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Abstract

Background: Cholera remains a major public health concern, particularly in refugee
camps, which may contend with overcrowding and scarcity of resources. Maela, the
largest long-standing refugee camp in Thailand, experienced four cholera outbreaks
between 2005 and 2010. In 2013, a cholera vaccine campaign was implemented in the
camp. To assist in the evaluation of the campaign and planning for subsequent
campaigns, we developed a mathematical model of cholera in Maela.

Methods: We formulated a Susceptible-Infectious-Water-Recovered-based cholera
transmission model and estimated parameters using incidence data from 2010. We
next evaluated the reduction in cases conferred by several immunization strategies,
varying timing, effectiveness, and resources (i.e., vaccine availability). Finally, we
generated post-campaign case forecasts, to determine whether a booster campaign
was needed.

Results: We found that preexposure vaccination can substantially reduce the risk of
cholera even when the < 50% of the population is given the full two-dose series.
Additionally, the preferred number of doses per person should be considered in the
context of one vs. two dose effectiveness and vaccine availability. For reactive
vaccination, a trade-off between timing and effectiveness was revealed, indicating that
it may be beneficial to give one dose to more people rather than two doses to fewer
people, given that a two-dose schedule would incur a delay in administration of the
second dose. Forecasting using realistic coverage levels predicted that there was no
need for a booster campaign in 2014 (consistent with our predictions, there was not a
cholera epidemic in the 2014 season).

Conclusions: Our analyses suggest that vaccination in conjunction with ongoing
water sanitation and hygiene efforts provides an effective strategy for cholera
outbreaks in refugee camps. Effective preexposure vaccination depends on timing and
effectiveness. If a camp is facing an outbreak, delayed distribution of vaccines can
substantially alter the effectiveness of reactive vaccination, suggesting that quick
distribution of vaccines may be more important than ensuring every individual
receives both vaccine doses.
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Background
Global conflict, economic plight, and natural disasters interact to displace people on a

large scale [1]. Over recent years, an unprecedented increase in refugee populations has

led to the largest number of displaced persons ever on record [2]. Refugee camps are often
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built in neighboring countries to provide temporary protection and relief for refugees.

However, often these crises continue for years or decades and therefore require refugees

to live for an indeterminate amount of time in temporary conditions [3]. Because these

refugee camps were established to provide temporary rather than permanent shelter,

investments in infrastructure have not been prioritized, leading to overcrowding and

poor sanitation, in turn increasing the risk of cholera and other infectious diseases

[4, 5].

Cholera, a waterborne intestinal infection, causes watery diarrhea and is transmit-

ted through fecal contamination of water and food, as well as person-to-person contact

[6]. While the case fatality rate of cholera is low when treated, it can be up to 50%

when untreated [7]. Approaches to reduce cholera spread include improvements in wa-

ter, sanitation and hygiene (WaSH). However, political and economic hurdles can make

these longer-term, larger-scale improvements challenging. Vaccination can be used as

an complementary approach that results in a substantial reduction in cholera transmis-

sion [8, 9]. Further, cholera vaccines can induce herd protection, thereby reducing the

risk of disease for both the vaccinated and unvaccinated segments of the population

[9, 10]. Although, the effects of vaccination may attenuate over time, recent data has

shown that protection remains steady several years after vaccine is administered [11].

Generally, vaccination campaigns can be implemented in conjunction with other health

interventions or while more permanent preventative measures (e.g. WaSH) are being

put in place.

Maela refugee camp is in northwest Thailand, 8 km east of Burma (Myanmar). In De-

cember 2009, its population was 40,009 individuals, who were mostly Burmese refugees.

The distribution of ethnic groups across all Thai/Burmese border refugee camps was

quite diverse, with ∼ 61% being of Karen origin [12]. Although cholera has been re-

ported in Thailand in past years [13], a review of the literature between 1982 and 2007

found only 860 cases reported in Thailand (population of over 60 million), with the

majority occurring in the northern part of the country [14]. While we do not have a

denominator to determine an attack rate for these data, it is clear that compared to the

outbreaks reported in the literature, the burden of cholera in Maela had been higher,

with more than 1000 cases between 2005 and 2010 among a population of less than

50,000 [15]. In Maela, the majority of individuals have access water and sanitation facil-

ities; however, sociopolitical issues and the mountainous terrain prevent its maintenance

or improvement. Therefore, a vaccination campaign was implemented as a critical addi-

tion to existing efforts to reduce cholera transmission in Maela. This campaign was the

first use of the oral cholera vaccine (OCV) Shanchol in a stable refugee camp [16].

An oral cholera vaccine, Shanchol, was prequalified by the World Health Organization

(WHO) in 2011 [17]. The vaccine is administered in two doses, 14 days apart. Efficacy

estimates from randomized control trials for the full two-dose series vary by setting and

age. A large-scale age-adjusted trial conducted in India found a two-dose efficacy of

65% after follow-up at 5 years [11]. Shorter-term estimates from observational studies

have found vaccine effectiveness to be as high as 86.6% after a follow up of 6 months in

Guinea [18]. Notably, effectiveness of a reactive vaccination campaign in Haiti was quite

close to the efficacy estimate at 63% among individuals self-reporting vaccination [19].

One-dose efficacy was estimated in a randomized trial in Bangladesh and was found
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to be 52% after 2 years follow up [20]. Observational studies have estimated one-dose

vaccine effectiveness to be between 32.5% [21] and 87.3% [9], though the lower bound

was not found to be significant. Despite logistical challenges, cholera vaccination in

refugee camps has been found to be feasible and acceptable [16, 22, 23] and has been

recommended as a potential key intervention to prevent and control cholera transmission

in these settings.

In recent years, mathematical modeling has emerged as a useful tool in examin-

ing counterfactuals, evaluating intervention strategies, and assisting in policy decision-

making [24]. Modeling of cholera transmission, in particular, has been used to guide

policy and planning decisions. For example, the US Centers for Disease Control and

Prevention (CDC) used real-time modeling to predict the effects of vaccination during

the 2010 cholera epidemic in Haiti and to anticipate the total numbers of cases and hos-

pitalizations [25]. More broadly, a wide range of cholera transmission models have been

developed [26, 27, 28, 29, 30, 31], accounting for different mechanisms, including spatial

dynamics [32, 29, 33], age structure [34, 35], environmental drivers [36, 37, 38, 39], and

disease transmission characteristics such as proportion of asymptomatic individuals [38],

hyperinfectiousness [40], dose response effects [41, 27, 29, 42], and multiple transmission

pathways [28, 30]. One particularly relevant modeling analysis examined the impact of

one compared with two doses of cholera vaccine in Haiti, Zimbabwe, and Guinea when

supplies are limited [43]. Another used an agent-based model to examine cholera trans-

mission in a refugee camp setting [44]. These models have been useful in explaining

different drivers of transmission and evaluating proposed interventions. However, to our

knowledge, none have explicitly considered the effects of cholera vaccination on disease

transmission in a refugee camp. A wide range of characteristics such as overcrowding,

high levels of population mixing, limited access to clean water and medical care, and

political barriers to different interventions make it necessary to develop specific models

to assess the effects of vaccination using population and outbreak data directly from

refugee settings.

In this study, we the used the Susceptible-Infectious-Water-Recovered (SIWR) mod-

eling framework [28], expanded to include two-stage vaccination and an adult/child

age structure. The SIWR modeling framework accounts for both indirect transmission

through environmental water sources as well as a direct pathway representing transmis-

sion through food, household water sources, and person-to-person contact. This model

is an extension of the classical SIR model (with Susceptible, Infectious, and Recovered

compartments to track the total number of individuals at different stages of the disease),

with an additional water or environmental compartment representing the concentration

of pathogen. The SIWR model has been applied to a range of cholera outbreaks as well

as several theoretical studies [32, 42, 29, 28, 45]. It has been integrated with a gravity

model to determine how distance and population sizes affect the spread of cholera in

Haiti [32] and it was used to estimate the basic reproduction number (R0) in a range of

settings [29, 30, 32]. Finally, age-structured SIWR models [46, 34, 47] have been used

to represent different transmission rates by demographic group.

