separated domains and reini-
tiation requires it to be unmodified [24]. In line with this,
recent studies suggest that LLPS is also involved in 3’-end
transcriptional processes [33]. It has been suggested that
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a repetitive cycle of reinitiation and termination due to
these mechanisms is likely to produce a rapid succession
of mRNA creation events, thus potentially contributing
to the transcriptional bursts [34] but, to the best of our
knowledge, an experimental verification is as yet lacking.

In this paper, we investigate the interplay between
bursty expression and 3’-5’ interactions using an inter-
disciplinary approach. We first consider two integrated
genes that permit studying transcription upon pertur-
bation of their 3’-5’ processes at different induction lev-
els; we demonstrate that this interaction strikingly in-
fluences the transcription kinetics and typically elicits
the transcriptional noise, by decreasing burst frequency
and increasing burst size. We then focus on genome-
wide 3’-5’ interactions involved in transcription by means
of PolII ChIA-PET sequencing data, showing that they
are related to the gene-expression parameters similarly
to the transgenes’ results. This scenario is well de-
scribed by a microscopic stochastic model of gene expres-
sion, where tuning a single parameter—corresponding to
the probability of local polymerase recycling—naturally
yields the observed expression patterns, without involv-
ing extrinsic-noise contributors.

RESULTS

Cell lines as model systems for PolII recycling.
We utilized two HEK293 cell lines which contain on their
genomes copies of the genes β-globin (HBB) [32] and a
modified version of HIV-1-env [35], respectively, driven
by inducible CMV promoters (Fig. 1 A and B). The first
gene, HBB, is an example for long-range chromosomal
interactions in its native genomic neighbourhood. Its
expression involves spatial proximity between the pro-
moter and a locus control region (LCR) over 50 Kbs
away [36]. The LCR has been studied extensively in
murine and human cells (see, e.g., references [37, 38])
and jointly regulates expression of several β-globin like
genes at the locus, likely involving LLPS [39]. A re-
cent study demonstrates burst-like expression of murine
HBB and suggests that interactions between the LCR
and the HBB promoter modulate the bursting param-
eters [9]. Our cell line features an ectopic insertion of
human HBB under control of a tetracycline (Tet) respon-
sive promoter. A previous study of this system has pro-
vided a substantial number of results suggesting that 3’
mRNA processing contributes to reinitiation of transcrip-
tion [32]. This notion is based on several findings relat-
ing to the introduction of a single point mutation in the
SV40 late poly-adenylation (pA) site (Fig. 1 C). This in-
cludes decreased average mRNA expression levels, while
“read-through” transcription downstream of the pA site
is increased. Furthermore, the mutation leads to a de-
crease of PolII, TBP and TFIIB levels at the promoter
shortly after gene induction, and to an accumulation at
the “read-through” region instead. Reduced transcrip-
tion initiation compared to wild-type (WT) cells was also

supported by nuclear run on assays and by a changed
profile of post-translational modifications of PolII. No-
ticeably, TFIIB has been demonstrated to be functionally
involved in linking 3’ and 5’ transcriptional activities [40],
while post-translational modifications of PolII are in part
carried out by Ssu72, which is associated with gene-loop
formation in yeast [41] and appears to have similar roles
in vertebrates [42]. A further recent study that utilized
the ectopic HBB system reports direct detection of gene
looping based on a 3C assay in the WT cell line, but not
the mutant [43].

The second cell line, containing a Tet-inducible version
of HIV-1-env, was studied previously in similar fashion
to the HBB constructs. Results using a mutated version
of the pA site (Fig. 1 D) mirrored those obtained with
HBB, suggesting extensive 3’-5’ crosstalk and recycling
of factors including polymerase [32]. The env construct
uses a BGH, not an SV40 pA site, which suggests that
the findings are independent of the type of pA site. No-
tably, expression of the HIV-1 gene using its native long
terminal repeat (LTR) promoter exhibits bursting dy-
namics [6].

We used these cell lines and their mutant versions as
a model system for mammalian gene expression in pres-
ence and absence of 3’-5’ crosstalk. We confirmed by
total RNA-seq that HBB and env mRNAs are expressed
inducibly in all cell lines (Fig. 1 A-D). At high Tet con-
centration (250 ng mL−1), the fold changes over the un-
induced samples were ≈ 16 and ≈ 26 for HBB and env,
respectively. The mutants were expressed at lower lev-
els and featured read-through transcription as described,
with intact transcript sequences, i.e., not subject to splic-
ing defects (Fig. 1 C-D). This indicated specificity of the
pA site mutations.

In order to detect transcripts at the single molecule
level, we designed probes for single molecule RNA-FISH
(smFISH) and confirmed detection of large transcript
numbers upon Tet stimulation of the cells, while the
expression of a control gene, AKT1, remained constant
(Fig. S3, SI Appendix ). Microscopy-based smFISH is not
ideal for HEK293 cells, since they tend to overlap and
form aggregates when growing. We therefore decided
to record the smFISH signal by adapting a flow-FISH
technique based on flow cytometry [44]; this also resolves
extrinsic-noise contributors such as cell size, morphology,
and cycle, and, thanks to its high throughput, permits
recording vast numbers of cells to analyse overall popu-
lation structures (SI Appendix, sections S1 and S6).

While the flow-cytometer fluorescence signal from
stained cells serves as a proxy for the mRNA abundance,
it is returned in arbitrary units (a.u.) rather than in
absolute counts. We thus used microscope imaging and
nCounter R© data to calibrate the flow-FISH fluorescence
readings of HBB and env cells, respectively. Applying
the clustering algorithm of [45] to the flow-FISH record-
ings allowed us to select single-cell readings against those
from cell clumps, doublets, and debris (SI Appendix, sec-
tion S1 and Fig. S1).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2019. ; https://doi.org/10.1101/514174doi: bioRxiv preprint 

https://doi.org/10.1101/514174
http://creativecommons.org/licenses/by/4.0/


3

0

1000

2000

3000

4000

5000

0 1000 2000
Position (bases)

C
o
u

n
ts

0

250

500

750

0 1000 2000 3000 4000
Position (bases)

C
o
u

n
ts

0

500

1000

0 1000 2000
Position (bases)

C
o

u
n

ts

0

100

200

300

400

0 1000 2000 3000 4000
Position (bases)

C
o

u
n

ts

wt

HBB2×TetO2 SV40 LpA

CMV

mut ××
read-

through

HIV-1-env2×TetO2 BGH pA

CMV

××
read-

through

A B

C D

250 Tet (ng mL-1)

0 Tet (ng mL-1)

250 Tet (ng mL-1)

0 Tet (ng mL-1)

egg

control
HBB

E
WT, 5

WT, 10

WT, 20

WT, 40

WT, 80

WT, 250

mut., 5

mut., 10

mut., 40

mut., 80

0 1 2 3 4 5
Fluorescence [a.u.] 1e4

mut., 250

FIG. 1. Characteristics of transgenes used in this study. (A) schematic gene structure (top) of WT HBB including CMV
promoter, Tet operator, pA signal, and exons (black blocks) as indicated. Total RNA-seq confirms Tet-inducible expression
(bottom). (B) as (A), for env. (C)-(D) mutant versions of HBB and env, respectively. Point mutations in pA sites (‘x’) and
read-through transcription are indicated. Positions are relative to TSS, blue and orange shades correspond to WT and mutant
versions, respectively, and light and dark shades correspond to 250 and 0 ng mL−1 Tet, respectively. Coverages by sequencing
reads are shown. (E) Kernel density estimates of the flow-FISH single-cell readings corresponding to the abundances of HBB
transcripts, WT (blue), mutant (orange) variants, and control (gray) cells, from replicate k = 1, at different induction levels
(Tet concentrations in unit of ng mL−1, shades of colors, as indicated on the left). Gene expression increases and saturates
upon increasing Tet concentration, mutant-cell expression is lower than the WT; a.u., arbitrary units; y-axes not to scale.