The primary goal for this study was to develop a transmission model to evaluate a

recent vaccine campaign in Maela refugee camp, and use this model to plan for future

vaccine campaigns. The Maela refugee camp study setting is particularly relevant given
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the recent worldwide increase in total numbers of refugees—the approach considered

here can be generalized to inform vaccine campaign planning in a wide range of contexts.

Because our modeling analysis coincided with preparation and implementation of the

cholera vaccination campaign in Maela, we had the opportunity to build and expand

our model iteratively based on the vaccination campaign results and implementation.

Our model was thus used real-time to help predict the outcome of the campaign, to

determine whether any cholera outbreaks would occur in the near future, and to evaluate

the necessity of administering a booster campaign for the years following the campaign.

This study illustrates how mathematical modeling can be used iteratively in intervention

planning to inform policy and intervention decision-making.

Methods
Study Cohort and Data Collection

Maela refugee camp is situated in the northwest of Thailand, 8 km east of Burma

(Figure 1). In December 2010, the population was 43,645 individuals, who were mostly

Burmese refugees. In total, approximately one-third of the residents were children and

two-thirds were adults. As per local nongovernmental organization data collected by

Première Urgence Aide Medicale Internationale (PU-AMI) in the camp, residents who

were 15 years of age or older were considered adults because that was the working age

in the camp [15]. Four cholera outbreaks occurred in Maela between 2005 and 2010. The

second-largest and most recent outbreak occurred in 2010, when 362 cholera cases were

confirmed by isolation of toxigenic Vibrio cholerae O1 [15].

Figure 1 Maela Map and Model Schematic. Left: Map showing the location of Maela refugee camp.
Map figure was generated in R version 3.2.4 [48] using the ‘raster’ package [49] which uses data from
[50] photograph taken by JH. Right: Flow diagram of Age-structured SIWR-based model of cholera
transmission in Maela. Vital dynamics and migration rates are represented by dotted lines. All infected
classes (second row) shed pathogen into the common water source (W ), which can subsequently infect
susceptible individuals depending on their vaccination status.

Following WHO prequalification of Shanchol cholera vaccine in September 2011, the

Thailand Ministry of Public Health sponsored a campaign for the population of Maela.

The campaign was implemented in 2013 by PU-AMI with technical support from CDC.

Pregnant women and children < 1 year old were not given vaccine (approximately 2,000

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/514406doi: bioRxiv preprint 

https://doi.org/10.1101/514406
http://creativecommons.org/licenses/by-nd/4.0/


Havumaki et al. Page 5 of 35

refugees were excluded in total) per the manufacturer’s recommendations [51]. Overall

approximately 81% of refugees were given at least one dose of vaccine, while 64% of

refugees were given two doses [15]. A baseline census was conducted and then cholera

vaccine was subsequently administered. Residents of Maela have since been and will

continue to be followed prospectively for new suspected cholera cases, as well as regular

laboratory testing of a subset of watery diarrhea cases in the camp [15].

Our analysis considers the total population at the time of the campaign: 45,233 indi-

viduals, of whom 27,901 are adults and 17,332 are children. We fit our model to incidence

data from the 2010 outbreak, the most recent outbreak at the time of the campaign, as

shown in Figure 2.

Figure 2 Model fit to data. Model fit to Maela cholera data from the 2010 epidemic for adults (left)
and children (right). Data points for confirmed cases are indicated as circles, and simulation output is
indicated as lines..

Model Structure and Parameter Estimation

Age-structured SIWR Model

The model structure is shown in Figure 1. The population of Maela was separated into

six model classes, non-vaccinated-adults (variables marked with a), once-vaccinated-

adults (variables marked with Va), twice-vaccinated-adults (variables marked with V Va),

non-vaccinated-children (variables marked with c), once-vaccinated children (variables

marked with Vc) and twice-vaccinated-children (variables marked with V Vc). Each class

is further broken into Susceptible-Infectious-Recovered compartments. Any infectious

individual can infect any susceptible individual regardless of model class. The force of

infection, λ, is the rate at which susceptible individuals become infectious (incidence

rate). Children were defined as individuals < 15 years old. Environmental water source

contamination is tracked in a separate compartment (W ), into which any infected indi-

vidual can shed. Additionally, the pathogen concentration in the water, (W ), contributes

to the calculation of λ.

The equations for the full model are given in the Supporting Information. Below are the

force of infection equations for each demographic class and the environmental pathogen
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equations which are not explicitly represented in model schematic are shown in Figure 1.

Force of Infection Equations

λa = βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc

λva = (1− VE1)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λvva = (1− VE2)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λc = βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc

λvc = (1− VE1)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

λvvc = (1− VE2)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

(1)

Environmental Pathogen

λw = Ia + σIc + IVa + σIVc + IV Va + σIV Vc

Ẇ = αλw − ξW
(2)

Within the force of infection equations, the βij ’s represent transmission from i to

j. Infectious individuals shed into W based on σ, the child to adult shedding ratio of

pathogen, the number of infected individuals in each class, and α, the rate at individuals

shed into the environment. Furthermore, ξ is the rate at which bacteria decay in the

environment. Within the remaining equations (shown in the Supporting Information

and Figure 1), the ν’s represent the rates of vaccination for susceptible and recovered

individuals. Therefore, individuals can move from nonvaccinated to once-vaccinated and

then onto twice-vaccinated depending on which vaccine scenario is being simulated (see

below for details on vaccination scenarios). The µ’s represent the combined rates for out-

migration and death, and the M ’s are the in-migration rate of susceptible or recovered

individuals in Maela. B is the birth rate of individuals into the population. Individuals

are born as susceptible children. The γ’s are the recovery rates of infectious individuals.

All parameter definitions, values and sources are given in Table 1.

Measurement Model

The disease surveillance data from the 2010 epidemic measure weekly cholera incidence

among adults (≥ 15 years old) and children (< 15 years old). To accurately represent this

in the model, simulated weekly case counts are scaled by estimated reporting fraction

parameters, ka and kc. These scaling parameters represent a combination of factors

including the cholera reporting rate, the fraction of asymptomatic cases (as these would

not be reported), and a correction for any errors in the population size (i.e., if the

population at risk is larger or smaller than the total recorded population of Maela).

Parameter Estimation from the 2010 Epidemic

Conducting an identifiability analysis is a necessary step before estimating parameter

values from a fitted model. Identifiability is typically broken into two broad categories.

First, structural identifiability is used to examine how the structure of the model and
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Table 1 Model parameter values and estimates. Estimated parameters are indicated in bold.

Parameter Description Value (units) Source/Rationale
ka Proportion of observed infectious adults in Maela 1.4× 10−2 (unitless) Estimated
kc Proportion of observed infectious children in

Maela
1.9× 10−2 (unitless) Estimated

γ Recovery rate for infectious humans 1
4

(days−1) [52, 53]
σ Ratio of bacterial shedding rates into the envi-

ronment by children vs. adults
1 (unitless) Fixed (see Methods)

ξ Decay rate of bacteria in the environment 1.6× 10−2 (days−1) Estimated
Transmission Parameters

βI (βaa,
βca, βac,
βcc)

Transmission from infected humans to suscepti-
ble humans

7.4× 10−6 ( 1
people×time

) Estimated

βW (βwc,
βwa)

Transmission from water to susceptible humans 6.3× 10−7 ( 1
people×time

) Estimated

Demographic Parameters
µa Death rate for adults 1.7× 10−4 (days−1) Maela demographic data
µc Death rate for children 1.5× 10−4 (days−1) Maela demographic data

Ma Migration rate for susceptible or recovered adults 1.4 ( people
day

) Maela demographic data

Mc Migration rate for susceptible or recovered chil-
dren

1.1 ( people
day

) Maela demographic data

B Birth rate 2.8 ( people
day

) Maela demographic data

Vaccine Effectiveness
VE1 Vaccine effectiveness for one dose of Shanchol 0.325 (unitless) [21]
VE2 Vaccine effectiveness for two doses of Shanchol 0.63 (unitless) [19]

measured variables can affect what parameters are capable of being estimated assum-

ing perfect, noise-free data [54, 30, 55, 56, 57, 58]. Once this is established, practical

identifiability is used to examine the identifiability of parameter values given the actual

data set being used. This step accounts for real-world data issues such as noise and

sampling frequency [59, 60].We examined both structural and practical identifiability

before parameter estimation. For more information on the techniques and subsequent

assumptions made to reconcile identifiability issues, see Supporting Information.