Flow-FISH data demonstrate Tet-dose dependent ex-
pression of HBB and env, indicating specific detection
of transcripts above background noise. The stationary
expression levels appeared to reach saturation at 80 ng
mL−1 Tet (Fig. 1 E and Fig. S2, SI Appendix ). Stain-
ing for the DNA content demonstrates a mild increase of
HBB and env expression with increasing cell cycle stage.
We found that the contribution to the total variability,
measured as the squared coefficient of variation (CV2) of
the mRNA population, due to the cell cycle was minor
(SI Appendix, section S6) and therefore focused on local
genic mechanisms to investigate the observed noise pat-
tern. The measured signal includes a background of un-
specific staining and auto-fluorescence of the cells, which
is subtracted from the total signal [46]. To gauge this
background we deleted the env gene from its host cell
line with Cas9 and performed the staining procedure as
before. The resulting control cells had low fluorescence
intensity that remained virtually unchanged upon max-
imal Tet stimulation, thus confirming specificity of our
system and validating the use of this control to estimate
the background (Table S1, SI Appendix ).

Increased transcriptional bursting upon 3’-5’
crosstalk. In order to gain insights into the transcrip-
tional dynamics driving WT and mutant expression of
HBB and env, we employed a Markov chain Monte Carlo
(MCMC) sampling approach to fit statistical models to
the flow-FISH data. Importantly, Bayesian modelling
permitted using microscope and nCounter R© data to es-

timate informative prior distributions that calibrate the
absolute mRNA quantification, whilst retaining flexibil-
ity in this respect. We further incorporated the back-
ground signal in the Bayesian framework based on the
estimates from the Tet-stimulated control cells (Material
and Methods and SI Appendix, sections S2-S3).

Our strategy requires a flexible model to represent
the absolute mRNA abundance. We considered three
stochastic models of gene expression to capture the phe-
nomenology of the transcription process (Materials and
Methods). According to the first model, the gene can
stay in an “on” state, in which transcription occurs at
rate α̃, or in an “off” state, in which no transcription oc-
curs. The gene switches from “off” to “on” and “on” to
“off” at rates k̃on and k̃off , respectively. Assuming that
the mRNA degrades at constant rate d̃, this model cor-
responds to a Poisson-beta mixture distribution for the
stationary per-cell mRNA population, which can be ex-
pressed in terms of the dimensionless rates α, kon, and
koff (SI Appendix, section S2) [4, 47]. The second model is
a simplified version of the former two-state model, where
α and koff approach infinity, whilst the ratio α/koff , which
is referred to as the average burst size [48] and incor-
porated as a single parameter, is held finite; this model
gives rise to a negative binomial stationary mRNA distri-
bution and allows much more efficient MCMC sampling
than the Poisson-beta model (SI Appendix, sections S3-
S4). The third model is the most näıve as it assumes that
transcription events of individual mRNAs occur indepen-
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dently at constant rate µX · d̃, where µX is the mean
mRNA population, thus yielding a Poisson distributed
mRNA population at equilibrium which is thought to
characterise genes with unregulated expression [5]. Noise
levels consistent with the Poisson model [49, 50] or higher
[4, 13] have both been reported in the literature.

We obtained better fits for the Poisson-beta and the
negative-binomial models than the Poisson model (SI Ap-
pendix, sections S4 and S7) for all the replicates. In the
Poisson-beta case, the MCMC traces of the rates koff and
α had strong correlation; this revealed that most of the
information about these two parameters is encoded in
the ratio α/koff (SI Appendix, section S6 and Fig. S12),
which is more straightforwardly inferred by means of the
negative-binomial model. In fact, for our data, these two
models give consistent results in terms of CV2, average
burst size α/koff , and burst frequency k̃on. To study the
transcriptional noise, we obtained the CV2 of the mRNA
abundance (which we refer to as CV2

X) from the esti-
mated parameters (SI Appendix, sections S2 and S7), and
plotted it against the estimated mean expression levels
µX (Fig. 2 A-C). These reveal a trend observed before
in other systems [6, 51–53], i.e., the transcriptional noise
decreases as µX increases, with the data of each experi-
ment well fitted by a curve of the form CV2

X = A/µX+B,
and seems to approach a lower limit beyond which it does
not further decrease. Such a limit is known as the noise
floor [54–58]. Strikingly, the presence of the mutation al-
ters the noise trends, thus suggesting that PolII recycling
indeed contributes to the noise. The transcriptional noise
at intermediate expression levels is significantly higher in
WT than mutant cells. For the HBB gene, this pattern
extends throughout the range of all induction levels. Env
shows less pronounced differences between WT and mu-
tant cells for the highest expression levels but resembles
HBB otherwise. In all these cases, the noise clearly ap-
pears higher than postulated by the Poisson prediction
curve CV2

X = 1/µX (solid lines in Fig. 2 A-C).
Using the DNA content as proxy of the cell-cycle

progression, we heuristically selected populations corre-
sponding to G1, S, and G2 phases from 40 ng mL−1

Tet-induced cells (Fig. 3 A), fitted the negative-binomial
model to their mRNA-expression reads, and estimated
kinetic parameters and noise at each of the three phases
separately (Fig. 3 C-D). Based on this we found that the
cell cycle, which is a major extrinsic noise contributor,
only accounts for around 20% of total mRNA variability
for the transgenes (Fig. 3 B), in contrast with [9, 10]; for
further details see SI Appendix, section S6.
Modulation of rates. The overall rate estimates ob-
tained from our fits are largely in agreement with previ-
ous findings from similar systems [3]. In fact, estimated

values of k̃off ranged up to ≈ 2.5 events per minute, with
k̃on roughly an order of magnitude lower. Increasing the
Tet concentration boosts transcription by increasing the
average burst size and the frequency k̃on (Fig. 2 D), thus

shortening the average “off” state duration (1/k̃on). In-

triguingly, for the HBB gene, k̃on is higher in mutant

than WT cells in all cases, while the average burst size is
lower in mutant cells in all cases. These patterns are less
definite for the env gene but appear to support the con-
clusions from the HBB gene (Fig. 2 E and SI Appendix,
section S7). In other words, the 3’-5’ crosstalk imposes
a constraint on the transcriptional dynamics whose re-
moval can cause bursts to be more frequent and smaller
than in the WT gene.

PolII-mediated 3’-5’ interactions by ChIA-PET.
To jointly study the expression of a gene and its 3’-
5’ interactions we analysed publicly available datasets
for the human cell line K562, obtained from chromatin-
interaction analysis by paired-end tag sequencing (ChIA-
PET) [59] and single-cell RNA-seq data (scRNAseq) [50].
We chose to use ChIA-PET against PolII to target chro-
matin interactions that are involved in transcription. We
generated HiC-style interaction matrices (whose entries
correspond to 2-Kb regions) from the ChIA-PET data us-
ing CHIA-PET2 [60]. We filtered the list of genes from
the RefGene database with the hg19 reference genome to
only contain those with unique gene symbols on chromo-
somes 1-22 and X, thus excluding alternatively spliced
genes. As a proxy of the 3’-5’ interaction of a gene,
we first aggregated the reads corresponding to the in-
teraction between the bins that include its transcription
start site (TSS) and transcription end site (TES). The
resulting metrics depend on the gene length, which we
addressed by dividing the number of reads for each gene
by the average read number from 104 genomic intervals
of the same length as the gene, randomly sampled across
the chromosome. We then applied the arcsinh

√
x+ 0.5

transformation to obtain a variance-stable interaction
score [61]. We also discarded genes that are shorter than
the resolution of our interaction matrices.