We initially fit the model to estimate unknown parameters using 2010 cholera incidence

data from Maela. Because the vaccine campaign was not implemented until 2013, the

vaccinated compartments and relevant parameters in the full model were not included in

the parameter estimation. Excluding vaccination reduced the model substantially to just

three compartments for adults, three compartments for children, and the environmental

pathogen compartment (W ).

Similar to the original SIWR model [30], the structural identifiability analysis of our

simplified model indicated that waterborne transmission parameters and α were not

separately identifiable for our model, and instead formed an identifiable combination.

We therefore re-scaled W and βW to enable all unknown model parameters (βI , βW , σ, ξ,

and the k’s) to be structurally identifiable (see Supporting Information for more details).

From this point forward, we have only used the re-scaled versions of βW and W . We

next estimated the structurally identifiable set of unknown parameters from the data,

using Poisson maximum likelihood with Nelder-Mead optimization (using fminsearch

in Matlab).

Prior to fitting, we also fixed the demographic parameters µa, µc, Ma, Mc and B based

on PU-AMI data collected in the camp. The infectious period, γ, was fixed to 4 days [52,

53].Further, because of apparent practical identifiability limitations discovered during

the initial parameter estimation (see Supporting Information for more details), we set all
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human-human transmission parameters denoted βI , equal to each other, and separately

we set all human-water transmission parameters, denoted βW , equal to each other. We

subsequently set σ, the child-to-adult shedding ratio of pathogen into the environment,

to 1 since the βW ’s were equal (similar to [42]). Thus the remaining parameters (ka, kc,

βI , βW , ξ) were assumed unknown.

Basic Reproduction Number (R0)

The basic reproduction number, R0, is the number of secondary infections caused by a

introduction of infectious material (individuals or pathogens) in a completely susceptible

population [61]and is a commonly used measure of disease transmissibility [62]. R0 for

the model was determined using the next-generation approach [63]. For the simplified

and scaled model without vaccination, R0 is given by

R0 =
NA(βI + βW )

γ + µA
+
NC(βI + σβW )

γ + µC
(3)

where NA and NC are the total adult and child populations in the camp. As we are as-

suming that the simulation starts near the disease free equilibrium, the total population

is equivalent to the completely susceptible population (apart from the initial infected

cases which begin the epidemic). Eq. (3) shows that the overall R0 is given by a sum

of the contributions by adults and children, with waterborne transmission among chil-

dren weighted by the ratio of child-to-adult shedding rates (σ). Note that the individual

terms for adult and child contributions to R0 follow the same general form as for the

original SIWR model [28].

Vaccination Strategies: Exploration of Dynamics

To explore the effects of Shanchol on cholera transmission dynamics in this setting, we

conducted hypothetical vaccination scenarios varying timing and dosage while assuming

a limited amount of vaccine was administered. We incorporated different vaccination

effectiveness estimates (VEs) into the transmission parameters of the vaccinated groups,

and used the best-fit parameter estimates as our baseline parameters for all scenarios; see

Table 1 for all parameter values. We assume that vaccination reduces the susceptibility

of individuals, but that if infected, individuals are equally infectious regardless of past

vaccination or cholera exposure history. We set the vaccine effectiveness in our model

to be the lower bound of all estimates from recent Shanchol studies to ensure that our

results do not over-estimate the impact of Shanchol. Specifically, we assumed that two

doses confer an effectiveness of 63% (corresponding to the estimate from Haiti [19]) and

one dose confers an effectiveness of 32.5% (corresponding to the estimate from India

[21]). In all scenarios, we start with one initial observed infected individual in both Ia

and Ic (i.e. Ia
Ka

and Ic
Ka

, respectively) to establish consistency between scenarios and

because reactive vaccination scenarios could occur only after cholera has been observed.

We examine alternative pre-vaccination seeding scenarios in Supporting Information

Table 5 and in the forecasting section below. All scenarios are simulated for 365 days

and do not include waning immunity. Since there was only 1 death from cholera during

the 2010 outbreak in Maela, we set infectious and non-infectious mortality rates equal
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to each other [15]. In the baseline scenario, we simulate a cholera outbreak with no

vaccination campaign.

We next examined all possible one and two-dose pre-vaccination combinations

(wherein all doses of vaccine are administered before the outbreak begins) by vary-

ing the proportion of the population that was given one or two-doses. As a test case for

subsequent analyses, we assumed that only 20,000 doses of Shanchol were administered

during the outbreak. We chose 20,000 because it was a rounded approximation of 50%

of the population of Maela, which allows us to evaluate the disease dynamics in the

presence of potential logistical or resource limitations. We considered two approaches:

pre-vaccination and reactive vaccination (in which vaccine is administered after cholera

is detected). For both approaches, we considered four general strategies:

• Two-dose: two doses of vaccine administered to 10,000 individuals. For reactive

vaccination, this is implemented as two 4-day campaigns, the first of which begins

one week after the first detection of cholera and the second which begins two weeks

later, in accordance with Shanchol administration guidance [6].

• One-dose: single dose of vaccine administered to 20,000 individuals. For reactive

vaccination, this is implemented as an 8-day campaign which begins one week

after the first detection of cholera.

• Mixed: single dose of vaccine is administered to 10,000 individuals, and two doses

of vaccine are administered to another 5,000 individuals.

• First come, first served: This strategy is structured similarly to the two-dose strat-

egy, except that we do not track or control the proportion who receive one or

two-doses—the 20,000 doses are administered on a first come, first served basis in

two 4-day campaigns (with no prespecified number of single doses or two doses).

This results in ∼ 14, 000 individuals receiving one dose and ∼ 3, 000 individuals

receiving two doses.

Unless otherwise indicated, we distributed vaccine doses proportionally among adults

and children. The durations of the reactive vaccine campaigns were determined based on

estimates of the number of doses that could be administered per day in Maela informed

by the 2013 campaign. In all reactive vaccination strategies, we assume that it takes

1 week for antibodies to confer protection. One week was chosen because a significant

increase in titer levels occurred 7 days post immunization, and no significant increase in

titers levels occurred beyond that time point in Shanchol seroconversion studies [64, 65].

Therefore, vaccine administered on day 7 of a cholera outbreak will not confer protection

until day 14.

Given the uncertainty and variability in effectiveness estimates (they depend greatly

on study design features like length of follow up), we conducted two additional analyses.

First, we simultaneously varied one-dose effectiveness from 0 to 63% and number of total

doses administered from 0 to twice the total camp population for all pre-vaccination

scenarios. The maximum possible one-dose effectiveness was assumed to correspond to

the two-dose effectiveness estimate. Second, we examined different reactive vaccination

delays from 0 to 8 weeks and simulataneously varied the one-dose effectiveness from 0%

to 63%.

Model simulation and parameter estimation used the ode23tb solver and the

fminsearch optimization function in MATLAB [66].
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Maela Campaign Forecasting

We next used the actual campaign coverage information for Maela to forecast the po-

tential effects of the vaccine campaign should cholera be introduced. We forecasted the

total case counts that would occur in the event of an introduction of cholera in two sce-

narios: (1) early summer 2013 immediately after the OCV campaign had ended, and (2)

2014 assuming no cholera introduction in 2013. We simulated the 2013 scenario using

OCV campaign coverage and for the counterfactual scenario of no 2013 OCV campaign.

The 2014 scenario was used to assess the need for a booster campaign.

As we were simulating over a longer time than in the vaccination scenario runs, we

updated our simplified model to include waning immunity. For this, we supposed that

the highest level of protection (Ra and Rc) comes from having recovered from a natural

infection. We then supposed this immunity can wane into two compartments: V2a and

V2c, equivalent to receiving two doses of vaccine, which then wane into V1a and V1c,

equivalent to receiving only one dose of vaccine. The V1a and V1c compartments then

wane into the susceptible classes, Sa and Sc. In this model, vaccinated are considered in

the appropriate V2 or V1 compartment, rather than the SV V and SV compartments,

and we assume that if a vaccinated individual is infected, they simply join the overall

Ia and Ic classes, so that once recovered they are fully immune (Ra and Rc). For the

resulting model equations, see the Supporting Information.

For initial conditions, we used the vaccination coverage data from the actual campaign

in the total camp population (i.e., included and excluded individuals) to determine initial

vaccination status, wherein 22.3% of adults were vaccinated with only one dose, 49.3% of

adults were vaccinated with two doses, 18.7% of children were vaccinated with only one

dose, and 63.6% of children were vaccinated with two doses. We note that we adjusted

the percent coverage of individuals included in the campaign from that reported in [15]

to account for the total camp coverage of both included and excluded individuals. See the

Supporting Information for details on these calculations. In addition to the vaccination

campaign, we also considered the possibility of pre-existing immunity (because there

had been cholera epidemics previously in the camp). We therefore ran all scenarios

with two options: assuming a fully susceptible population, and alternatively a partially

immune population (up to 50%). We denote the fraction of the initial population which

is immune to be Fimm (split evenly across the immune compartments). We also allowed

the fraction of immune individuals (assumed to all be at V 1-level immunity) in incoming

migrations, denoted Mimm, to range from 0 to 1. Finally, to model the introduction of

cholera, we added a single adult case and a single child case into the model. For a cholera

introduction in early summer 2013, each of the following scenarios was run:

• No OCV campaign in a fully susceptible population

• OCV campaign in a fully susceptible population

• No OCV campaign in a partially immune population

• OCV campaign in a partially immune population

For a cholera introduction in 2014, we ran the model without cholera introduction for

2013 (to allow the waning immunity, migration, birth, and death dynamics to continue),

and then for 2014 each of the following scenarios was run twice (once seeding with

observed cases and once seeding with actual cases):

• 2013 OCV campaign in a fully susceptible population
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• 2013 OCV campaign in a partially immune population

To incorporate uncertainty in our parameter values into our projections, we used

Latin hyper-cube sampling (LHS). We sampled 1,000 parameter sets for each forecasting

scenario using the parameter ranges shown in Table 2. For most parameters, we based

our ranges on the maximum and minimum values observed from the Maela demographic

data from 2009 to 2013, as well as parameter ranges evaluated from the literature (see

Table 2). Although the ranges of one compared with two-dose effectiveness overlap in

studies, we assume that the maximum one-dose effectiveness is equal to the minimum

two-dose effectiveness. For the remaining transmission and reporting rate parameters, we

used broad ± 50% ranges. The ranges used for the estimated parameters were generally

similar to or wider than their estimated confidence bounds but may better reflect the

additional uncertainties coming from the fact that each introduction of cholera may be

different (in time of year, contact patterns among the population, reporting, ongoing

interventions, etc.).

Table 2 LHS ranges among fitted parameters.

Parameter Range Source
βI 0.5 x βI to 1.5 x βI See Table 1 for best-fit βI used
βW 0.5 x βW to 1.5 x βW See Table 1 for best-fit βW used
ka 0.5 x ka to 1.5 x ka See Table 1 for best-fit ka used
kc 0.5 x kc to 1.5 x kc See Table 1 for best-fit kc used
µa 1.48e-5 to 0.0006 Maela demographic data 2009-2013
µc 7.82e-6 to 0.0027 Maela demographic data 2009-2013
Ma 0.574 to 8.525 Maela demographic data 2009-2013
Mc 0.475 to 4.656 Maela demographic data 2009-2013
B 1.9 to 3.87 Maela demographic data 2009-2013
γ 0.2 to 0.3 [32, 30, 39, 28, 52, 67]

α 1
5×365

to 1
2×365

[42, 68, 38, 69]

ξ 1
365

to 1
5

[32, 30, 39, 28, 70, 71, 72, 73]
VE1 0 to 0.67 [74, 9]
VE2 0.67 to 0.8 [75, 15]
Mimm 0 to 1 See Section Maela Campaign Forecasting
Fimm 0 to 0.5 See Section Maela Campaign Forecasting

Results

Parameter Estimation and Uncertainty

Figure 2 shows the model fitted to weekly incidence data for adults and children, with

parameter estimates given in Table 1. To formally examine parameter uncertainty and

practical identifiability, we plotted profile likelihoods for fitted parameters ka, kc, βW ,

βI , ξ, shown in Supporting Information Figure 9. All parameters were shown to be

identifiable (finite confidence bounds), with clear minima in each case, although the

uncertainty was comparatively high for βW and ξ, consistent with previous studies

showing that these two parameters are often practically unidentifiable [30, 42].

Vaccination Strategies: Exploration of Dynamics

We assessed different roll-out vaccination campaign strategies to determine the most

effective method of preventing a cholera outbreak in Maela.
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Baseline Scenario – No Vaccination

The baseline scenario in which no vaccination is given yields a total of 395.4 cases with

an attack rate of 8.7 per 1,000 people. See Table 3 for case counts and attack rates from

the theoretical exploration of dynamics analysis.

Table 3 Attack rates and numbers of cases for each theoretical scenario (assuming 20,000 doses) using
best fit parameter values.

Vaccination Scenario Cases Attack Rate (per 1,000 people)
Baseline: No vaccination 395.4 8.7
Pre-Vaccination

One-dose 255.3 5.6
Two-dose 247.6 5.5

Mixed 251.4 5.6
First come, first served 252.8 5.6

Reactive Vaccination
One-dose 267.6 5.9
Two-dose 268.2 5.9

Mixed 271.5 6.0
First come, first served 273.7 6.1

Pre-Vaccination Scenarios

We first examined how variation in pre-vaccination coverage of one compared with two

doses affects cumulative case counts. As one-dose or two-dose coverages increase, case

counts decrease. The cutoff for one-dose coverage alone to result in less than 50 total

cases is 96% and the corresponding cutoff for two-dose coverage alone is 49%. All the

pre-vaccination scenarios we considered administering 20,000 doses result in similar

cumulative case counts, while the real-world Maela scenario (with higher coverage) was

more effective. See Figure 3 for details.

Figure 3 Cumulative cases varying pre-vaccination coverage. Cumulative cases resulting from
methodically varying one-dose vs. two-dose coverage for pre-vaccination. With labels indicating
pre-vaccination scenarios with 20,000 doses. (FCFS = first-come, first-served).

We then simulated pre-vaccination scenarios administering 20,000 doses to Maela and

using the one-dose, two-dose, mixed, and first come, first served strategies. All four pre-

vaccination campaigns yielded similar results. An outbreak occurs, but it is substantially
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smaller than the baseline scenario. Total case counts range from 247.6 with an attack

rate of 5.6 per 1,000 people in the two-dose scenario to 255.3 with an attack rate of 5.6

per 1,000 people in the one-dose scenario. See Figure 4 and Table 3 for details.

Figure 4 Cumulative Cases for alternative pre-vaccination scenarios. Cumulative cholera cases in
adults and children, for alternative pre-vaccination scenarios. Where ‘nv’ is the baseline, no vaccination
scenario; ‘p1d’ the one-dose scenario; ‘p2d’ is the two-dose scenario; ‘pmixed’ is the mixed scenario,
and pfcfs is the first-come first-served scenario.