Fitting a negative binomial distribution to the scR-
NAseq UMI counts data of [50] allows us to estimate for
expressed genes (sample UMI mean > 0.05) the noise
CV2

X , as well as the parameters kon and α/koff (Materi-
als and Methods). These are plotted against the mean
expression µX in Fig. 4 A-C. It is worth noting that
burst frequency averaged over all the genes k̄on seems
to determine the average trends of CV2

X and α/koff . The
noise trend appears to be explained by the curve CV2

X =
1/µX + 1/k̄on (derived under the negative-binomial as-
sumption, see SI appendix, section S2), which in fact sep-
arates the genes whose noise levels are higher than the
mean predicts (blue and orange markers in Fig. 4) from
those whose noise is lower than the prediction (yellow
markers). As a measure of the deviation from this predic-
tion, for each gene, we calculated the vertical distance ν
of its expression noise to the curve CV2

X = 1/µX + 1/k̄on

in logarithmic scale, further separating noisy genes for
which ν > ν1 (blue makers in Fig. 4) from those for which
0 < ν < ν1 (orange makers). The interaction score of the
high-noise genes is significantly higher than the score of
the intermediate group, which in turn is higher than the
low-noise genes’ (Mann–Whitney U-test, P< 2.2 · 1016).

There is a significant positive correlation between the
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FIG. 2. Bayesian parameter estimates. Noise plots of HBB (A) and HIV (B) gene expressions, obtained from the Poisson-beta
model for both WT (blue) and mutant (orange) gene variants. Different color intensities correspond to replicates. Mutation
changes the balance between noise and average expression level. (C) Results from replicates are aggregated into consensus
estimates (SI Appendix, section S4) for HBB and HIV (inset). Solid lines are orthogonal-distance regression curves CV2

X =

A/µX + B. (D-E) Consensus estimates of Poisson-beta model parameters µX , k̃on, k̃off , and α/koff for HBB (D) and HIV
(E). WT (blue) and mutant (orange) show different patterns, with WT genes having highest average burst size and lower
burst frequency than mutant at intermediate expression levels. Single-replicate estimates, and negative binomial and Poisson
model results are in SI Appendix, section S7. Points and error bars correspond to medians and 90% HPD CIs of the posterior
distributions.

distance ν and the interaction score (P< 2.2 · 10−16, lm;
Fig. 4 D), thus showing that the noise level of genes
with high interaction score is typically higher than the
mean predicts; we also observe a significant negative cor-
relation between the interaction score and the burst fre-
quency kon (P< 2.2 ·10−16, lm) and a significant positive
correlation between the interaction score and the burst
size (P< 2.2 · 10−16, lm), consistent with the results on
the transgenes. Filtering out zero-count genes, for which
there is little statistical information, yields the scatter
plots of Fig. 4 D-E and the boxplot of Fig. 4 F for the
three groups. These results agree with those obtained
from different ChIA-PET biological repeats and different
bin resolutions (1 Kb and 7 Kb; SI appendix, Fig. S16).

Microscopic model. To shed further light on the bio-
logical mechanisms involved and test whether PolII shut-
tling can a priori alter the transcriptional noise as seen
in the previous section, we constructed and simulated a
more complex stochastic model that captures the most
important features of our expression system, i.e., induc-
tion, polymerase flux between the LLPS droplet and the
gene, transcription, and decay, whilst stripping away

non-essential details (Fig. 5 and Materials and Meth-
ods). The model is designed around the idea that each
PolII waits in a compartment until the transcription oc-
curs [22], where the compartment represents an LLPS
droplet (Fig. 5 A). This is immersed in its nuclear envi-
ronment, which adds and removes PolIIs at rates γ and δ,
respectively. In addition to this, by transcribing at rate
β, the PolIIs leave the compartment with probability 1−l
or are re-injected otherwise. This latter reaction repre-
sents the crosstalk between the 3’-end processing and the
transcription initiation and helps to sustain the compart-
ment population despite the presence of initiation, which
in average contributes to depleting it. Consistently with
the two genes integrated in our cell lines, the model en-
codes a Tet-repressor binding site downstream of the TSS
which binds to the TetR factor, present in concentra-
tion n. Such a binding event interrupts the transcription,
therefore tuning n allows us to control the blocking rate
λoff (Materials and Methods). The model parameters l
and n are akin to the pA mutation and the Tet concen-
tration, respectively, in the experimental settings. We
assume that the pA mutation hinders but does not com-
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FIG. 3. Cell cycle analysis. (A) Scatter plot from flow-FISH signals (corresponding to mRNA vs DNA) for the HBB gene,
replicate k = 3; cells from G1, S, and G2 phase highlighted with green-scale colors. (B) Extrinsic and intrinsic contributions
to WT HBB and env genes expression noise, SE error bars obtained via bootstrap. (C) and (D) Consensus estimates of the
negative-binomial model parameters for the same genes; points are medians, error bars comprise 90% HPD CIs.