Finally, we varied one-dose effectiveness (from 0 to the full two-dose effectiveness) and

total number of doses (from 0 to twice the total camp population (full coverage with

two doses)) in all pre-vaccination scenarios. Intuitively, when one-dose effectiveness is

low, the two-dose scenario is most effective. For instance, administering the full two-dose

series to 22,000 people is sufficient to achieve < 50 cases. However, the one-dose strategy

alone can achieve large reductions in case counts if the combination of effectiveness and

number of doses is sufficient. For instance, either an effectiveness of 31% combined

with 45,000 doses or an effectiveness of 63% combined with 22,000 doses are minimally

sufficient to achieve < 50 cumulative cases. If one-dose effectiveness is very high and

approximately equal to two-dose effectiveness, the two scenarios behave similarly. See

Figure 5 for details.

Reactive Vaccination Scenarios

Next, we examined reactive vaccination scenarios, again administering 20,000 doses

given in separate campaigns starting 7 days after cholera is initially detected. The same

one-dose, two-dose, mixed, and first come, first served scenarios were simulated, shown

in Figure 6 and Table 3.

In all vaccination test-case scenarios (shown in Figure 6), an outbreak occurs but it

has substantially lower numbers of cases than the baseline scenario. The one-dose, two-

dose, mixed, and first come, first served scenarios all yield similar results, with total case

counts ranging from 267.6 with an attack rate of 5.9 per 1,000 people in the one-dose

scenario to 273.7 with an attack rate of 6.1 per 1,000 people in the first come, first

served scenario. Given the fact that the one-dose effectiveness is almost exactly half
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Figure 5 Cumulative cases varying one-dose vaccine effectiveness and total doses for different
pre-vaccination scenarios. Cumulative cases resulting from methodically varying one-dose vaccine
effectiveness and total doses administered in campaign implementation for the all pre-vaccination
scenarios. (FCFS = first-come, first-served).

Figure 6 Cumulative Cases for alternative reactive vaccination scenarios. Cumulative cholera cases in
adults and children, for alternative reactive vaccination scenarios. Where ‘nv’ is the baseline, no
vaccination scenario; ‘rv1d’ is the one-dose scenario; ‘rv2d’ is the two-dose scenario; ‘rvMixed’ is the
mixed scenario; and ‘fcfs’ is the first come, first served scenario.

of the two-dose effectiveness, the one-dose scenario provides approximately the same

amount of coverage as the other scenarios.

The case counts are higher and the differences between scenarios are lower in the

reactive vaccination scenarios than in the pre-vaccination scenarios, indicating that pre-

vaccination is more effective at reducing the spread of cholera.

Finally, to evaluate the effects of vaccine campaign timing, we methodically varied

one-dose vaccine effectiveness from 0% to 63% and initial vaccination campaign onset
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from 0 days to 55 days (or 8 weeks) after cholera was first identified for all reactive vac-

cination scenarios. Results are shown in Figure 7. As with the pre-vaccination scenarios,

when one-dose effectiveness is low or uncertain, the two-dose strategy is preferable. For

instance, if one-dose effectiveness is 20%, the minimum number of cases (i.e. assuming

no delay) for the one-dose strategy is 320 while the minimum for the two-dose strategy

is 291.8. Once one-dose effectiveness is sufficiently high, all campaigns are comparable

given relatively short delays. This is illustrated by the 20,000 dose reactive vaccination

scenarios (see Figure 6). A one-dose effectiveness of 27% is minimally sufficient for it to

be the preferable strategy across all campaigns and given any delay. When reaction time

is important, one-dose is often the preferred strategy because all doses of vaccine are ad-

ministered in a single 8 day campaign instead of across two 4 day campaigns separated

by 14 days. This results in more population level protection earlier in the epidemic.

Lastly, beyond a certain point in the epidemic, one-dose effectiveness has little impact

on total case counts across all campaigns. This interplay between vaccination effective-

ness and timing highlights the importance of minimizing delays in reactive vaccination

campaigns with pre-vaccination being the most effective way to reduce the spread of

cholera (see Figure 7).

Figure 7 Cumulative cases varying one-dose vaccine effectiveness and vaccine campaign delay for
reactive vaccination scenarios. Cumulative cases resulting from methodically varying one-dose vaccine
effectiveness and delay in campaign implementation for all reactive vaccination scenarios.

Maela Campaign Forecasting

Table 4 shows the forecasted numbers of cases and attack rate for each of the 2013 and

2014 scenarios using the parameter estimates in Table 1.
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Table 4 Forecasts for the 2013 and 2014 cholera seasons.

Scenario Median Total Cases (25%, 75% quantiles)
2013 Forecasts - Fully Susceptible Population

No OCV 333.3 (15.1, 540)
With OCV 0.2 (0.1, 11)

2013 Forecasts - Partially Immune Population
No OCV 139.9 (0.3, 364.9)

With OCV 0.1 (0.1, 0.4)
2014 Forecasts

With OCV - Fully Susceptible Pop. 0.4 (0.1, 158.8)
With OCV - Partially Immune Pop. 0.3 (0.1, 101)

Forecasts for the 2013 OCV Campaign

In the 2013 forecasting results, we see a larger spread of total case numbers for runs in the

scenario without the OCV campaign compared to the scenario with the OCV campaign.

Case counts range from 0 to approximately 1,000 in the fully susceptible population. The

partially immune population runs generally have lower case counts. Furthermore, for the

scenarios that consider the OCV campaign, we see the vast majority of runs having case

counts close to 0. For forecasts among a fully susceptible population, see Figure 8, and

for forecasts among a partially immune population, see Supporting Information Figure

11.

Figure 8 2013 forecasting results. 2013 forecast with a single actual case in adults and children as
seeding. The fully susceptible population with no OCV campaign on left and with OCV campaign on
right.

Forecasts for the 2014 Cholera Season

The 2014 forecasting results are quite similar to the 2013 runs. The partially immune

population results in more simulations with 0 total cases, compared with the fully sus-

ceptible population. Because population immunity wanes between 2013 and 2014, there
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is higher proportion of larger outbreaks for the 2014 forecasting scenarios, but the vast

majority of runs remain close to 0 for both populations. For details, see Supporting

Information Figure 12.

Discussion
Using a mathematical model of cholera transmission in a refugee camp, we have shown

the dramatic effect that vaccination can have on reducing the risk of cholera outbreaks in

refugee settings. Our analyses suggest that pre-vaccination campaigns, even if not fully

covering the whole camp population, can lead to substantial reductions in the number of

observed cases in the event of an outbreak. Of course, the best pre-vaccination strategy

depends on both one-dose effectiveness and the amount of doses available. If resources

are limited and one-dose offers acceptable protection, single dose-based strategies would

be preferred. But if there are enough vaccine doses available or the effectiveness of a

single dose is questionable, then full vaccination strategies are better. We also found

that reactive vaccination strategies can result in a moderate reduction in the number

of infections. Further, the small differences in attack rates in our model results suggest

that, at the best-fit parameters, vaccinating more individuals with at least one dose

(even if the full vaccination sequence is not completed) may be nearly or more effective

than vaccinating fewer individuals with a complete two-dose program assuming con-

servative vaccine effectiveness estimates. This consideration is particularly important if

vaccination occurs later in the outbreak, where time is of the essence as the outbreak

is already ongoing—the full two-dose sequence requires a delay between doses, hinder-

ing its effectiveness in reactive vaccination campaigns that begin later in an epidemic.

Additionally, if logistical constraints limit the ability to follow up and provide patients

with a second dose, a one-dose strategy may be preferable. However, the relative one

vs. two-dose effectiveness, timing and number of doses available should all be consid-

ered. Finally, our projections of future outbreaks after the 2013 vaccination campaign

in the Maela refugee camp suggest that vaccination may have prevented outbreaks in

2013 and 2014, as no cases were observed in either year, both in the model and during

follow-up in the camp. This ability to consider counterfactual scenarios and generate

projections highlights the potential of modeling to help guide real-time public health

decision-making.

Our mathematical model of cholera transmission reproduces the dynamics observed

in Maela’s 2010 cholera outbreak (Figure 2). We conducted a theoretical exploration of

the dynamics of our model to examine different vaccination scenarios with only 20,000

doses of Shanchol distributed in the camp to reflect potential public health interven-

tion strategies. Doses were distributed proportionally among children and adults. These

results provide insight into the most effective strategies for vaccination when logistics

might impede complete coverage of a population with one or two doses. We found that

the two-dose pre-vaccination strategy was marginally the most effective with an attack

rate of 5.5 cases per 1,000 people, but others provided comparable protection. On the

other hand, the most effective reactive vaccination scenarios are the one- and two-dose

strategies with attack rates of 5.9 cases per 1,000 people (Table 3), while again oth-

ers provided similar protection. All similarities between scenarios are the result of the
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conservative effectiveness estimates we used such that one-dose effectiveness is nearly

exactly half of two-dose effectiveness.

For pre-vaccination, all scenarios can achieve large reductions in case counts. If one-

dose effectiveness is low or uncertain, the two-dose scenario is preferable since it can

guarantee larger or more certain reductions in case counts i.e., 44,000 doses (adminis-

tered to 22,000 people) are sufficient to achieve < 50 cumulative cases. On the other

hand, if one-dose effectiveness is only ∼ 50% that of two-dose effectiveness, 45,000 doses

(administered to 45,000 people) are sufficient (see Figure 5 for details). In the reactive

vaccination scenarios, two doses may be preferable if one-dose effectiveness is low or

uncertain. Further, we see a crucial interplay between timing and vaccine effectiveness

on transmission. Past a certain point in the outbreak, one-dose effectiveness does not

substantially change the total case counts. For instance at day 50 in the one-dose sce-

nario, the largest potential difference in cases is 65. (total cases: 395.3 and 333.2 for a

one-dose effectiveness of 0% and 63%, respectively) while at day 20 the largest poten-

tial difference in cases is 202.2 (total cases: 395.5 and 202.3 for a one-dose effectiveness

of 0% and 63%, respectively). Additionally, when one-dose effectiveness is sufficiently

high, the one-dose strategy is preferable, with one-dose able to achieve the lowest case

counts during an idealized situation in which there is no delay in reactive vaccination

administration and the one-dose effectiveness is nearly equal to the two-dose effective-

ness. Although this scenario may not be possible in real-world settings, it underscores

the necessity of considering delays and relative one vs. two-dose effectiveness in reactive

vaccination campaigns. For the one-dose scenario considered here, more individuals are

given vaccine over an 8 day campaign resulting in more people having some protection

early in the outbreak. On the other hand, in the two-dose scenario individuals who have

been vaccinated have a higher level of protection, but achieving the same amount of

population level protection will take a longer period of time i.e., two 4 day campaigns

occurring 14 days apart (see Figure 7 for details).

The results of the forecasting analysis for 2013 show that regardless of population level

immunity, the OCV campaign using a partially mixed strategy (coverage levels shown

in Table 6) prevents a majority of outbreaks that might otherwise have occurred, shown

in Figures 8 and 12. Additionally, even if we assume a fully susceptible population prior

to the 2013 OCV campaign, the vast majority of post-OCV campaign runs in 2014

still result in no outbreak. Indeed, the median of total cases across all runs is < 1 (see

Table 4 and Figure 12). This suggests that an introduction of cholera would likely not

have resulted in a significant outbreak even given a conservative assumption about the

population level of immunity. Thus, it was determined that there was no need for a

booster campaign in Maela (and indeed there was no cholera outbreak that year).

A key limitation of our model is the uncertainty in parameter values. To assess the

uncer- tainty in our parameter values, we conducted global sensitivity analyses using

LHS and assessed both practical and structural identifiability of the model. The quanti-

tative results are heavily dependant on the vaccine effectiveness estimates however, we

chose the lower bounds of values from recent studies to ensure that the model generated

conservative results. Furthermore, the qualitative conclusions i.e. the interplay between

vaccine timing and vaccine effectiveness will occur for most realistic effectiveness esti-

mates. Other weaknesses of this analysis are inherent in the model assumptions. For
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example, one key assumption for the vaccination scenario simulations is that there is no

waning immunity because we are simulating over a short time course. We do, however,

incorporate waning immunity into the forecasting analysis. Another assumption is that

each infectious individual is equally infectious regardless of previous vaccination, cholera

exposure, or time since infection. In any case, this assumption would result in an over-

estimate of the total number of cases because we are ignoring the fact that individuals

who have been vaccinated might be less infectious. We are also ignoring hyperinfec-

tiousness, as incorporating this into our model as including it would require tracking of

pathogen through the human host and a shorter time scale because it decays after 18

hours [76]. Although we are not explicitly modeling asymptomatic infections or errors

in disease reporting, these are accounted for in the scaling factors, ka for adults and kc

for children. Additionally, in our analyses we used a deterministic model which will not

capture stochastic fluctuations. Stochasticity may play a role, particularly in the early

phase of an outbreak following a new introduction of cholera—our model may therefore

miss some of the stochastic die-out of epidemics in our forecasts, which again, would

lead to an overestimate of the number of cases. We assume that the mortality rate for

individuals with cholera is the same as that for individuals without cholera. Although

this is likely not true, the data we fit our model to did not have a sufficient number of

deaths to calculate case fatality rates for diseased compared with non-diseased popula-

tion groups (there was only one death among individuals with cholera). As individuals

in Maela have easy access to medical care, they are likely to be treated and have a high

rate of survival. For the sake of parsimony [77], we are also assuming that human-human

transmission parameters are equal across demographic groups and separately human-

water transmission parameters are equal since we obtained similar fits for a range of

β values in the practical identifiability analysis (see Supporting Information). We are

using data from a specific setting, which may limit the external validity of our results;

however, the qualitative dynamic results obtained should be consistent for other refugee

camp settings and have been seen in similar mathematical modeling analyses [43, 78].

The strengths of this model include the novelty of considering vaccination scenarios

while explicitly accounting for environmental transmission of cholera in a refugee camp.

Additionally, our identifiability and sensitivity analyses methodically considered param-

eter uncertainty. Another strength is the fact that we used real-world data to inform our

model which in turn, provided insight for the public health response. Specifically, we

liaised with the CDC as well as local nongovernmental organizations in real-time and

used data from the OCV campaign to directly inform the model. Further, the model

was then used to explore counterfactual forecasting scenarios to help answer outstanding

questions among trial investigators about whether or not a booster campaign was neces-

sary. Finally, the consistency of our results with other analyses indicates the robustness

of our findings.

In general, our results indicate that vaccination should be considered in conjunction

with WaSH with the caveat that immunity may wane over time. Furthermore, the trade-

off between vaccine effectiveness (i.e., one-dose compared with two-dose) and timing

of reactive vaccination should be carefully considered. The WHO currently holds a

stockpile of over 3 million doses of oral cholera vaccine to allow countries or institutions

to request doses of vaccine during cholera outbreaks. The average time from when
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requests were approved to receipt in country has been 14.4 days with an additional

9.5 days until vaccination actually started [79, 80]. As seen in our vaccination scenario

results, timing is crucial to the impact of vaccination. Recent mathematical modeling

work has examined how best to allocate global stockpile reserves [81].

Ideally, pre-vaccination should be considered as a short-term transmission reduction

strategy, compared to the potentially longer-lasting effects of improved WaSH. A recent

study used a static model fit to data from Malawi to estimate cases averted in Haiti

by implementation of oral cholera vaccine and/or WaSH and found that a combined

implementation of WaSH and vaccine resulted in the greatest reductions in cases [82].

Furthermore, WaSH reduces transmission for a wide range of infectious diseases and if

maintained is more permanent, while Shanchol targets cholera, and its effects do not

last as long—although vaccine campaigns may be easier to implement, as they do not

require sustained maintenance. Thus, both WaSH and vaccination may have their roles

to play in an effective intervention strategy.