pletely block PolII flux back to the compartment (which
can also be facilitated by diffusion, for instance [16, 24]),
therefore the parameter l is assumed to be small but still
strictly positive even in the presence of pA mutation.
Crucially, the transcription rate is proportional to the
abundance of PolII in the compartment [22, 58], so that,
when the blockade is released and the compartment is
full, the transcription occurs repeatedly while the PolII
population quickly drops. As simulation results demon-
strate, the model is able to reproduce an increase of tran-
scriptional bursting upon increasing the recycling prob-
ability l (Fig. 5). This behaviour is conserved under a
broad range of different parameter settings, demonstrat-
ing that this is a generic result of our model. Fitting a
negative binomial distribution with vague prior distribu-
tions to an ensemble of mRNA abundances, simulated
from this microscopic model, shows patterns consistent
with those obtained from the experimental data (Fig. 5 C
and SI Appendix, section S8).

While actual transcriptional mechanisms are more
complex than our idealised model, the latter provides a
significant step towards a mechanistic explanation of our
observations. In fact, it captures the essential features
of the two gene constructs, and naturally reproduces the
observed pattern by tuning only the shuttling probabil-
ity l and the factor abundance n. Notably, our results
demonstrate a minor role for extrinsic contributions to
noise (Fig. 5 B); in fact, intrinsic factors suffice to yield
the noise floor for a wide range of λoff and µX , which
contrasts with several other studies [54–58].

DISCUSSION

The wealth of existing results strongly suggests the
occurrence of 3’-5’ crosstalk in the WT variants of our
transgene systems, involving physical interaction be-
tween factors at either gene end and shuttling of poly-
merases, which can be disrupted or strongly reduced
upon a point mutation. Similarly, information of the
interactions between the ends of genes involved in tran-
scription can be accessed genome-wide by means of PolII
ChIA-PET sequencing.

Based on both an in-depth analyses of the transgene
systems (which provide a controlled experimental set-
ting) and an observational study of ChIA-PET sequenc-
ing data (which provide a genome-wide view of chromatin
interactions involved in transcription), we present results
to suggest that PolII-mediated 3’-5’ interactions are ma-
jor contributors to transcriptional noise.

Building on standard phenomenological models, tran-
scription parameters, such as average burst size and fre-
quency, are consistently inferred across the different con-
ditions using a Bayesian methodology, to demonstrate
the presence of association between 3’-5’ interactions and
transcription kinetics. Modelling transcription requires
abstraction and simplification due to the complexity of
the molecular processes involved and the inadequacy of
current experimental methodologies to dynamically re-
solve structural interactions at individual loci. Further-
more, the Bayesian estimates of the kinetic parameters
reflect the incomplete quantitative information available
on the experimental device. Nevertheless, our setting is
sufficient to resolve specific patterns, which can be repro-
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FIG. 4. Genome-wide estimates of transcription kinetics and 3’-5’ interactions. (A)-(C) Scatter points correspond to genes,
axes are medians of posterior distributions for expression parameters µX and CV2

X , kon, and α/koff , respectively, obtained
by Bayesian model fitting; solid lines correspond to the predictions obtained by assuming that all genes have burst frequency
equal to the sample average kon. Genes are divided into three groups corresponding to low-, intermediate-, and high-noise
levels (yellow, orange, and blue markers, respectively). Dashed line is obtained by setting ν1 = 4.5 (equation inset in (A)) to
separate intermediate- and high-noise genes. (D)-(E) 3’-5’ interaction scores against expression noise (measured as distance ν
from the solid-line prediction of A) and burst frequency kon; (F) Partitioning the genes by ν shows that the interaction score
is significantly higher in higher-noise genes than in lower-noise genes (Mann-Whitney U-test, P< 2.2 · 10−16).

duced by an ab-initio mechanistic model, thus supporting
our conclusions.