Our analyses suggest that vaccination provides an effective strategy for preventing

cholera outbreaks in refugee camps and that cholera vaccination should be considered,

even in the absence of an ongoing outbreaks. Given the dramatic increases in displaced

populations and refugee settlements across the world it is critical that vaccination be

considered with water sanitation and hygiene improvements. If a camp is facing an

outbreak, delayed distribution of vaccines can substantially alter the effectiveness of a

reactive vaccine campaign, suggesting that quick distribution of vaccines (e.g., using

a first come, first served approach) may be more important than ensuring that every

individual gets both vaccine doses.

Conclusions
We developed an age-structured SIWR-based transmission model to consider different

cholera vaccination strategies in Maela, the largest and most long-standing refugee camp

in Thailand. Our model was fit to cholera incidence data from 2010 and was parameter-

ized using demographic data collected from the camp. We considered multiple scenarios,

including both a theoretical exploration of the effects of variation in timing, effective-

ness and supply, as well as the real-world coverage of vaccine in Maela. We found that

the preferred number of doses per person and timing of vaccination campaigns should

be considered in the context of one vs. two dose effectiveness and logistical constraints.

Importantly, our analysis coincided with an actual cholera vaccination campaign in the

camp and was used to evaluate the campaign and to help determine that there was no

need for a follow-up booster campaign. The setting of our analysis is particularly rele-

vant given the recent worldwide increase in total numbers of refugees. Results from our

model highlight the utility of vaccination to prevent cholera. Vaccination campaigns

can be combined with more permanent water, sanitation, and hygiene infrastructure

improvements to reduce the risk of cholera and other enteric disease epidemics. Overall,

this study demonstrates that mathematical modeling can generate useful insights into

real-time intervention decisions.
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Figure 9 Profile likelihood plots for estimated parameters top row: ka (left) ,kc (right), second row:
βW (left), βI (right), and third row: ξ. Note: The βW and ξ ranges were extended to capture the 95%
confidence intervals.
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2 Cumulative Cases of Alternative Seeding Scenarios.

Table 5 Cumulative Cases of Alternative Seeding Scenarios.

Vaccination Scenario Cases Attack Rate (per 1,000 people)
Baseline: No vaccination 395.4 8.7
Pre-Vaccination
Maela 0.1 0.002
One-dose only 239.8 5.3
Two-dose only 233.5 5.2
Mixed 236.6 5.2
first come, first served 237.8 5.3
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3 Cumulative Cases of Alternative Seeding Scenarios.

Figure 10 Alternative seeding scenario: one actual case. Cumulative cholera cases in adults and
children, for different pre-vaccination scenarios. Where ‘nv’ is the baseline, no vaccination scenario;
‘p1d’ is the one-dose scenario; ‘p2d’ is the two-dose scenario; ‘pmixed’ is the mixed scenario.
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4 Maela Vaccination Coverage Calculations.

Table 6 OCV coverage data from the 2013 vaccine campaign. The “% Coverage” column
indicates the percent coverage for the entire population (all included and excluded
subjects). The “Number of Individuals” column indicates the initial conditions used in
the model, calculated from the coverage percentages.

Class % Coverage Number of Individuals
Non-vaccinated infectious adults - seeding (Ia) 0% 72
Non-vaccinated adults (Sa) 0% 7,856
Once-vaccinated adults (Va) 22.3% 6,208
Twice-vaccinated adults (V Va) 49.3% 13,765
Non-vaccinated infectious children - seeding (Ic) 0% 53
Non-vaccinated children (Sc) 0% 3,021
Once-vaccinated children (Vc) 18.7% 3,241
Twice-vaccinated children (V Vc) 63.6% 11,018
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5 2013 Forecasting Results with Partially Immune Population.

Without OCV Campaign With OCV Campaign

Figure 11 2013 forecast with a single actual case in adults and children as seeding. These plots show a
partially immune population with no OCV campaign on left and with OCV campaign on right.
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6 2014 Forecasting Results

Figure 12 2014 forecast with a single actual case in adults and children as seeding. First row: Fully
susceptible population with OCV campaign. Second row: Partially immune population with OCV
campaign.
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7 Model equations and additional details
7.1 Simplified Model Equations

The simplified age-structured model equations with no vaccination are below. This model was used for the identifiability

analysis to calculate R0 and was fit to the Maela outbreak data.

Force of Infection Equations

λa = βaaIa + βcaIc + βwaW

λc = βacIa + βccIc + βwcW
(4)

Non-Vaccinated Adults

Ṡa =
Ma

2
− λaSa − µaSa

İa = λaSa − γIa − µaIa

Ṙa =
Ma

2
+ γIa − µaRa

(5)

Non-Vaccinated Children

Ṡc = B +
Mc

2
− λcSc − µcSc

İc = λcSc − γIc − µcIc

Ṙc =
Mc

2
+ γIc − µcRc

(6)

Environmental Pathogen

Ẇ = ξ(λw −W )

λw = Ia + σIc
(7)

7.2 Full Model Equations

The full age-structured model equations separated by non-vaccinated, once-vaccinated, and twice-vaccinated individuals

are below. If fitted, parameter values are from the simplified model (above) and the remaining non-fitted values (e.g.,

vaccine effectiveness) are from the literature, see Table 1. This model was used to examine the different counterfactual

vaccination scenarios.

Force of Infection Equations

λa = βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc

λva = (1− VE1)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λvva = (1− VE2)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λc = βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc

λvc = (1− VE1)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

λvvc = (1− VE2)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

(8)

Non-Vaccinated Adults

Ṡa = −µaSa − λaSa +Ma/2− νa1Sa

İa = λaSa − µaIa − γIa

Ṙa = γIa − µaRa +Ma/2− νa1Ra

(9)
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Once-Vaccinated Adults

˙SV a = −λvaSVa − µaSVa + νa1Sa − νa2SVa
˙IV a = λvaSVa − µaIVa − γIVa
˙RV a = γIVa − µaRVa + νa1Ra − νa2RVa

(10)

Twice-Vaccinated Adults

˙SV V a = −λvvaSV Va − µaSV Va + νa2SVa

˙IV V a = λvvaSV Va − µaIV Va − γIV Va
˙RV V a = γIV Va − µaRV Va + νa2RVa

(11)

Non-Vaccinated Children

Ṡc = −µcSc − λcSc +Mc/2 + B − νc1Sc

İc = λcSc − µcIc − γIc

Ṙc = γIc − µcRc +Mc/2− νc1Rc

(12)

Once-Vaccinated Children

˙SV c = −µcSVc − λvcSVc + νc1Sc − νc2SVc
˙IV c = λvcSVc − µcIVc − γIVc
˙RV c = γIVc − µcRVc + νc1Rc − νc2RVc

(13)

Twice-Vaccinated Children

˙SV V c = −λvvcSV Vc − µcSV Vc + νc2SVc

˙IV V c = λvvcSV Vc − µcIV Vc − γIV Vc
˙RV V c = γIV Vc − µcRV Vc + νc2RVc

(14)

Environmental Pathogen

λw = Ia + σIc + IVa + σIVc + IV Va + σIV Vc

Ẇ = ξ(λw −W )
(15)

Total Population Sizes

Na = Sa + Ia + Ra + SVa + IVa + RVa + SV Va + IV Va + RV Va

Nc = Sc + Ic + Rc + SVc + IVc + RVc + SV Vc + IV Vc + RV Vc
(16)

7.3 Forecasting Model equations

The age-structured model equations used for the forecasting scenarios are below.