The analysis suggests that recycling of the polymerase
typically increases noise at a given expression level, while
an alternative symmetric interpretation is possible, viz.,
that recycling permits higher expression at a given noise
level. These relations are either a byproduct of the con-
struction of the transcriptional machinery or were se-
lected for. It will be interesting to further explore our
findings from an evolutionary perspective. In particular,
many studies show how selection of noisy expression can
be critical by contributing to cell fate diversity [62, 63]
and by favouring their long-term survival in adverse envi-
ronments [64]. This could also have implications in syn-
thetic biology, where the optimisation of gene expression
and the control of its noise are desirable features [65, 66].
Our work provides an important contribution to the field
of systems biology by identifying a single base, and thus a
genetic determinant, that modulates the balance between
the average expression level and its variation.

MATERIALS AND METHODS

Measurement equation and Monte Carlo estima-
tion. We assume that the measured fluorescence Yi of
cell i is proportional to the true mRNA abundance Xi

and therefore can be expressed as Y
(k)
i = ε

(k)
i + κ(k)X

(k)
i

where (k) indexes the replicate, κ(k) can be thought of

as a scale and ε
(k)
i is the zero of such a scale, also cor-

responding to the background of unspecific staining and
auto-fluorescence of the ith cell [46]. The background
noise is measured, for each replicate k, by means of con-
trol cells whose gene of interest has been deleted. These

are used to define informative priors for ε
(k)
i . Our choice

is ε
(k)
i ∼ SN(a(k), µ

(k)
ε , σ

(k)
ε ), i.e., the control-cell fluo-

rescence y is supposed to have Azzalini’s skew-normal
distribution

fε(y|a(k), µ(k)
ε , σ(k)

ε ) = 2Φ((y−µ(k)
ε )σ(k)

ε a(k))φ(y|µ(k)
ε , σ(k)

ε ),

where Φ and φ are the standard normal CDF and nor-

mal PDF, respectively, while the mean µ
(k)
ε , the stan-

dard deviation σ
(k)
ε , and the skewness parameter a(k) are

point estimates from the control data sets. Prior distri-
butions for κ(k) are chosen based on the regression coef-
ficients of gamma generalised linear model fits with iden-
tity link. For the remaining parameters we assume vague
gamma priors with mean 1 and variance 103. Adaptive
Metropolis–Hastings samplers for model fitting were im-
plemented (SI Appendix, section S4).
Phenomenological two-state gene-expression
models. The transcriptional bursting is fully charac-
terised by the rates α̃, k̃on, and k̃off in units of min−1.
It is convenient to express the rates in units of the
inverse of the mean mRNA life-time d̃, i.e., k̃off = koff d̃,
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FIG. 5. Microscopic model of transcription in Tet-inducible genes. (A) PolIIs (blue) are stored in a compartment (dashed
circle) in the proximity of the TSS. With rate β, each PolII leaves the compartment to transcribe mRNA and is re-injected
with probability l. When TetR (tetracycline repressor) binds to the TetO2 operator downstream of the TSS (this occurs at
rate λoff), transcription is interrupted and PolIIs accumulate in the compartment. At rate λon, TetR unbinds, thus releasing
the large amount of PolIIs accumulated in the compartment to causes bursts, which can be phenomenologically described in
terms of the rates α̃, k̃on, and k̃off . The compartment also exchanges PolIIs with the nuclear environment (at rates δ and γ).
The transcription rate is proportional to the abundance of PolIIs, which fluctuates in time and in turn elicits transcriptional
noise. Similarly to our experimental system, here we can simulate different Tet concentrations and the recycling probability
by tuning the “off”-switch rate λoff and l, respectively. (B) Noise plots of simulated mRNA abundances. Setting λoff = nKλ

and λon = Kλ, we imitate the effect of different TetR concentration values by tuning n. As Tet presence prevents TetR-TetO2

binding, small values of n correspond to high Tet-induction levels. For extremely small values of n, the gene can be thought of as
being always in “on” state, CV2 becomes very low, and the limiting value of µX can be analytically obtained (vertical lines, see
also SI Appendix, section S8). n ranges from 0.1 to 100, values of the other parameters are (γ, β, d, δ,Kλ) = (10, 10, 0.01, 1, 0.01).
Inset: Same scatter plot, axes in linear scale. At intermediate expression levels, CV2