Non-Vaccinated Adults

Ṡa = MaMsusc − βI(Ia + Ic)Sa − βWWSa + 2αV 1a − µaSa

İa = (Sa + (1− VE1D)V 1a + (1− VE2D)V 2a)(βI(Ia + Ic) + βWW )− γIa − µaIa
(17)
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Non-Vaccinated Children

Ṡc = McMsusc + B − βI(Ia + Ic)Sc − βWWSc + 2αV 1c − µcSc

İc = (Sc + (1− VE1D)V 1c + (1− VE2D)V 2c)(βI(Ia + Ic) + βWW )− γIc − µcIc
(18)

Immune Adults

Ṙa = γIa − 2αRa − µaRa (19)

Immune Children

Ṙc = γIc − 2αRc − µcRc (20)

Partial Immune/Vaccinated Adults

˙V 1a = Ma(1−Msusc)− ((1− VE1D)V 1a)(βI(Ia + Ic)− βWW )+

2α(V 2a − V 1a)− µaV 1a

˙V 2a = ((1− VE2D)V 2a)(−βI(Ia + Ic)− βWW ) + 2α(Ra − V 2a)− µaV 2a

(21)

Partial Immune/Vaccinated Children

˙V 1c = Mc(1−Msusc)− ((1− VE1D)V 1c)(βI(Ia + Ic)− βWW )+

2α(V 2c − V 1c)− µcV 1c

˙V 2c = ((1− VE2D)V 2c)(−βI(Ia + Ic)− βWW ) + 2α(Rc − V 2c)− µcV 2c

(22)

Environmental Pathogen

Ẇ = ξ(Ia + Ic −W ) (23)

Identifiability Analysis

Identifiability analysis addresses the question of whether the model parameters can be estimated from a given data set

[30]. Identifiability is typically broken into two broad categories—(1) structural identifiability, which examines theoretical

identifiability from the structure of the model and measured variables, and (2) practical identifiability, which addresses

how a model’s identifiability properties are affected by real-world data issues such as noise and sampling frequency.

Structural Identifiability Analysis

To examine the structural identifiability of our simplified age-structured model, we used the differential-algebra based

approach developed in [54, 30, 55, 56, 57, 58]. Determining the structural identifiability of the model is a prerequisite to

determining if there is a unique solution for a set of unknown model parameters [54]. Structural identifiability can be

framed as evaluating whether the model parameters can be estimated uniquely, when the data is assumed to be ‘perfect’

(i.e., noise-free and measured for all time points). Establishing structural identifiability is a prerequisite for successful

parameter estimation from real-world, noisy data. When parameters are not individually identifiable, groups of parameters

typically form identifiable combinations that can be uniquely determined.

In the differential algebra approach, the unmeasured state variables (e.g. SA, SC , etc.) are eliminated, leaving equations

only the measured variables, their derivatives, and the parameters, denoted the input-output equations. In this case, the

measured variables are cholera incidence among adults and children. The identifiability from cholera incidence was more

easily analyzed using the prevalence approximation, which as γ is assumed to be known, yields the same structural

identifiability results as the standard incidence. We assumed the demographic parameters, initial population sizes, and
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recovery rate are known from data as described above and defined in Table 1, and the remaining parameters (βij ’s, k’s,

α, σ, and ξ) were considered unknown. A Gröbner-basis approach was then used to test whether the unknown model

parameters in Equations (4) – (7) are identifiable from the measured data, with all calculations performed in

Mathematica Version 10.

Similar to the original SIWR model [30], the waterborne transmission parameters and α were not separately identifiable

for our model, instead forming the identifiable combination β̄w = α
ξ βW . To address this, we define W̄ = ξ

αW .

Rewriting the model equations in terms of these new variables yields the following equation for environmental pathogen:

˙̄W = ξ(λw − W̄ )

with all other equations remaining the same except replacing W with W̄ and the identifiable combination β̄w . Once

re-scaled, all unknown model parameters (βI , β̄W , σ, ξ, and the k’s) were structurally identifiable. From this point

forward (and for the parameter estimation and other analyses), we use only the rescaled versions of βW and W , and thus

we will omit the bar notation.

Practical Identifiability

Initially, even though structural identifiability was considered, we obtained extremely similar fits for a wide range of

transmission parameter values, suggesting that there were practical unidentifiability issues wherein the reporting

parameters (ka and kc) and adult and child transmission parameters can partially compensate for one another to yield

the same overall apparent cholera incidences. For the sake of parsimony [77], we set all human-human transmission

parameters equal to each other, denoted βI , and separately we set all human-water transmission parameters equal to each

other, denoted βW . Similarly, σ, the relative shedding rate for adults and children, was also relatively practically

unidentifiable, and so we set shedding to be equal for both classes.

To examine practical identifiability and parameter uncertainty, we plotted profile likelihoods of each fitted parameter.

Profile likelihoods are a numerical approach to evaluating parameter uncertainty and identifiability [59]. Profiles are

generated by fixing the profiled parameter to a series of values, while fitting the remaining parameters that are being

estimated. Typically, the minimum negative log likelihood (or equivalently the maximum likelihood) values are plotted for

each value of the profiled parameter, forming the profile likelihood for that parameter. The minimum represents the

best-fit value of the profiled parameter and is determined by parameter estimation. If the profile is flat, the parameter

cannot be uniquely determined and is considered unidentifiable. However, even if the profile is structurally identifiable, the

curvature may be quite shallow, so that a particular minimum cannot practically be distinguished - this is denoted

practical unidentifiability. Confidence intervals can be determined from the profile likelihood by setting a significance-based

threshold on the likelihood based on a χ2 distribution [59]. Once the threshold is set, all parameters corresponding to

likelihood values below the threshold fall within the confidence interval. The results from the profile likelihood plotting can

be seen in Figure 9.

Sensitivity Analysis: Initial Seeding from Observed to Actual

As another sensitivity analysis, we changed our initial seeding from one observed case to one actual case for the Maela

and pre-vaccination scenarios. Because vaccination occurred before any outbreak, administration of the vaccine was not

affected by case detection. Overall, we see the same pattern of results, shown in Figure 10 and Table 5. The two-dose

scenario sees the largest reduction in cases followed by the mixed, first come, first served, and one-dose scenarios. Since

the number of initial infected individuals is lower, the total cumulative case counts are as well. Of note is that the

reduction in cases is greater for pre-vaccination scenarios than for the baseline non-vaccination scenario.

Maela Vaccine Coverage Calculations

Among included individuals (pregnant women and infants < 1 year were excluded), the OCV campaign covered 51% of

adults and 68% of children with two doses, and another 23% of adults and 20% of children with one dose. We made the

following adjustments to determine total Maela coverage among both included and excluded individuals for the forecasting

scenarios:

• Once-vaccinated adults:

(Va − V Va)((Na− Pregnant women)/(Na))Na
((0.74-0.51)*(27901-910)/27901)*27901 = 6207.9

• Twice-vaccinated adults:

(V Va)((Na− Pregnant women)/(Na))Na
(0.51*(27901-910)/27901)*27901 = 13765.4

• Once-vaccinated children:

(Vc − V Vc)((Nc− infants under 1 year old)/(Nc))Nc
((0.88-0.68)*(17332-1129)/17332)*17332 = 3240.6

• Twice-vaccinated adults:

(V Vc)((Nc− infants under 1 year old)/(Nc))Nc
(0.68*(17332-1129)/17332)*17332 = 11018

Table 6 shows the total number of individuals by class used to simulate the OCV campaign.

Forecasts for the 2013 Cholera Season

In the 2013 forecasting results, we see a larger spread of total case numbers for runs in the scenario without the OCV

campaign compared to the scenario with the OCV campaign. The partially immune population runs generally have lower

case counts when comparing to the fully susceptible population. Furthermore, for the scenarios that consider the OCV

campaign, we see that the vast majority of runs having case counts close to 0. For details see Figures 8 and 11.
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Forecasts for the 2014 Cholera Season

The 2014 forecasting results are quite similar to the 2013 runs for the fully susceptible population compared to the

partially immune population with more runs resulting in 0 total cases for the partially immune population. As population

immunity wanes between 2013 and 2014 we get a higher proportion of larger outbreaks for the 2014 forecasting scenarios,

but the vast majority of runs remain close to 0 for both the fully susceptible and partially immune populations. For details

see Figure 12.
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