X always increases with l. Dashed lines are
orthogonal-distance regression curves CV2

X = A/µX +B, solid line is Poisson-noise curve CV2
X = 1/µX . (C) Negative-binomial

model fit to 500 mRNA abundances simulated from the microscopic model with λoff = 0.5, 1, 1.5, 2, 2.5, 3, 2.5, 3.5, 4, 4.5, values
of other parameters as in B. (D) Simulated mRNA-population traces; the two parameter combinations yield almost identical
average expressions (sample means of 71.3 ± 0.7 and 70.4 ± 0.6 over 104 realisations, respectively, SE obtained via bootstrap),
but different biological noise (sample CV2s of 0.78 ± 0.01 and 1.07 ± 0.02, respectively).

k̃on = kon d̃, α̃ = α d̃. It can be shown that the stationary
mRNA abundance X for this model is Poisson beta with
probability density function (PDF)

fX(x|α, kon, koff) =

∫ 1

0

fPoi(x|αp)fBe(p|kon, koff) dp,

where fPoi(x|α) = αxe−α/x! and fBe(p|kon, koff) =

pkon−1(1− p)koff−1Γ(kon + koff) (Γ(koff)Γ(kon))
−1

are
PDFs of Poisson and beta random variables (RVs),
respectively. This expresses the hierarchy

X|α, P ∼ Poi(αP ), P |kon, koff ∼ Beta(kon, koff).

It is convenient to reparametrise the Poisson-beta PDF
in terms of its mean µX = αkon/(koff + kon), to get

X|µX , kon, koff , P ∼ Poi(µXP (koff + kon)/kon),

fX(x|α, kon, koff) =: f ′X(x|µX , kon, koff).

In fact, this allows us to exploit knowledge on µX in the
form of informative priors and infer the dimensionless
rates α, koff and kon. These are converted to min−1 by
using d̃ estimated from data (SI Appendix, section S5).
In the limit as koff →∞, α→∞, with their ratio α/koff

held finite, the population mean satisfies µX = konα/koff ,
while the PDF of X approaches the negative binomial
distribution

f ′′X(x|kon, koff/α) =

∫ ∞
0

fPoi(x|λ)fGamma(λ|kon, koff/α) dλ,

where fGamma(x|kon, koff/α) is the density of a Gamma
RV with mean µX and variance µXkoff/α; when this RV
concentrates near the mean as kon →∞ and koff/α→ 0,
X is Poisson with PDF fPoi(x|µX).

Microscopic model. The microscopic model is defined
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by means of the following chemical reaction scheme:

DNAon + PolII
l β−→ mRNA + DNAon + PolII,

DNAon + PolII
(1−l) β−→ mRNA + DNAon,

DNAon
λoff−→ DNAoff , DNAoff

λon−→ DNAon,

mRNA
d→ ∅, ∅ γ−→ PolII, PolII

δ→ ∅.

By the law of mass action, λoff = nKλ, λon = Kλ,
where Kλ and n represent the chemical affinity and con-
centration of TetR homodimers that bind to the TetO2

operators downstream of the TSS, respectively. When
such a binding event occurs, the transcription is inhib-
ited as elongation is impeded and the resulting locked
DNA configuration is represented by the species DNAoff .
The switch to DNAon corresponds to the release of the
lock.

Data availability. Custom scripts have been made
available at https://github.com/mcavallaro/gLoop.
Data that support the findings of this study have been
deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) and are
accessible through the GEO Series number GSE124682.
All other relevant data are available on request.
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